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1 More Visual Results

We organize all the video rendering results with an HTML interface 1. Note that
some videos have slightly different rendering trajectories since we directly obtain
the videos from the authors for certain baselines. We have put our best effort
into guessing and aligning the trajectories.

2 Object Insertion

A few prior works [8, 14] also demonstrates applications of inpainting objects
in NeRF with text prompts. However, most of these results remain preliminary
without complicated object-scene interaction. In such cases, synthetic 3D objects
can be inserted with depth blend afterward and later baked into NeRF with
optimization. Meanwhile, directly inpainting objects with the input masks is not
effective as the masks strongly constrain the object shape. In Figure 1, similar to
GaussianEditor [3], we show that our framework can achieve object inpainting
by first inpainting the background then followed by inserting generated objects.

Fig. 1: Insert synthesized objects with depth blending.

3 Training Robustness

Trial LPIPS M-LPIPS FID KID
A 0.4147 0.3056 195.47 0.0466
B 0.4138 0.3055 194.59 0.0456
C 0.4142 0.3058 191.91 0.0486

Despite we adopt adversarial loss in our
optimization objectives, our algorithm
is stable with R1 regularizer [7] and
gradient penalty [4]. We show the ro-
bustness by reporting the performance of three individual training trials of all
scenes from SPIn-NeRF dataset. To save computation with the large amount of
experiments, we use 1 GPU instead of 8 GPUs per experiment.
1 https://hubert0527.github.io/MALD-NeRF/

https://hubert0527.github.io/MALD-NeRF/
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4 Further Customization

During the per-scene customization, due to repeti-
tively using the same set of images as the finetun-
ing data distribution, the model can sometimes mem-
orize certain scene-dependent content. The behavior
can lead to inpainting objects in the inpainting re-
gion, such as the baseball cap inpainted in Figure 5
of the main paper. Such a behavior can easily remedy
by masking the unwanted objects from the scene-dependent customization. We
show such a result on the right.

5 Evaluate Geometric Consistency with Optical
Flow-based Metric

Following [13], we evaluate the cross-frame consistency with a flow warping score.
We treat the image set of each scene as an image sequence, then calculate optical
flow between an image pair It and It+1 with RAFT [12], finally, obtain Ĩt by
warping It+1 with the optical flow. We compute the consistency with Mt→t+1 ·
∥It − Ĩt∥1, where Mt→t+1 is the disocclusion mask from time t to t + 1. We
found such a metric highly depends on the flow quality predicted by RAFT, and
heavily favors blurry inpainting results. In practice, we found the blurry results
from all baselines outperforms the consistency scores from the real images.

6 Implementation Details

NeRF. We use a self-implemented NeRF framework similar to ZipNeRF [2] that
uses hash-based [9] positional encoding along with multiple MLPs to predict the
final density and RGB quantities. A scene contraction is applied to the NeRF [1]
as all the scenes we experimented on are unbounded scenes. We use two proposal
networks to perform importance sampling, followed by the main network. The
network designs are similar to the Nerfacto implemented in the Nerfstudio [11].

Hyperparameters. For all experiments, we train the networks with 8 V100
GPUs for 30,000 iterations at a ray batch size of 16,384 using distributed data-
parallel. The choice of batch size is constrained by the amount of GPU VRAM
after loading the NeRF and other deep image priors, such as the latent diffusion
model network for generative inpainting and the ZoeDepth model (NK version)
for the depth loss. All these deep image priors are inferenced without calculating
gradients to reduce VRAM usage, and inference at a batch size of 1.

We use two separate optimizers for NeRF reconstruction and adversarial
learning. The NeRF reconstruction uses an Adam optimizer with a learning rate
decay from 0.01 to 0.0001, while adversarial learning uses an Adam optimizer
with a learning rate 0.0001 throughout the training. Different from GANeRF [10],
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we found using RMSProp makes the training unstable. For the adversarial learn-
ing, we use a discriminator architecture similar to StyleGAN2 [6]. We train
the discriminator with 64×64 patches. We importance-sample 256×256 image
patches based on the number of inpainting pixels within the patch, then slice the
image patch into the discriminator training patch and train the discriminator
at a batch size of 16. For the importance sampling strategy, we first exclude
patches with insufficient inpainting pixels (we empirically set the threshold to
50%). Assume that each patch index i contains di inpainting pixels, we assign a
probability pi = di/

∑
j dj while sampling the patches for training.

As mentioned in Eq 4, Eq 5, and Eq 6 of the main paper, our networks are
being trained with various loss terms. We balance the loss terms with λpix = 1,
λinter = 3, λdistort = 0.002, λdecay = 0.1, λadv = 1, λfm = 1 and λGP = 15.

Iterative Dataset Update. We infer the latent diffusion model with a DDIM
scheduler for 20 steps. During the iterative dataset update, we synchronize the
random sampled image IDs across GPUs to ensure there is no overlap among
GPUs, then update the 8 distinctly sampled images in the dataset with partial
DDIM. For the partial DDIM, we first hard-blend the rendered pixels in the
inpainting mask region with the real pixels outside the inpainting region into a
512×512 image, encode into the latent space with the auto-encoder of the la-
tent diffusion model, then add the noise level at timestep t based on the current
training progress and the HiFA scheduling. Therefore, as the training progresses,
the final inpainted images will gradually converge to the current NeRF render-
ing results due to low noise levels. Since we update 8 images in each dataset
update step, we set the frequency of iterative dataset update to one dataset up-
date every 80 NeRF training steps, which is 8 times less frequent compared to
InstructNeRF2NeRF [5]. The whole training approximately takes 16 hours on 8
V100 GPUs.
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