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A Design of Elastic Student

A.1 Elastic Swin Transformer

The Swin Transformer’s basic block [20] closely resembles that of the ViT, and we
apply the same parameter extraction method to its Shifted Window based Self-
Attention (SW-MSA) and MLP modules. In the Swin Transformer architecture,
the final linear layer of the MLP in the last block of each stage quadruples the
dimension of the tokens. Subsequently, a Patch Merging (PM) layer is employed
to halve the token dimension. We adjust the parameters of these linear layers in
the MLP and PM to match their respective expansion and reduction ratios as
follows:

wmlp
i = wmlp[: Ds

i · 4, : Ds
i ] · αi, wpm

i = wpm[: Ds
i · 2, : Ds

i · 4] · αi, (1)

where Ds
i represents the i-th elastic width of stage s, wmlp are the weight of the

last linear layer of the MLP, and wpm are the weight of the PM module. For the
Swin Transformer, we apply elastic depth exclusively to the third stage, where
the number of blocks is larger. The approach for selecting the activated block
IDs follows the same method as used for the ViT, ensuring consistency across
different transformer architectures in the process of creating sub-networks with
varying depths.

A.2 Elastic ResNet

ResNet is composed of many basic units known as bottleneck building blocks
[14]. In ResNet, we primarily focus on constructing sub-networks with varying
numbers of blocks. We make the feature dimension(channel) of the middle layer
in each building block elastic, while keeping the output dimension from each
block unchanged. The weights of the three convolutional layers within a block
are extracted as follows:

w1
i = w1[: Ds

i , :, :, :], w2
i = w2[: Ds

i , : D
s
i , :, :] · αi, w3

i = w3[:, : Ds
i , :, :] · αi, (2)

where Ds
i denotes the number of mid-layer channel for stage s. We implement

elastic depth in both the second and third stages of ResNet. The method for
selecting block IDs in each stage is consistent with that used for the ViT and
Swin Transformer.
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B Pseudocode

Algorithm 1: POA PyTorch-like Pseudocode without multi-crop aug-
mentation and MPH.
Input : gIS , gT // intact student and teacher network

M,N // number of elastic width and depths
Dmax, Lmax // max width, max depth
Dh // head dimension
τs, τt, µ // temperatures and momentum for EMA
λ, γ // loss weight

Initialize: gT .params = gIS .params, cand_ids = [[i, j] for i in
range(M + 1) for j in range(N + 1)], idx=0

for x in dataloader do
xa, xb=augment(x), augment(x) // random views
gES , idx = ExtractElastic(cand_ids, idx, Dmax, Dh, Lmax, gIS)
fa = gT (xa), fb1 = gIS(xb), fb2 = gES(xb)
LIS = H(fb1, fa, τs, τt)
LES = LES1 + LES2 = H(fb2, fa, τs, τt) + H(fb2, fb1, τs, τs, False)
L = λLIS + (1− λ)LES + γLkoleo // total loss with Koleo
regularization
L.backward(), update(gIS) // Note that gES and gIS share
parameters, and the gradient from gES is accumulated
onto the gradient of gIS.
gT .params = µ · gT .params + (1− µ)·gIS .params // update
teacher with momentum EMA

end

def ExtractElastic(cand_ids, idx, Dmax, Dh, Lmax, gIS):
if idx == len(cand_ids)− 1 then

random.shuffle(cand_ids)
idx = 0

i, j = cand_ids[idx]
Di = Dmax − i ·Dh

Lj = Lmax − j
gES = Net(gIS , Di, Lj) // sub-network extracted from gIS with
width Di and depth Lj

idx+ = 1
return gES , idx

def H(s, t, τs, τt, centering = True):
t = t.detach() // stop gradient
s = softmax(s/τs, dim = 1)
if centering then

t = SK(t) // SK centering
t = softmax(t/τt, dim = 1)
return −(t · log(s)).sum(dim = −1)



POA 3

C Implementation Details

C.1 Multiple Projection Heads

Following [6, 21, 35], we employ 3-layer MLP with L2-normalized bottlenecks to
serve as projection heads. To ensure effective training of each network within
these elastic frameworks, we introduce multiple projection heads, each with a
varying number of prototypes, positioned subsequent to the backbone network.
Our MPH design is distinct from the multiple heads utilized in the ENT [24].
In the ENT, each head contains an identical number of prototypes and employs
an averaging of cross-entropy loss which is weighted by the predictive entropies
of each head, to ensemble the learning of each head. In contrast, our MPH
design features heads with varying numbers of prototypes, which acts as multi-
ple semantic spaces for representation. This design is intended to improve the
distillation process between the intact network and the elastic network. In our
experiments, we designate the output dimensions for these projection heads as:
K1 = 8192,K2 = 16384,K3 = 32768,K4 = 65536.

C.2 KoLeo Regularizer

To mitigate the issue of feature collapse, we incorporate the KoLeo regularizer
into our training process for the global views, as described in [21]. The regular-
izer’s loss function is expressed as:

KoLeo(z) = − 1

B

B∑
i=1

log(dB,i), dB,i = min
j ̸=i

||zi − zj ||,

Lkoleo = KoLeo(
Zb1

||Zb1||
) + KoLeo(

Zb2

||Zb2||
),

(3)

where B is the batch size, and dB,i represents the Euclidean distance between
the i-th feature zi and its nearest feature zj within the batch. The KoLeo loss
is scaled with a modest loss weight γ set to 0.1.

C.3 Masked Patch Tokens Prediction

iBOT [35] has demonstrated the effectiveness of predicting the masked patch
tokens of student networks according to the tokens of teacher network. We also
incorporate this mechanism into the training of our POA SSL. In our experi-
ments, we observed that early implementation of masked patch token prediction
can result in unstable training. To address this issue, we delay the activation of
the masked patch token prediction until the model has completed 30 epochs of
training.



4 Y. Zhang et al.

C.4 Probabilistic Sampling for Elastic Student

In POA, there are an array of candidate elastic networks that vary in width
and depth, each offering a different level of diversity when compared to the
intact student model. For example, considering the intact student structure as
ViT-L characterized by a width of 1024 and depth of 24, an elastic network
such as ViT-S, with a width of 384 and depth of 12, exhibits a higher degree of
diversity relative to the intact student than an elastic network with dimensions
closer to the intact student, such as a width of 960 and depth of 23. Intuitively,
the elastic networks with greater diversity should be sampled more frequently
to ensure sufficient training. To facilitate this, we implement a probabilistic
sampling method influenced by the width and depth of the elastic networks
in our experiments. For N + 1 available widths and M + 1 available depths,
we calculate the sampling probability for the i-th width and j-th depth elastic
network as follows:

pi,j =
((Sw − 1) · N−i

N + 1) · ((Sh − 1) · M−j
M + 1)∑N,M

k=0,l=0((Sw − 1) · N−k
N + 1) · ((Sh − 1) · M−l

M + 1)
. (4)

It is important to note that when i = 0 and j = 0, the elastic network is at its
smallest width and depth, and the sampling probability pi,j achieves the largest
value. In our experiment, we set: Sw = Sd = 3.

C.5 Data Augmentation Setting

We adopt the same data augmentation techniques as DINOv2 [21], which include
color jittering, Gaussian blur, solarization, flipping, and multi-crop strategies as
described in [5]. The specific parameters for these augmentations are detailed in
Table 1.
Table 1: Hyper-parameters of different data augmentations. The parameters prob_g1,
prob_g2, and prob_l refer to the activation probabilities for the first global crop, the
second global crop, and the local crops, respectively. The parameter min_gcs represents
the minimum global crop scale, while max_gcs indicates the maximum global crop
scale. Similarly, min_lcs and max_lcs specifies the minimum and maximum local crop
scale, respectively.

Color jittering Gaussian blur Solarization Multi-crop Flipping

brightness: 0.4 radius_min: 0.1 thresh: 128 global crops: 2 direction:
contrast: 0.4 radius_max: 2.0 prob_g1: 0.0 local crops: 8 horizontal

saturation: 0.2 prob_g1: 1.0 prob_g2: 0.2 global size: 224 prob: 0.5
hue: 0.1 prob_g2: 0.1 prob_l: 0.0 local size: 96
prob: 0.8 prob_l: 0.5 min_gcs: 0.32

max_gcs: 1.0
min_lcs: 0.05
max_lcs: 0.32
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C.6 Hyper-parameters of POA

We provide following hyper-parameters setting in our method:

– projection heads: bottleneck dim: 256 hidden layer dim: 2048
– drop path rate: ViT: 0.2 Swin: 0.2 ResNet: 0.0
– loss weights: λ = 0.8 γ = 0.1

C.7 Optimizing Setting

In our training, we utilize the AdamW optimizer with parameters β1 = 0.9 and
β2 = 0.999. The total training batch sizes for Vit, Swin, and ResNet are 1600,
2048, and 1280 respectively. We apply a learning rate decay from top to bottom
across the network blocks, scaling down by a factor of 0.9. For transformer-based
backbones, the patch embedding module’s learning rate is further reduced by a
factor of 0.2. Within each projection head, we keep the parameters of the final
layer fixed during the initial epoch of training. Additionally, to maintain stable
training, the gradient is clipped at an L2 norm of 1.5 for all parameters. The
momentum in EMA updating for teacher network is initialized as 0.992 and
decay to 0.9999 with cosine schedule.

D Experiments

D.1 k-NN and Linear Probing Evaluation on ImageNet-1K Dataset

We provide a more detailed comparison of k-NN and linear probing evaluations
against existing methods in Table 2.

Table 2: Comprehensive comparison of k-NN and linear probing (LP) accuracy (%)
on the ImageNet-1K dataset. "Param." indicates the quantity of parameters within the
backbone network, measured in megabytes. "Epoch" refers to the adjusted number of
effective training epochs, corrected for the number of views processed by the models as
described in [35]. "∗" denotes our implementation based on official code. "†" denotes
results reproduced using the official code.

Method Publication Arch. Param. Epoch k-NN LP

SwAV [5] NeurIPS 20 RN-50 23 2400 65.7 75.3
RN-200 250 2000 73.9 79.6

BYOL [12] NeurIPS 20 RN-50 23 2000 64.8 74.4
MoCov3 [8] ICCV 21 RN-50 23 1600 - 74.6
DINO [6] ICCV 21 RN-50 23 3200 67.5 75.3
UniGrad [29] CVPR 22 RN-50 23 2400 - 75.5

ReLICv2 [32] arXiv 22
RN-50 23 4000 - 77.1
RN-101 41 4000 - 78.7
RN-152 56 4000 - 79.3
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Univip [19] CVPR 22 RN-50 23 1200 - 74.2
Caco [33] arXiv 22 RN-50 23 3200 - 75.7
SMoG [22] ECCV 22 RN-50 23 1200 - 76.4
VICReg [4] ICLR 22 RN-50 23 2000 - 73.2
HCSC [13] CVPR 22 RN-50 23 800 66.6 73.3
SDMP-MoCov3 [23] CVPR 22 RN-50 23 600 - 73.5
SimSiam+GSG [16] NeurIPS 23 RN-50 23 400 58.4 69.4
BYOL+GSG [16] NeurIPS 23 RN-50 23 400 62.2 71.1
GroCo [26] ICCV 23 RN-50 23 400 64.8 71.3
MOKD [27] CVPR 23 RN-50 23 400 70.6 75.6
SCFS [28] CVPR 23 RN-50 23 3200 68.5 75.7
BYOL+LDReg [15] ICLR 24 RN-50 23 400 - 68.5
AUC-CL [25] ICLR 24 RN-50 23 1400 - 73.5
SimCLR+WNW [18] ICLR 24 RN-50 23 1600 - 66.3
SimSiam+WNW [18] ICLR 24 RN-50 23 1600 - 71.3

RN-50 23 0 73.4 76.9
RN-101 41 0 75.7 79.1POA(Ours)
RN-152 56 2400 76.4 79.9

MoBY [34] arXiv 21 Swin-T/W7 28 600 - 75.0

iBOT [35] ICLR 22 Swin-T/W7 28 1200 75.3 78.6
Swin-T/W14 28 1200 76.2 79.3

SMoG [22] ECCV 22 Swin-T/W7 28 1200 - 77.7

EsViT [17] ICLR 22

Swin-T/W7 28 1200 75.7 78.1
Swin-S/W7 49 1200 77.7 79.5
Swin-B/W7 87 1200 78.9 80.4
Swin-T/W14 28 1200 77.0 78.7
Swin-S/W14 49 1200 79.1 80.8
Swin-B/W14 87 1200 79.3 81.3

DINOv2∗ [21] TMLR 24
Swin-T/W7 28 1200 75.4 78.0
Swin-S/W7 49 1200 76.1 79.8
Swin-B/W7 87 1200 76.9 80.9
Swin-T/W7 28 0 77.5 78.9
Swin-S/W7 49 0 79.3 81.3POA(Ours)
Swin-B/W7 87 1200 79.6 82.0

SwAV [5] NeurIPS 20 ViT-S/16 21 2400 66.3 73.5

MoCov3 [8] ICCV 21
ViT-S/16 21 1200 - 73.4
ViT-B/16 85 1200 - 76.7
ViT-L/16 307 1200 - 77.6

DINO [6] ICCV 21 ViT-S/16 21 3200 74.5 77.0
ViT-B/16 85 1600 76.1 78.2

iBOT [35] ICLR 22
ViT-S/16 21 3200 75.2 77.9
ViT-B/16 85 1600 77.1 79.5
ViT-L/16 307 1200 78.0 81.0

SDMP-MoCov3 [23] CVPR 22 ViT-S/16 21 600 - 73.8
ViT-B/16 85 600 - 77.2
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SDMP-DINO [23] CVPR 22 ViT-S/16 21 1200 - 76.4

Mugs [36] arXiv 22
ViT-S/16 21 3200 75.6 78.9
ViT-B/16 85 1600 78.0 80.6
ViT-L/16 307 1000 80.3 82.1

MSN [2] ECCV 22
ViT-S/16 21 800 73.3 76.6
ViT-B/16 85 400 74.7 78.1
ViT-B/8 85 300 75.7 80.3

MOKD [27] CVPR 23 ViT-S/16 21 800 73.1 76.3
ViT-B/16 85 400 76.0 78.4

I-JEPA [27] CVPR 23 ViT-B/16 85 600 - 72.9
ViT-L/16 307 600 - 77.5

SiameseIM [30] CVPR 23 ViT-B/16 85 1600 - 78.0

ENT-DINO [24] ICLR 23 ViT-S/16 21 3200 75.2 77.4
ViT-B/16 85 1600 77.1 79.1

ENT-MSN [24] ICLR 23
ViT-S/16 21 800 75.2 77.4
ViT-B/16 85 400 77.2 78.9
ViT-B/8 85 300 78.9 80.8

SimCLR+LDReg [15] ICLR 24 ViT-B/16 85 800 - 73.0

DINOv2† [21] TMLR 24
ViT-S/16 21 1200 72.2 73.1
ViT-B/16 85 1200 77.4 78.5
ViT-L/16 307 1200 82.0 83.3

AUC-CL [25] ICLR 24 ViT-S/16 21 1400 70.7 73.7
ViT-S/16 21 0 76.8 77.6
ViT-B/16 85 0 80.9 81.7POA(Ours)
ViT-L/16 307 1200 82.3 83.6

D.2 Fine-Tuning Evaluation

Due to the fine-tuning process adjusting the pretrained parameters of the back-
bone network, the differences between pretrained features are diminished. This
may result in comparisons that may not fully reflect the distinct qualities of
leaned representation in each method. Consequently, only a handful of studies
report this metric. In our experiments, we conduct fine-tuning on the ImageNet-
1K dataset and draw comparisons to self-supervised methods utilizing ViT back-
bone. We adhered to the fine-tuning methodology delineated in [3, 35], which
incorporates layer-wise learning rate decay, weight decay, and the AdamW op-
timizer. The training durations for ViT and Swin variants are set at 200, 100,
and 50 epochs for the large, base, and small models, respectively. Due to differ-
ences in convergence between convalutional network and transformer, all ResNet
variants (ResNet-152, ResNet-101, and ResNet-50) undergo a uniform training
period of 100 epochs. We apply a layer-wise decay rate of 0.55 for ViT-S, Swin-T,
and ResNet-50; a decay rate of 0.4 for ViT-B, Swin-S, and ResNet-101; and a
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decay rate of 0.6 for ViT-L, Swin-B, and ResNet-152. The initial learning rates
for fine-tuning are configured as follows: 0.002 for ViT-S, Swin-T, and ResNet-
50; 0.0007 for ViT-B, Swin-S, and ResNet-101; and 0.0018 for ViT-L, Swin-B,
and ResNet-152.

As is shown in Table. 3, our POA achieves a SOTA accuracy of 85.3% on
the ViT-L/16 backbone, and it demonstrates comparable accuracy when utilizing
ViT-S/16 and ViT-B/16 backbones. We also report the fine-tuning results for
the Swin and ResNet backbones in Table 5.

Table 3: Fine-tuning results on
ImageNet-1K dataset.

Method Arch. Epo. Acc.

DINO ViT-S/16 3200 82.0
iBOT ViT-S/16 3200 82.3
POA ViT-S/16 0 82.1

BEiT ViT-B/16 800 83.4
DINO ViT-B/16 1600 83.6
iBOT ViT-B/16 1600 84.0
POA ViT-B/16 0 83.9

iBOT ViT-L/16 1200 84.8
BEiT ViT-L/16 800 85.2
POA ViT-L/16 1200 85.3

Table 4: Results of semi-supervised
learning on ImageNet-1K. The 1% and
10% indicate the fractions of labeled
data used. SD denotes self-distillation.

Method Arch. 1%. 10%.

SimCLRv2 RN50 57.9 68.1
BYOL RN50 53.2 68.8
SwAV RN50 53.9 70.2

SimCLRv2 RN50 60.0 70.5+SD
POA RN50 61.8 73.1

DINO ViT-S/16 60.3 74.3
iBOT ViT-S/16 61.9 75.1
POA ViT-S/16 68.2 75.9

Table 5: Fine-tuning results of Swin and ResNet backbone on ImageNet-1K dataset.

Method Arac. Epo. Acc

POA ResNet-50 0 77.8
POA ResNet-101 0 80.0
POA ResNet-152 2400 81.1

(a) ResNet backbone.

Method Arac. Epo. Acc

POA Swin-T 0 81.0
POA Swin-S 0 82.9
POA Swin-B 1200 83.7

(b) Swin backbone.

D.3 Semi-Supervised Learning Evaluation

For semi-supervised learning, we concentrate our comparison on methods that
adopt the unsupervised pre-training followed by supervised fine-tuning paradigm
with partial labeled data. As shown in Table 4, our method significantly outper-
forms iBOT when using only 1% of labeled data, with an improvement of 6.3%.
These results demonstrate our method’s superior label efficiency. We attribute
this performance enhancement primarily to the distillation loss LES2 , which fa-
cilitates knowledge transfer from the intact model to its elastic counterpart. This
effect mirrors the improvement observed in SimCLRv2, where self-distillation
from a larger model contributes to performance gains.
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D.4 Unsupervised Learning Evaluation

For evaluating the pre-trained model on unsupervised learning, we employ stan-
dard metrics such as accuracy (ACC), adjusted rand index (ARI), normalized
mutual information (NMI), and the Fowlkes-Mallows index (FMI), following [35].
We benchmark our POA with a ResNet-50 backbone against established methods
like SimCLRv2 [7], Self-label [1], InfoMin [31], and SCAN [11]. Additionally, we
compare POA with a ViT-S/16 backbone to DINO and iBOT. According to the
results presented in Table. 6, our POA method attains accuracies of 61.8% with
ViT-S/16 and 55.7% with ResNet-50, respectively. These results indicate that
the POA approach in self-supervised learning enables models to learn stronger
visual semantical representation.
Table 6: Unsupervised learning on ImageNet-1K dataset. "†" denotes k-means clus-
tering on frozen features extracted by backbones.

Method Arch. ACC ARI NMI FMI

Self-label† ResNet-50 30.5 16.2 75.4 -
InfoMin† ResNet-50 33.2 14.7 68.8 -
SCAN ResNet-50 39.9 27.5 72.0 -
POA† ResNet-50 55.7 38.2 79.9 38.9

DINO ViT-S/16 41.4 29.8 76.8 32.8
iBOT ViT-S/16 43.4 32.8 78.6 35.6
POA† ViT-S/16 61.8 47.7 82.5 47.9

Table 7: Transfer learning experiments by fine-tuning models pre-trained on various
datasets. The Top-1 accuracy for the ViT-S/16 is presented on the left, and for the
ViT-B/16 on the right.

Method Cif10 Cif100 iNa18 iNa19 Flwrs Cars

BEiT 98.6 87.4 68.5 76.5 96.4 92.1
DINO 99.0 90.5 72.0 78.2 98.5 93.0
iBOT 99.1 90.7 73.7 78.5 98.6 94.0
POA 99.1 90.7 74.2 79.1 98.4 94.2

Method Cif10 Cif100 iNa18 iNa19 Flwrs Cars

BEiT 99.0 90.1 72.3 79.2 98.0 94.2
DINO 99.1 91.7 72.6 78.6 98.8 93.0
iBOT 99.2 92.2 74.6 79.6 98.9 94.3
POA 99.4 92.6 76.2 81.7 98.8 94.6

D.5 Transfer Learning

We evaluate transfer learning by pre-training models on ImageNet-1K and sub-
sequently fine-tuning them on a variety of smaller datasets, adhering to the pro-
tocol established in [9]. The results are detailed in Table 7. Our method achieves
SOTA transfer performance compared to other self-supervised learning (SSL)
approaches, with the exception of the Flowers dataset. Notably, we observe a
more pronounced performance improvement over iBOT on larger datasets such
as iNaturalist18 and iNaturalist19. This suggests that the results have not yet
reached their peak, thereby providing a more effective measure for evaluating
the quality of pre-trained features.
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D.6 k-NN Accuracies of Elastic Networks

Elastic Networks of ViT We present the k-NN evaluation accuracy of each
elastic network derived from the pre-trained ViT trained by POA, as detailed
in Table 8, here Li and Di are the depths and widths of each elastic network,
repectively.

Table 8: k-NN accuracy of elastic networks derived from pretrained ViT-L/16.

Li/Di 384 448 512 576 640 704 768 832 896 960 1024

12 76.78 78.42 79.17 79.78 80.27 80.68 80.86 81.02 81.10 81.14 81.09
13 76.84 78.37 79.17 79.85 80.83 80.66 80.93 81.23 81.24 81.12 81.15
14 77.59 78.95 79.69 80.26 80.69 81.04 81.25 81.36 81.52 81.60 81.59
15 77.89 79.16 79.86 80.35 80.75 81.16 81.40 81.62 81.62 81.63 81.58
16 78.15 79.30 80.13 80.75 81.06 81.36 81.55 81.78 81.92 81.77 81.85
17 78.34 79.65 80.26 80.76 81.11 81.54 81.63 81.76 82.02 81.92 81.88
17 78.58 79.75 80.43 80.92 81.28 81.69 81.72 81.99 82.04 82.02 82.05
19 78.62 79.90 80.52 80.98 81.32 81.57 81.83 82.13 82.09 82.14 82.12
20 78.93 79.97 80.61 81.17 81.45 81.79 81.98 82.17 82.22 82.15 82.17
21 78.99 80.21 80.73 81.31 81.49 81.86 82.05 82.18 82.32 82.22 82.20
22 79.25 80.25 80.89 81.36 81.63 81.87 82.10 82.31 82.34 82.36 82.41
23 79.37 80.30 80.89 81.35 81.73 81.93 82.19 82.37 82.41 82.41 82.39
24 79.33 80.28 80.90 81.33 81.65 81.90 82.15 82.35 82.42 82.28 82.27

Elastic Networks of Swin For the Swin Transformer architecture, we des-
ignate Swin-T as the smallest elastic network and Swin-B as the largest. We
explore elastic widths of 96, 112, and 128, with elastic depths varying from 12 to
24. The k-NN accuracies of total 39 elastic networks configuration are presented
in Table. 9.

Table 9: k-NN accuracy of elastic networks derived from pretrained Swin-B.

Di/Li 12 13 14 15 16 17 18 19 20 21 22 23 24

96 77.48 77.80 78.07 78.18 78.17 78.67 78.81 78.83 79.05 79.12 79.20 79.34 79.31
112 77.84 78.16 78.33 78.47 78.47 78.94 79.03 79.09 79.22 79.22 79.32 79.43 79.43
128 77.90 78.23 78.47 78.52 78.52 79.00 79.07 79.19 79.45 79.45 79.53 79.52 79.63

Elastic Network of ResNet In the case of the ResNet architecture, we des-
ignate ResNet-50 as the smallest and ResNet-152 with wider middle layer in
each building block as the largest elastic network configurations. It yields a total
number of 465 distinct ResNet sub-networks with the combination of 3 widths
and 155 depths configurations. For the sake of clarity, we present a subset of the
k-NN accuracies of these elastic networks in Table 10. Here, N2 and N3 refer
to the count of bottleneck building blocks in the second and third stages, re-
spectively, while W denotes the bottleneck dimension of middle layer in building
block at the first stage.
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Table 10: k-NN accuracy of elastic networks derived from pretrained ResNet-152.

W/N2 −N3 4-6 4-8 4-10 4-12 4-14 4-16 4-16 4-18

64 73.44 74.11 74.32 74.52 74.92 75.17 75.19 75.49
96 74.41 75.00 75.18 75.63 75.95 76.01 76.11 76.42
128 74.73 75.43 75.43 75.81 75.91 76.20 76.44 76.47

W/N2 −N3 4-20 4-24 8-26 8-28 8-30 8-32 8-34 8-36

64 75.49 75.77 76.05 76.20 76.20 76.33 76.31 76.38
96 76.34 76.63 76.91 76.95 77.07 77.13 77.30 77.14
128 76.53 76.90 77.13 77.34 77.31 77.54 77.59 77.72

D.7 Robustness Evaluation.

Robustness to Occlusion and Shuffling. We evaluate the pre-trained model’s
robustness to occlusion and alterations in spatial structure by applying masking
and shuffling to the input image patches. Detailed results for various occlusion
ratios are depicted in Figure 1a. Additionally, we present the effects of different
shuffling grid sizes in Figure 1b.
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(b) Robustness to shuffling with varying grid
sizes.

Fig. 1: Robustness to Occlusion and Shuffling.

D.8 Additional Ablation Studies

Influence of Input Dimension Scaling Factor αi. To adapt the reduction
of the input dimension, we apply a scaling factor αi to weight parameters. We
conduct comparative experiments to assess the impact of employing this scaling
factor, with results presented in Table 11. The results indicate that the scaling
factor αi enhances the performance of an elastic network, particularly in cases
where there is a significant reduction in width compared to the intact network,
such as with ViT-S.

Influence of Loss Weight λ. Within our POA framework, the parameter λ
regulates the balance between the loss contributions from the intact student and
the elastic student. We assessed the performance impact of varying λ during



12 Y. Zhang et al.

Table 11: Importance of Scaling Factor in POA SSL pre-training.

Scaling Factor k-NN LP
ViT-S ViT-B ViT-L ViT-S ViT-B ViT-L

✓ 76.8 80.9 82.3 77.6 81.7 83.6
75.3 80.8 82.3 75.9 81.7 83.6

pre-training. The results presented in Table 12 suggest that a larger value of λ,
representing a greater loss weight for intact branch, enhances the performance of
larger models like ViT-L. However, this same increase in λ adversely affects the
performance of the extracted smaller sub-networks such as ViT-S and ViT-B.
Conversely, a smaller λ value improves the performance of these smaller sub-
networks while potentially diminishing the effectiveness of larger models. To
achieve a more balanced outcome, we have chosen λ = 0.8 for our OPA approach.

Table 12: Influence of Loss Weight λ in POA SSL pre-training.

λ
k-NN LP

ViT-S ViT-B ViT-L ViT-S ViT-B ViT-L

0.6 77.4 81.0 82.0 78.3 81.9 83.1
0.7 77.0 80.9 82.1 77.9 81.8 83.4
0.8 76.8 80.9 82.3 77.6 81.7 83.6
0.9 75.3 80.0 82.6 76.5 81.0 84.0

Influence of Probabilistic Sampling for Elastic Student. We provide
the ablation study about probabilistic sampling for elastic student in Table. 13.
The result confirms our intuitive assumption that elastic networks with greater
diversity should be sampled more frequently.

Table 13: Influence of sampling for elastic student in POA SSL pre-training.

Sw = Sd
k-NN LP

ViT-S ViT-B ViT-L ViT-S ViT-B ViT-L

1 75.8 80.6 82.3 76.5 81.4 83.6
2 76.5 80.7 82.3 77.4 81.6 83.6
3 76.8 80.9 82.3 77.6 81.7 83.6

Influence of Number of Elastic Students. We investigate the impact of
varying the number of candidate elastic networks in our POA. We manipulate
the number of candidates by adjusting the sampling intervals of network widths
and depths. Except for the number of candidate elastic networks, all hyper-
parameters and training settings remain constant. The comparative results are
presented in Table 14. From these results, we observe that the increase of the
sampling interval, which effectively decreases the number of candidate networks,
improves the k-NN accuracy for the derived ViT-S model. The primary reason
is that with a constant number of iterations, a reduction in the total count of
networks results in a higher proportion of smaller networks being sampled. This
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leads to more training iteration for these networks. However, this adjustment
appears to have a negligible effect on the performance of ViT-L models, due to
the existing of the intact student branch which is trained at each iteration.
Table 14: Influence of number of candidate elastic students in POA SSL pre-training.

Number of Candidates Interval of Elastic Sampling k-NN
(#Widths × #Depths) (Width/Depth) ViT-S ViT-B ViT-L

143(11× 13) 64/1 76.8 80.9 82.3
42(6× 7) 128/2 77.3 80.9 82.3
20(4× 5) 192/3 77.7 80.8 82.4
16(4× 4) 192/4 77.8 81.1 82.4

D.9 Alternative Designs to Elastic Pre-training

We provide a detailed illustration of the three variants mentioned in Sec.4.4
of our paper. In the first variant, illustrated in Figure 2a, the intact student
is removed from the POA framework and the teacher is adapted to be elastic,
aligning with the architecture of the elastic student. The second variant, which
also discards the intact student from POA, is depicted in Figure 2b. The third
variant introduces an additional elastic teacher branch that shares the architec-
ture of the elastic student, facilitating cross-view distillation, shown in Figure
2c.

D.10 Convergence Comparison with Single Pre-training Method

By integrating same-view and cross-view distillation, POA achieves faster con-
vergence speed, particularly for smaller-sized sub-networks. For instance, in the
case of ViT-S, many existing self-supervised learning methods [6,24,35,36] neces-
sitate a substantial number of effective training epochs (3200 epochs) reach good
performance. In contrast, the ViT-S model extracted from our POA framework,
pre-trained for just 1200 epochs, outperforms those methods trained separately
for 3200 epochs. Figure 3 illustrates the k-NN evaluation accuracy progression
throughout the 1200 effective epochs of training. It is evident that POA consis-
tently delivers superior performance at each stage of the training process.

D.11 Computational Resources Required

Table. 15 provides a detailed account of the computational resources required
for training with a ViT backbone on 4 machines, each equipped with 8 A100
GPUs. We compare the time and GPU memory demands of our method to
those of DINOv2, which incorporates self-supervised knowledge distillation [10]
and yields superior performance compared to training the models independently.
Notably, our approach can generate numerous elastic networks beyond the three
primary structures: small, base, and large.
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(a) POA-V1: This variant of POA features both an elastic teacher and an elastic student,
streamlining the architecture by ensuring both components are adaptable in size.
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(b) POA-V2: In this variant, POA includes an intact, intact teacher paired with an elastic
student, allowing the smaller student model to learn from the larger, fully-trained teacher.
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(c) POA-V3: This variant of POA introduces an extra elastic teacher alongside the standard
configuration, providing another potential for cross-view distillation within the framework.

Fig. 2: Three alternative variants of POA.

E Visualization

E.1 Visualization of Self-attention Map

We visualize the self-attention maps generated by the ViT-S/16 model, which
is pre-trained using DINOv2 and our POA. For the visualizations, we select the
class token as the query and represent attention maps from different heads of
the final layer using distinct colors, as depicted in Figure 4. The results indicate
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Fig. 3: Comparison of k-NN accuracy during training.

Table 15: Comparison of computational resources required.

Method Arch. Epoch Mem. Batch Size k-NN GPU hours

DINOv2 ViT-L 1200 41G 2048 82.0 1152
DINOv2 ViT-L→ViT-B 1200 46G 4096 79.7 1024
DINOv2 ViT-L→ViT-S 1200 35G 4096 75.5 928

Total 3104

POA ViT-L 1200 77G 1600 82.3 2752
POA ViT-B 0 - - 80.9 0
POA ViT-S 0 - - 76.8 0

that POA’s self-attention focuses more concentratedly on the foreground objects
compared to DINOv2. For instance, in Figure 4a, POA distinctly highlights the
regions of interest associated with foreground elements (such as the human, fish,
trumpet, and snake). In contrast, the DINOv2 generates attention maps exhibit
a more dispersed focus, often including areas of the background. In Figure 5, we
showcase more self-attention map visualizations, comparing the outputs from
multiple heads in the final layer of our method with those from DINOv2.

(a) Self-attention map of POA. (b) Self-attention map of DINOv2.

Fig. 4: Visualization of Self-Attention Maps: we display the self-attention maps from
multiple heads using distinct colors for differentiation. For both POA and DINOv2, we
set the visualization threshold to 0.6, retaining top 60% of the attention mass.



16 Y. Zhang et al.

(a) DIONv2

(b) POA

Fig. 5: Visualization for self-attention map from multiple heads of the last layer in
ViT-S/16. The results indicate that POA concentrates its attention more accurately
on foreground objects than DINOv2 does.
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E.2 Visualization of Correspondence

We conduct a correspondence task that involves matching overlapping patches
from two different augmentations of the same image or patches from two dis-
tinct images labeled as the same class. We present visualizations of the these
patches with the highest self-attention scores obtained from a ViT-S/16 model
pre-trained by POA, averaging the scores across multiple heads in the final layer.
Figure 6 illustrates a selection of these image pair samples. The results indicate
that POA excels in identifying correspondences both within varied views of a
single image and across different segments of separate instances within the same
class.

(a) Correspondence between two different images of the same category

(b) Correspondence between two different views of the same image

Fig. 6: Visualization of Correspondences: The top panel displays pairs of images sam-
pled from two different views of a single image. The bottom panel shows pairs of images
taken from two distinct images belonging to the same class.
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E.3 Visualization of Pattern Layout for Class Token

Fig. 7: Visualization for pattern layout of class token of POA. We indicate that the
prototypes effectively cluster images based on similar semantic features, even when
they may span different categories.

Figure 7 presents a visualization of the pattern layout associated with the
class token in ViT-S/16 trained by POA. We display images that have the top-
64 similarity scores with each prototype in ImageNet validation set, arranged in
an 8× 8 grid. The results indicates the high-quality semantic structure achieved
through the self-distillation process applied to cross-view images within our POA
framework. Furthermore, we observe that the prototypes effectively cluster im-
ages based on similar semantic features, even when they may span different
categories. For instance, in the top-left image of the grid, while the primary
category is ’parachute’, there are also images of related but distinct categories
such as ’radio reflector’ and ’umbrella’, which are outlined in red boxes within
these prototypes. Similarly, in the top-right image, the main category featured is
’odometer’, but it also includes images of semantically similar objects like ’clock’.
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