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A Overview

This supplementary document provides additional technical details, experiments
and visualization results. In Sec. B, we describe implementation details of our
ProDepth including hyperparameters and training strategies. In Sec. C, we pro-
vide additional ablation study on the components of ProDepth and quantitative
comparisons with related works. In Sec. D, we discuss the limitations of our
work. In Sec. E, we present additional visualizations for diverse scenes.

B Implementation Details

Training. We implement our model in Pytorch [24] with two NVIDIA RTX
A6000 GPUs. Following the methodology in [31], we apply color and flip aug-
mentations to training images. Unless explicitly specified, our models take two
frames {It−1, It} as inputs during both training and testing, and three frames
{It−1, It, It+1} are used for self-supervised training. The model undergoes train-
ing for 25 epochs on Cityscapes with batch size 24 and 20 epochs on KITTI with
batch size 12. We employed the Adam optimizer [18] with an initial learning rate
of 10−4, reduced by a factor of 10 during the final 10 epochs for Cityscapes and 5
epochs for KITTI. Pose and single-frame networks are frozen when the learning
rates drop. The loss coefficients are λ1 = 1, λ2 = 0.3, λ3 = 0.05, and λs = 0.003.

Model. The pose network uses ResNet18 [16] as an encoder, while the depth
network adopts a lightweight CNN-Transformer hybrid encoder from [34]. In ac-
cordance with prior works, encoders are initialized with ImageNet [5] pretrained
weights. The features employed in constructing the cost volume have a channel
size of C = 64, with k = 128 hypothesized depth bins (candidates), and a binary
masking threshold of γ = 0.8.

Dataset. In our study of the Cityscapes dataset, we use a set of pre-processed
58,335 training images provided by [8], along with 1,525 images for testing. For
the KITTI dataset, we adhere to the Eigen split [6] following established prac-
tices [2,8,14,31]. This split encompasses 39,810 training images, 4,424 validation
images, and 697 test images. For the generalization study on the Waymo Open
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dataset [27], 2,216 front camera images are uniformly sampled from the valida-
tion set, which comprises 202 video sequences. In all datasets, we exclusively use
unlabeled video frames, without incorporating additional segmentation masks
or optical flow information. The ground-truth depth information is employed
solely for evaluation, and we constrain the predicted depth values to be below
80 meters.

C Additional Experimental Results

As outlined in the main paper, our experiments primarily concentrate on the
Cityscapes dataset, which features a higher number of moving objects compared
to the KITTI dataset. Unless otherwise specified, all experimental results denote
performance on Cityscapes.

C.1 Fusion Method for Probabilistic Cost Volume Modulation

In the proposed PCVM module, we perform an uncertainty-aware adaptive fu-
sion of the depth probability distributions derived from single-frame and multi-
frame cues in the cost volume. We explore weighted arithmetic mean (wam)
and weighted geometric mean (wgm) as fusion methods. Given the probabilities
pj ∈ {psingle, pcv} and corresponding weights wj ∈ {U, 1 − U}, the fused proba-
bility distribution P (d|x) can be obtained using wam (Eq. 1) or wgm (Eq. 2).

P (d|x) =
∑

j (pj(d|x) · wj)∑
j wj

= psingle(d|x) · U(x) + pcv(d|x) · (1− U(x)). (1)

P (d|x) = (
∏
j

pj(d|x)wj )1/
∑

j wj = psingle(d|x)U(x) · pcv(d|x)1−U(x). (2)

As discussed in the main paper, the commonly used wam, with its additive
nature, may not guarantee the preservation of depth candidates at the maximum
due to the linear combination of distributions. It tends to alter the location of a
peak (local maxima) of the distribution after fusion, where the depth candidate
with the highest probability in the fused probability distribution P (d|x) does not
precisely represent either single-frame or multi-frame cues. However, we observe
that it is more appropriate to decisively adopt one position because in most
cases, the multi-frame cue is more accurate than the single-frame cue in static
scenes, and vice versa in dynamic scenes. Incorporating less reliable cue with

Table 1: Fusion methods for PCVM.

Fusion Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Weighted Arithmetic Mean 0.098 0.945 5.715 0.152 0.898 0.974 0.992
Weighted Geometric Mean 0.095 0.882 5.549 0.146 0.908 0.978 0.993
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Fig. 1: Analysis on the fusion methods. The estimated depth maps, error maps,
and depth probability distributions are presented. Our proposed PCVM performs
uncertainty-aware adaptive fusion of probability distributions derived from single- and
multi-frame cues. When the weighted arithmetic mean (wam) is used for fusion, the
peak of the fused distribution exists between those in single- and multi-frame distri-
butions. In contrast, when wgm is used for fusion, the peak of the fused distribution
follows that of more reliable cues according to the inferred uncertainty.

wam may shifts the positions of peaks away from the optimal depth candidate.
In contrast, wgm allows for the retention of depth candidates with the highest
probability due to its multiplicative nature, maintaining the positions of peaks.
Instead, their probabilities are adjusted with the corresponding weights. Table 1
demonstrates that wam degrades the performance, while wgm achieves superior
results. Fig. 1 illustrates the analysis on the fusion methods.

C.2 Depth Evaluation on Dynamic Objects

To validate the effectiveness of our approach, we further evaluate the model’s per-
formance on dynamic objects using the Cityscapes and Waymo Open datasets.

Cityscapes Dataset. For Cityscapes dataset, we compute the depth errors
within movable objects belonging to dynamic classes (e.g ., vehicles, pedestrians,
bikes) as presented in Table 2. These objects are identified using a pretrained se-
mantic segmentation network. While DynamicDepth [8] and InstaDM [21] utilize
these segmentation masks directly in both training and inference, our ProDepth
achieves the comparable performance, underscoring the effectiveness of uncer-
tainty reasoning and probabilistic cost volume modulation. It is important to
note that the evaluation involves the static objects, as segmentation does not
account for their movements.

Waymo Open Dataset. As the Waymo Open dataset provides panoptic
labels and 3D box positions, moving objects can be distinguished from static
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Table 2: Depth errors on movable objects in dynamic classes (Cityscapes dataset).
Method Semantics W ×H Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 [11] 416× 128 0.159 1.937 6.363 0.201 0.816 0.950 0.981
InstaDM [21] ✓ 832× 256 0.139 1.698 5.760 0.181 0.859 0.959 0.982
ManyDepth [31] 416× 128 0.169 2.175 6.634 0.218 0.789 0.921 0.969
DynamicDepth [8] ✓ 416× 128 0.129 1.273 4.626 0.168 0.862 0.965 0.986
ProDepth w/o PCVM 416× 128 0.134 1.151 4.715 0.177 0.833 0.958 0.987
ProDepth 416× 128 0.126 0.953 4.483 0.172 0.837 0.959 0.988

Table 3: Generalization performance on static and dynamic areas in scenes involving
moving objects (Waymo Open dataset).

Eval Method Semantics Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

St
at

ic ManyDepth [31] 0.259 3.770 10.018 0.320 0.590 0.849 0.932

DynamicDepth [8] ✓ 0.256 3.634 9.904 0.321 0.592 0.849 0.933

ProDepth 0.247 3.626 9.483 0.299 0.634 0.863 0.936

D
yn

am
ic ManyDepth [31] 0.376 6.661 11.559 0.381 0.498 0.757 0.879

DynamicDepth [8] ✓ 0.362 6.100 11.159 0.363 0.494 0.773 0.900

ProDepth 0.338 5.976 11.088 0.346 0.553 0.797 0.898

objects by computing their motions. We derive masks for moving objects follow-
ing the procedure outlined in [28], and then sample dynamic scenes containing
at least one moving object. Table 3 presents the generalization performance on
static and moving pixels within dynamic scenes. Our ProDepth model surpasses
related approaches, benefiting significantly from PCVM, which compensates for
the errors of multi-frame depth in dynamic areas. It is evident that PCVM sig-
nificantly enhances performance in dynamic pixels compared to static pixels.

C.3 Additional Quantitative Results

Predictive distribution for single-frame depth estimation. The predic-
tive distribution can be modeled as Laplace or Gaussian. As shown in Table 4,
the single-frame depth represented as a Gaussian distribution slightly outper-
forms the Laplace distribution in conveying useful cues for probabilistic fusion
in a PCVM module.

Table 4: Predictive distribution for single-frame depth estimation.

Predictive Distribution Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Laplace 0.096 0.883 5.579 0.146 0.907 0.978 0.993
Gaussian 0.095 0.882 5.549 0.146 0.908 0.978 0.993
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Binary masking threshold γ. Our uncertainty-aware photometric repro-
jection loss Lup consists of two factors: binary masking M and loss reweighting
(1− U):

Lup = M ⊙ (1− U)⊙ Lp, M = [U < γ], (3)

where ⊙ is element-wise product and [·] denotes the Iverson bracket. In Table 5,
we present the results obtained with various thresholds for binary masking. We
adopt γ = 0.8 for the final model, which excludes dynamic areas with high
uncertainty (U > 0.8).

Table 5: Ablation on the binary masking threshold γ.

Threshold γ Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

0.2 0.101 0.978 5.781 0.153 0.898 0.975 0.992
0.4 0.096 0.883 5.595 0.148 0.904 0.977 0.992
0.6 0.095 0.869 5.598 0.148 0.904 0.977 0.993
0.8 0.095 0.882 5.549 0.146 0.908 0.978 0.993

KITTI evalution on improved ground truth. In Table 6, we present the
KITTI results evaluated using the improved dense ground truth [29], which is
generated by accumulating 5 consecutive frames to form a denser ground truth
depth map. Our approach exhibits comparable performance to the supervised
method BTS [20], showcasing the effectiveness of our self-supervised multi-frame
framework.

Table 6: Depth evaluation on the KITTI dataset using the improved ground truth
depth maps. D indicates the depth supervision and M denotes the monocular self-
supervision.

Method Supervision Test frames Error metric (↓) Accuracy metric (↑)
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Kuznietsov et al . [19] D 1 0.113 0.741 4.621 0.189 0.862 0.960 0.986
Gan et al . [10] D 1 0.098 0.666 3.933 0.173 0.890 0.964 0.985
Guizilimi et al . [15] D 1 0.072 0.340 3.265 0.116 0.934 - -
DORN [9] D 1 0.072 0.307 2.727 0.120 0.932 0.984 0.994
Yin et al . [33] D 1 0.072 - 3.258 0.117 0.938 0.990 0.998
BTS [20] D 1 0.059 0.245 2.756 0.096 0.956 0.993 0.998
Johnston et al . [17] M 1 0.081 0.484 3.716 0.126 0.927 0.985 0.996
Packnet-SFM [13] M 1 0.078 0.420 3.485 0.121 0.931 0.986 0.996
Monodepth2 [11] M 1 0.090 0.545 3.942 0.137 0.914 0.983 0.995
Patil et al . [25] M N 0.087 0.495 3.775 0.133 0.917 0.983 0.995
Wang et al . [30] M 2 (-1, 0) 0.082 0.462 3.739 0.127 0.923 0.984 0.996
ManyDepth [31] M 2 (-1, 0) 0.070 0.399 3.455 0.113 0.941 0.989 0.997
DynamicDepth [8] M 2 (-1, 0) 0.068 0.362 3.454 0.111 0.943 0.991 0.998
ProDepth M 2 (-1, 0) 0.059 0.308 3.060 0.097 0.959 0.992 0.997
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Fig. 2: Depth error on KITTI dataset against the number of model parameters. Red
dots indicate models requiring semantics, and the parameters of segmentation network
are not considered.

Model size and runtime. Figure 2 illustrates the depth error on the KITTI
dataset plotted against the number of model parameters. Our ProDepth achieves
the best performance while maintaining a comparable number of parameters.
When we adopt ResNet18 [16] as the depth encoder, the performance slightly
decreases while involving more parameters. ProDepth runs at 23FPS on a Titan
RTX GPU.

D Limitation

Our approach is grounded in the widely accepted observation [8, 14, 22, 31, 32]
that single-frame-based prediction outperforms multi-frame-based prediction in
dynamic areas. However, it is important to note that single-frame estimation
might struggle to achieve accurate depth for moving objects, particularly for tex-
tureless or low-light pixels, and may not offer useful cues. In addition, enabling
unsupervised single-frame depth learning for dynamic regions relies on transfer-
ring knowledge from static objects, which requires a careful training strategy.
The training challenges posed by datasets containing an abundance of moving
objects further complicate this process.

E Additional Visualizations

We provide additional qualitative comparisons with related works [8,31] in Fig-
ure 3 and Figure 4. Our ProDepth demonstrates accurate depth estimation,
particularly in dynamic areas, highlighting the effectiveness of our probabilistic
approach.
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GT and Image ManyDepth DynamicDepth ProDepth

Fig. 3: Further qualitative results on the Cityscapes dataset (Part 1). Error
maps in the second row for each scene measure the absolute relative error compared to
the ground truth after median scaling [7], depicting large errors in red and small errors
in blue.
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GT and Image ManyDepth DynamicDepth ProDepth

Fig. 4: Further qualitative results on the Cityscapes dataset (Part 2). Error
maps in the second row for each scene measure the absolute relative error compared to
the ground truth after median scaling [7], depicting large errors in red and small errors
in blue.
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