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Abstract. Self-supervised multi-frame monocular depth estimation re-
lies on the geometric consistency between successive frames under the
assumption of a static scene. However, the presence of moving objects
in dynamic scenes introduces inevitable inconsistencies, causing mis-
aligned multi-frame feature matching and misleading self-supervision
during training. In this paper, we propose a novel framework called
ProDepth, which effectively addresses the mismatch problem caused by
dynamic objects using a probabilistic approach. We initially deduce the
uncertainty associated with static scene assumption by adopting an aux-
iliary decoder. This decoder analyzes inconsistencies embedded in the
cost volume, inferring the probability of areas being dynamic. We then
directly rectify the erroneous cost volume for dynamic areas through a
Probabilistic Cost Volume Modulation (PCVM) module. Specifically, we
derive probability distributions of depth candidates from both single-
frame and multi-frame cues, modulating the cost volume by adaptively
fusing those distributions based on the inferred uncertainty. Addition-
ally, we present a self-supervision loss reweighting strategy that not only
masks out incorrect supervision with high uncertainty but also mitigates
the risks in remaining possible dynamic areas in accordance with the
probability. Our proposed method excels over state-of-the-art approaches
in all metrics on both Cityscapes and KITTI datasets, and demonstrates
superior generalization ability on the Waymo Open dataset.

Keywords: Multi-frame monocular depth estimation · Self-supervised
learning · Probabilistic modeling

1 Introduction

Accurate depth information is essential across various domains, including au-
tonomous driving, robotics, and augmented reality. The deployment of precise
3D sensors (e.g ., structured light or LiDAR) is often hindered by their high costs,
leading to the development of depth estimation solely from RGB images. No-
tably, self-supervised monocular depth estimation from single or multiple frames
is gaining traction, removing the need for ground-truth data from costly sensors.
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Fig. 1: Our ProDepth performs uncertainty-aware adaptive fusion of the probability
distributions from both single-frame and multi-frame cues. The fused distribution fol-
lows the distribution of single-frame cues for a dynamic pixel, while adhering to the
distribution of multi-frame cues for a static pixel. Error maps in the second column
depict large depth errors in green and small in blue.

Early self-supervised depth estimation methods [2, 5, 11, 35, 43] take a single
target image to infer depth by analyzing visual patterns including texture, shad-
ing, and edges. The adjacent images are only incorporated for self-supervision at
the training-level, which is achieved by minimizing a photometric reprojection
error [43] between frames as a novel-view synthesis problem. However, due to
the constraints of limited information, their performance falls short of achiev-
ing satisfactory results. Recently, multi-frame based approaches [8, 15, 38] have
emerged to leverage temporally adjacent frames as valuable geometric cues for
depth estimation. These methods perform multi-frame feature matching within
the cost volume under the assumption of a static scene, assessing the probabil-
ities of various depth candidates for each pixel based on geometric consistency
between frames. Despite their overall high performance, these approaches ex-
hibit significant errors in dynamic areas. The inconsistent geometric locations
of moving objects lead to misaligned feature matching, resulting in an incorrect
depth probability distribution.

To address the mismatch problem in the cost volume, several works [8,15,38]
leverage single-frame depth to compensate for errors in dynamic areas in multi-
frame depth. The underlying insight [25,39] is that multi-frame based estimation
tends to yield more accurate predictions in static areas, whereas single-frame
based estimation without the cost volume avoids misaligned feature match-
ing, thereby better handling moving objects (Fig. 1). The representative ap-
proach [15, 38] is to supervise dynamic areas of multi-frame depth with single-
frame depth by using an additional training loss term, aiming to enforce correct
depth estimation despite an incorrect cost volume. However, this loss-level so-
lution cannot entirely prevent errors in the cost volume from affecting the final
prediction, as the fundamental issue of an incorrect multi-frame matching cost
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distribution persists. Recently, DynamicDepth [8] indirectly addresses the mis-
match issue in the cost volume by adjusting the locations of dynamic objects
in input images to be static using single-frame depth. However, this process
requires pre-computed segmentation masks to identify objects, and the masks
involve needless static objects since segmentation does not account for their
movements. While these approaches have made progress in handling dynamic
areas, their limitations highlight the need for further exploration. Our key ob-
servation is that accurately identifying dynamic objects remains a significant
challenge, and the direct refinement of incorrect matching costs in the cost vol-
ume has yet to be thoroughly explored.

In this paper, we introduce ProDepth, a novel framework that makes three
major contributions to address the inconsistency issue caused by dynamic ob-
jects. First, rather than relying on additional semantic information, we discern
an uncertainty map (i.e., the probability that each pixel is not static) using
an auxiliary depth decoder. This decoder deliberately predicts corrupted depth
based on erroneous cost volume, enabling to infer object-level uncertainty from
the extent of corruption. Second, we present a Probabilistic Cost Volume Modu-
lation (PCVM) module, which directly rectifies the erroneous matching costs of
the cost volume through uncertainty-aware adaptive fusion of single- and multi-
frame cues. As illustrated in Fig. 1, the depth probability distribution adaptively
follows either the distribution of single-frame cues or that of multi-frame cues
based on the inferred uncertainty. Finally, to further mitigate the issues associ-
ated with incorrect self-supervision of reprojection loss in dynamic areas during
training, we devise a loss reweighting strategy. This strategy entails adjusting
the computed reprojection loss according to uncertainty, thereby reducing incor-
rect supervision in possible dynamic areas. In summary, we present the following
noteworthy contributions:

– We devise an auxiliary depth decoder, which facilitates the identification of
moving objects as a probabilistic representation, i.e. uncertainty, without
using of a pretrained off-the-shelf segmentation network.

– We propose PCVM, a novel approach addressing the mismatch problem in
the cost volume by directly rectifying the corrupted matching cost distribu-
tion through the probabilistic fusion of single-frame and multi-frame cues.

– We introduce a self-supervision loss reweighting strategy to counteract in-
correct supervision in potential dynamic areas, distinct from conventional
binary masking methods.

– Our approach achieves state-of-the-art results on Cityscapes and KITTI
datasets, and also demonstrates superior generalization ability on the Waymo
Open dataset.

2 Related Work

2.1 Self-Supervised Monocular Depth Estimation

Conventional single-frame based methods use a single image for estimation,
with temporally adjacent images employed solely for self-supervision during
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training. A self-supervised framework [43] is proposed to compute photometric
consistency between monocular frames, facilitating joint training of a single-
frame depth estimation network and a multi-frame camera pose estimation
network. Subsequent advancements are achieved in camera geometry model-
ing [13,33], network architectures [14,42], reprojection loss [33,41] and the han-
dling of depth errors in moving objects [2, 5, 12, 13, 19, 24, 31, 35, 40]. Recent
approaches [1,4,8,15,28,32,36,38,39] have shifted towards integrating temporal
information not only in the training loss function but also in depth prediction.
The current state-of-the-art methods [8,15,38,39] adopt the cost volume gener-
ally used in stereo matching tasks to capture geometric compatibility between
images. As a pioneering work, ManyDepth [38] introduces an adaptive cost vol-
ume to overcome the scale ambiguity problem in self-supervised monocular depth
estimation. To enhance multi-frame feature matching in the cost volume, Depth-
Former [15] incorporates attention mechanisms, replacing conventional similar-
ity metrics with a learnable matching function. Building on these works, we also
utilize a multi-frame cost volume but effectively address the misaligned feature
matching problem caused by dynamic objects through probabilistic cost volume
modulation.

2.2 Dynamic Objects in Static Scene Constraint

As homography warping is employed in cost volume construction and photomet-
ric reprojection loss based on the assumption of a static scene, the presence of
moving objects inevitably causes incorrect matching costs and misleading super-
vision. To tackle the inherent challenges of multi-view inconsistency for dynamic
objects in self-supervised depth learning, two key steps are essential: (1) dy-
namic objects should be identified from the rigid background, and (2) errors in
cost volume and reprojection loss must be rectified.
Discerning dynamic objects. To identify dynamic areas, a typical approach
is to use a pretrained semantic [8, 16, 19] network or an instance segmentation
network [3, 4, 21, 39]. While leveraging an useful off-the-shelf network is effec-
tive in discerning moving objects, it comes with several drawbacks, including an
added computational burden, the potential inclusion of static objects in segmen-
tation masks, and confinement to predefined classes. In contrast, our proposed
ProDepth identifies potential moving objects solely based on the provided im-
ages, eliminating the requirement for additional information.
Rectifying errors caused by dynamic objects. As discussed in Sec. 1,
recent multi-frame based methods address the mismatch problem in the cost
volume through indirect approaches, such as supervising predicted depth with
single-frame depth for potential dynamic areas at the loss-level [15, 38] or re-
moving the motion of dynamic objects at the input-level [8]. In contrast, our
ProDepth aims to directly rectify the erroneous matching costs with the pro-
posed Probabilistic Cost Volume Module (PCVM), performing motion-aware
adaptive fusion of single-frame and multi-frame cues in a probabilistic manner.
Additionally, to tackle the incorrect supervision in dynamic areas, existing meth-
ods [8, 12, 15, 38, 42] use a binary mask to exclude the computed loss in those
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regions. However, binary masking for the estimated moving objects may not
adequately consider possible dynamic areas involving ambiguous probability. In-
stead, we propose a loss reweighting strategy, which partially reduces incorrect
supervision based on the inferred probability.

3 Method

3.1 Self-Supervised Monocular Depth Learning

Given the target image It and temporally adjacent source images {Is | s ∈
{t− 1, t+ 1}}, we can warp Is to the view point of It with the estimated depth
of the target image Dt and the relative camera pose Tt→s:

Is→t(Dt) = Is
〈
proj(Dt, Tt→s,K)

〉
, (1)

where K is the known camera intrinsics, proj(·) indicates the projection of 3D
points from Dt into the camera of Is, and

〈
·
〉

is the pixel sampling operator.
For self-supervised learning of depth and camera ego-motion, the photometric
reprojection loss is generally used for optimization that consists of structure
similarity (SSIM) [37] and L1 loss terms:

Lp(Dt) = α
1− SSIM(It, Is→t(Dt))

2
+ (1− α) ∥It − Is→t(Dt)∥1, (2)

where α is commonly set to 0.85. Importantly, this reprojection loss provides
misleading supervision for dynamic areas because the image warping process is
based on the static scene assumption.

3.2 Overview

The proposed architecture contains three major components that address the in-
consistency issue caused by moving objects. Initially, we identify uncertainty by
analyzing depth maps estimated from auxiliary depth decoders (Sec. 3.3). Sub-
sequently, a PCVM module rectifies erroneous matching costs in the cost volume
for dynamic areas by uncertainty-aware adaptive fusion of probability distribu-
tions of depth candidates from single- and multi-frame cues (Sec. 3.4). At the
training-level, we mitigate misleading self-supervision devising a loss reweighting
strategy (Sec. 3.5). The overall framework is summarized in Fig. 2.

3.3 Auxiliary Depth Estimations and Uncertainty Reasoning

To reason uncertainty associated with the static scene assumption and com-
pensate for errors in dynamic areas in multi-frame cost volume, our framework
incorporates two auxiliary depth estimations: single-frame depth and cost vol-
ume depth.
Probabilistic single-frame depth estimation. We employ a lightweight
network, denoted as θsingle, to estimate single-frame depth Dsingle ∈ RH×W using
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Fig. 2: Overview of the proposed ProDepth. We construct the multi-frame cost
volume with Is and It, and estimate single-frame depth as a Gaussian distribution
using the target image It. In an auxiliary branch, uncertainty is inferred by comparing
Dsingle and Dcv, where the latter is estimated from cost volume features. To rectify
erroneous cost volume, a PCVM module adaptively fuses probabilities derived from
single- and multi-frame cues. Furthermore, we incorporate a loss reweighting strategy
in Lup,s and Llog

up,s to mitigate errors caused by moving objects at the training-level.
Note that the probability distribution of a dynamic pixel is illustrated as an example.

a target image It ∈ RH×W . To estimate the depth as a probability distribution,
we adopt the predictive approach [18,20,30], configuring the network to output
the mean µ and variance σ2 of the distribution in the final layer. Specifically,
we model the predictive distribution as a heteroscedastic Gaussian, minimizing
the negative log-likelihood criterion. For supervised learning with ground-truth
depth D∗, the negative log-likelihood is given by:

−log p(D∗|µ, σ) = (D∗ − µ)2

σ2
+ log σ2. (3)

In our self-supervised learning scenario, where ground-truth D∗ is unavailable,
we predict the variance map σ2

p ∈ RH×W for pixel-wise photometric matching
between the target image and warped image as shown in [20,30]:

Llog
p (Dsingle) =

(Lp(Dsingle))
2

σ2
p

+ log σ2
p. (4)

Through log-likelihood maximization of Llog
p , we estimate single-frame depth as

a probability distribution with mean Dsingle and variance σ2
p.
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Fig. 3: The identification of dynamic objects. In contrast to the binary consis-
tency mask generated in ManyDepth [38], our uncertainty reasons the probability of
moving objects with structural awareness.

Cost volume depth estimation and uncertainty reasoning. In multi-
frame depth encoder ϕenc, we first encode It and Is into C-dimensional down-
sampled features Ft and Fs with size H/4 ×W/4 × C. We then construct the
cost volume C to measure the multi-frame matching costs for hypothesized depth
candidates d = {di | i ∈ {1, 2, ..., k}}. Depth candidates are perpendicular to the
optic axis of It and uniformly sampled in log space by spatial-increasing dis-
cretization [9]:

di = elog(d1)+
i

k−1 log(dk/d1), (5)

where depth candidates range from d1 to dk, representing the minimum and
maximum depth values, respectively. For each depth candidate di, the source
feature Fs is warped to the view point of It, producing Fs→t(di) similar to
Is→t(Dt) in Eq. 1. We compute the per-pixel matching costs for all di by the
absolute L1 difference between Ft and Fs→t, and aggregate feature channels by
average pooling to obtain the cost volume C ∈ RH/4×W/4×k. The cost is expected
to be lower for the depth candidate that is closer to the ground-truth depth.

As the cost volume construction involves the static scene assumption in the
warping process of Fs→t(di), the inconsistent geometric locations of moving ob-
jects result in misaligned feature matching with incorrectly computed matching
costs. The corrupted cost distribution in dynamic areas then leads to erroneous
depth estimation, degrading overall performance. However, this corruption can
be leveraged to identify moving objects by comparing with accurately predicted
single-frame depth. ManyDepth [38] generates a binary mask called consistency
mask where single-frame depth Dsingle and argmin of the matching costs dlow
(i.e., di with lowest cost) differ significantly, considering it as unreliable region
involving high uncertainty. The problem with this approach is that the mask
relying on lowest cost cannot clearly mask out moving objects because dlow is
computed for each pixel independently based on feature distance without an
understanding of spatial correlation between pixels, i.e. structural awareness.

To overcome these limitations, we devise an auxiliary decoder ψdec that es-
timates the depth using corrupted matching costs of the cost volume. Our main
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observation is that depth estimation goes beyond capturing pixel-level geomet-
ric information; it integrates structural awareness, ensuring that pixels within
the same object demonstrate consistent depth values. Decoding pixel-level in-
consistencies embedded in the cost volume into depth Dcv results in consistent
errors within moving objects, as shown in Fig. 3. Based on the generated clear
corruption, we discern the uncertainty U ∈ [0, 1]H×W by computing the abso-
lute difference between Dsingle and Dcv and normalizing it into [0, 1] with the
mapping function M(a, b) = 1− e−β|a−b|:

U = M(Dsingle, Dcv) = 1− e−β|Dsingle−Dcv|, (6)

where β is empirically set to 0.6. Unlike the obscure binary mask [38] generated
from roughly computed per-pixel lowest cost, our uncertainty precisely indicates
the probability of object-level corruption, which can be utilized as an useful cue
for identifying dynamic objects.

3.4 Probabilistic Cost Volume Modulation

Contrary to existing works, we address the errors embedded in the cost volume
by directly modulating the matching cost distribution. We first transform the
single- and multi-frame cues into a representation of probability distribution
along depth candidates and derive the modulated cost distribution for each pixel
by adaptively fusing those distributions based on the uncertainty.
Single-frame depth as probability distribution. As shown in Eq. 4, we
estimate the mean Dsingle and variance σ2

p of the single-frame depth as Gaussian
distribution. By using the probability density function of Gaussian distribution
N (Dsingle, σ

2
p), we can compute the probability of each depth candidate di given

pixel x:

psingle(di|x) =
1√

2πσ2
p(x)

exp(− (di −Dsingle(x))
2

2σ2
p(x)

), (7)

where Dsingle(x) and σ2
p(x) indicate the estimated mean and variance values for

pixel x, respectively.
Multi-frame matching costs as probability distribution. For the initially
constructed cost volume C ∈ RH/4×W/4×k, we denote the matching cost of depth
candidate di for the given pixel x as C(x, i). The per-pixel costs are converted
into probabilities pcv(d|x) using the softmax function:

pcv(di|x) =
exp(−C(x, i))∑k
j=1 exp(−C(x, j))

, (8)

where negative costs are used for softmax because the depth candidate with
lower cost holds a higher probability.
Cost volume modulation. The modulation of cost volume involves the
fusion of the probability distributions of depth candidates derived from single-
frame depth and multi-frame cost volume considering the uncertainty. To pre-
serve the relative importance of each distributions after fusion, we adopt weighted
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geometric mean (Eq. 9) which allows for the retention of depth candidates with
highest probability due to its multiplicative nature. In contrast, the commonly
used weighted arithmetic mean (weighted sum) with additive nature may not
guarantee the preservation of depth candidates at the maximum due to the linear
combination of distributions. We present an ablation study of the fusion strategy
in the supplementary material.

Based on the computation of weighted geometric mean, probabilities pj ∈
{psingle, pcv} are multiplied with consideration for each weight wj ∈ {U, 1 − U}
to derive the fused probability distribution P (d|x) (Eq. 10):

P (d|x) = (
∏
j

pj(d|x)wj )1/
∑

j wj (9)

= psingle(d|x)U(x) · pcv(d|x)1−U(x). (10)

For non-static pixels with high uncertainty, the distribution of single-frame depth
psingle exerts a greater influence, whereas for static pixels with low uncertainty,
the distribution of the cost volume pcv carries more weight. The fused probability
distribution P is then re-scaled to the scale of original cost volume C by min-max
normalization to obtain modulated cost volume Cm:

Cm(x, i) =
max(P (d|x))− P (di|x)

max(P (d|x))− min(P (d|x))
(max(C(x))− min(C(x))) + min(C(x)),

(11)
where max(P (d|x))−P (di|x)

max(P (d|x))−min(P (d|x)) inverts the fused probability distribution of depth
candidates while normalizing to [0, 1], since lower matching cost indicates higher
probability in the original cost volume. The final multi-frame depth Dmulti is
subsequently estimated from Cm using the decoder ϕdec, wherein errors caused
by dynamic objects are rectified through the cost volume modulation.

3.5 Learning without Dynamic Objects

Uncertainty-aware loss reweighting strategy. As addressed in Sec. 3.1, an
optimization of photometric reprojection loss Lp provides incorrect supervision
for non-static pixels. To exclude the misleading loss for dynamic areas, we devise
a loss reweighting strategy that adjusts the computed reprojection loss based
on the uncertainty. The uncertainty-aware photometric reprojection loss Lup is
formulated as:

Lup =M ⊙ (1− U)⊙ Lp, M = [U < γ], (12)

where ⊙ is element-wise product and [·] denotes the Iverson bracket. The com-
puted Lp is reweighted based on the per-pixel probability of uncertainty U ∈
[0, 1]H×W , and additional binary mask M is applied to rigorously exclude pixels
involving high uncertainty. In comparison to conventional binary masking meth-
ods employed in existing works, our loss reweighting strategy is more effective
in preventing erroneous depth overfitting for moving objects. This effectiveness
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stems from its ability to partially reduce incorrect supervision for areas with am-
biguous uncertainty, which may not be adequately addressed by a binary mask.
Combining both binary masking and probabilistic reweighting allows us to mit-
igate the risk in defining learning objectives for potential dynamic areas while
unequivocally excluding incorrect supervision associated with high uncertainty.
Objective functions. Continuing with the established procedure [8, 15, 38],
we incorporate the edge-aware smoothness loss Ls [11] to regularize the smooth-
ness of the predicted depth map, and consistency loss Lc [8, 15, 38] to ensure
multi-frame depth to be similar to single-frame depth in dynamic areas. We de-
note Lup,s = Lup + λsLs as a combination of uncertainty-aware photometric
reprojection loss and smoothness loss, and our final loss L is

L =
∑
x

[Lup,s(Dmulti) + λ1Llog
up,s(Dsingle) + λ2Lp(Dcv) + λ3Lc], (13)

where x indicates pixel index. For multi- and single-frame depth estimation, our
uncertainty-aware reprojection loss Lup is employed to prevent erroneous overfit-
ting for moving objects. In contrast, Lp is used in cost volume depth estimation
to encourage corruption, enabling the identification of dynamic regions with
moving objects through significant depth difference between Dcv and Dsingle. By
allowing incorrect self-supervision in dynamic areas, cost volume decoder ψdec

learns to produce erroneous depth in moving objects. Note that for Lp(Dcv),
backpropagation is enabled exclusively for the parameters of the cost volume
decoder, while the gradients are halted from flowing through the cost volume.

4 Experiments

We evaluate the performance of our approach on two challenging datasets,
Cityscapes [6] and KITTI [10], recognized benchmarks for depth estimation.
Since Cityscapes dataset contains more moving objects compared to KITTI, our
experiments are mainly focused on Cityscapes to verify the performance improve-
ment in dynamic scenes. We conduct quantitative and qualitative comparisons
with state-of-the-art methods, and an extensive ablation study to substantiate
the contributions of the proposed components. Given the importance of eval-
uating performance in dynamic regions for our work, additional experimental
results can be found in the supplementary material.

4.1 Experimental Setup

Dataset. In our study of the Cityscapes dataset, we use a set of pre-processed
58,335 training images provided by [8], along with 1,525 images for testing. For
the KITTI dataset, we adhere to the Eigen split [7] following established prac-
tices [1,8,15,38]. This split encompasses 39,810 training images, 4,424 validation
images, and 697 test images. In both datasets, we exclusively use unlabeled video
frames, without incorporating additional segmentation masks or optical flow in-
formation. The ground-truth depth information is employed solely for evaluation,
and we constrain the predicted depth values to be below 80 meters.



ProDepth 11

Table 1: Depth evaluation on the Cityscapes and KITTI datasets. Semantics indicates
the use of additional semantic information.

Method Test frames Semantics W ×H
Error metric (↓) Accuracy metric (↑)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

K
IT

T
I

Struct2depth (M) [3] 1 ✓ 416× 128 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Videos in the wild [13] 1 ✓ 416× 128 0.128 0.959 5.230 0.212 0.845 0.947 0.976
Johnston et al . [17] 1 640× 192 0.111 0.941 4.817 0.189 0.885 0.961 0.981
Packnet-SFM [14] 1 640× 192 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Monodepth2 [12] 1 640× 192 0.110 0.831 4.642 0.187 0.883 0.962 0.982
HR-Depth [26] 1 640× 192 0.109 0.792 4.632 0.185 0.884 0.962 0.983
Guizilini et al . [16] 1 ✓ 640× 192 0.102 0.698 4.381 0.178 0.896 0.964 0.984
Lite-Mono [42] 1 640× 192 0.101 0.729 4.454 0.178 0.897 0.965 0.983
Patil et al . [28] N 640× 192 0.111 0.821 4.650 0.187 0.883 0.961 0.982
Wang et al . [36] 2 (-1, 0) 640× 192 0.106 0.799 4.662 0.187 0.889 0.961 0.982
ManyDepth [38] 2 (-1, 0) 640× 192 0.098 0.770 4.459 0.176 0.900 0.965 0.983
DynamicDepth [8] 2 (-1, 0) ✓ 640× 192 0.096 0.720 4.458 0.175 0.897 0.964 0.984
DepthFormer [15] 2 (-1, 0) 640× 192 0.090 0.661 4.149 0.175 0.905 0.967 0.984
DualRefine [1] 2 (-1, 0) 640× 192 0.090 0.658 4.237 0.171 0.912 0.967 0.984
ProDepth 2 (-1, 0) 640× 192 0.086 0.629 4.139 0.166 0.918 0.969 0.984

C
it
ys

ca
pe

s

Pilzer et al . [29] 1 512× 256 0.240 4.264 8.049 0.334 0.710 0.871 0.937
Struct2Depth 2 [4] 1 416× 128 0.145 1.737 7.280 0.205 0.813 0.942 0.976
Monodepth2 [12] 1 416× 128 0.129 1.569 6.876 0.187 0.849 0.957 0.983
Videos in the Wild [13] 1 416× 128 0.127 1.330 6.960 0.195 0.830 0.947 0.981
Li et al . [23] 1 416× 128 0.119 1.290 6.980 0.190 0.846 0.952 0.982
Lee et al . [22] 1 832× 256 0.116 1.213 6.695 0.186 0.852 0.951 0.982
InstaDM [21] 1 ✓ 832× 256 0.111 1.158 6.437 0.182 0.868 0.961 0.983
Struct2Depth 2 [4] 3 (-1, 0, +1) ✓ 416× 128 0.151 2.492 7.024 0.202 0.826 0.937 0.972
ManyDepth [38] 2 (-1, 0) 416× 128 0.114 1.193 6.223 0.170 0.875 0.967 0.989
DynamicDepth [8] 2 (-1, 0) ✓ 416× 128 0.103 1.000 5.867 0.157 0.895 0.974 0.991
ProDepth 2 (-1, 0) 416× 128 0.095 0.876 5.531 0.146 0.908 0.978 0.993

Metrics. We evaluate the depth performance using widely adopted metrics [7],
including four error metrics (Abs Rel, Sq Rel, RMSE, and RMSE log) and three
accuracy metrics (δ < 1.25, δ < 1.252, and δ < 1.253).

4.2 Results on Cityscapes

Table 1 presents a performance comparison between our approach and state-
of-the-art methods on the Cityscapes [6] and KITTI [10] datasets. Notably, for
the Cityscapes dataset, which includes a significant number of moving objects,
our proposed ProDepth achieves a remarkable improvement over existing meth-
ods across all metrics. It is worth highlighting that ProDepth, relying solely on
the given input images, outperforms approaches [4, 8, 21] that utilize additional
semantic information. This underscores the effectiveness of our uncertainty rea-
soning in discerning dynamic objects. Additionally, we present qualitative results
on the Cityscapes test set in Fig. 4. While related works [8,38] exhibit relatively
high estimation errors in dynamic areas, our ProDepth demonstrates superior
performance.

4.3 Results on KITTI

We further evaluate our proposed ProDepth on the KITTI dataset using the
Eigen split. According to the statistics analyzed in [8], the pixels indicating mov-
able objects in dynamic classes constitute 0.34% of all pixels. As static objects
are considered together in the statistics, KITTI involves a fewer dynamic areas
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Fig. 4: Qualitative results on Cityscapes. Red and yellow boxes indicate moving
and static objects. Error maps depict large depth errors in red and small in blue.

compared to Cityscapes. Nevertheless, our model still outperforms recent works
including both single-frame and multi-frame based approaches. This demon-
strates that our probabilistic fusion of single-frame and multi-frame cues also
benefits the prediction in static scenes.

4.4 Ablation Study

In Table 2, we conduct extensive ablation study to evaluate three major contri-
butions: (1) uncertainty reasoning with an auxiliary depth decoder, (2) a proba-
bilistic cost volume modulation (PCVM) module, and (3) an uncertainty-aware
loss reweighting strategy.
Uncertainty reasoning. The identification of dynamic areas can be repre-
sented in a binary or weighted (probabilistic) manner. ManyDepth [38] adopts
a binary consistency mask estimated at the coarse feature-level, while Dynam-
icDepth [8] employs a pretrained semantic segmentation network to identify the
movable objects, as shown in Fig. 4. To assess the effectiveness of each mask, we
substitute our uncertainty reasoning with their masks in our model during both
training and inference (row #1∼4). Additionally, we convert our weighted uncer-
tainty into a binary representation by setting a threshold (row #5,6). Our model
using binary uncertainty shows similar performance to the model using segmen-
tation masks, demonstrating that our auxiliary decoder discerns the moving ob-
jects effectively. It is noteworthy that our uncertainty does not indicate a high
probability in static objects, unlike segmentation masks of DynamicDepth [8].
PCVM. Our proposed PCVM module performs uncertainty-aware adaptive
fusion of single-frame and multi-frame cues to modulate the misaligned match-
ing cost distribution in the cost volume. The depth prediction performance is
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Fig. 5: ProDepth with and without the PCVM module. Depth probability dis-
tributions of a dynamic yellow pixel are presented. Our PCVM modulates the incorrect
distribution in cost volume, rectifying the errors in dynamic areas.

Table 2: Ablation study on the Cityscapes dataset.

# Uncertainty Reasoning PCVM Uncertainty-aware Loss
Binary Weighted Masking Reweighting Abs Rel Sq Rel RMSE RMSE log

1 consistency mask [38] ✓ 0.107 1.058 5.934 0.159
2 consistency mask [38] ✓ ✓ 0.103 0.953 5.832 0.159
3 segmentation mask [8] ✓ 0.100 0.961 5.620 0.150
4 segmentation mask [8] ✓ ✓ 0.101 0.965 5.647 0.150
5 [U > γ] ✓ 0.101 0.967 5.687 0.151
6 [U > γ] ✓ ✓ 0.099 0.944 5.616 0.151
7 U ✓ ✓ 0.100 0.964 5.630 0.151
8 U ✓ ✓ 0.098 0.903 5.551 0.148
9 U ✓ ✓ 0.097 0.894 5.512 0.146
10 U ✓ ✓ ✓ 0.095 0.882 5.490 0.146

enhanced by PCVM in conjunction with the consistency mask [38] and our un-
certainty (row #2,6). However, when incorporating a segmentation mask, per-
formance degrades upon adding PCVM (row #4). This decline is attributed to
static objects included in segmentation masks, where only single-frame cues are
utilized for those areas, while useful multi-frame cues are abandoned. Notably,
with our weighted uncertainty representation, PCVM achieves a substantial per-
formance improvement, reducing the absolute relative error from 0.100 to 0.095
(row #7,10). This demonstrates that probabilistic fusion of single-frame and
multi-frame cues is more effective than selecting one of them based on the bi-
nary criterion (row #5,6). Additionally, we present qualitative results with and
without the PCVM module in Fig. 5 (row #7,10). The depth candidate dlow
with the lowest cost (i.e., highest probability) for each pixel in the cost volume,
and the final prediction map are provided. In the case of dynamic objects, our
PCVM effectively modulates the depth probability distribution in the cost vol-
ume by integrating single-frame cues, resulting in accurate depth predictions. In
contrast, the model without PCVM propagates the erroneous distribution from
the cost volume to the final prediction, leading to severe errors in dynamic areas.
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Uncertainty-aware loss reweighting strategy. To address the incorrect
self-supervision in dynamic areas, existing methods use a binary mask to ex-
clude computed losses in those areas. In contrast, we propose a loss reweighting
strategy, which reduces the computed loss based on the inferred probability
(row #9). Comparing our reweighting approach (row #9) with binary mask-
ing (row #8), we observe improved performance with the reweighting strategy.
This is because binary masking lacks consideration of the detailed probability
of areas being dynamic, and areas with ambiguous probability may not be ad-
equately addressed due to thresholding. Furthermore, combining both masking
and reweighting strategies yields the best performance (row #10). This approach
effectively excludes incorrect supervision in areas with high uncertainty through
binary masking, while partially reducing the risk of providing incorrect supervi-
sion in remaining but potential dynamic areas according to the probability.

4.5 Generalization Study

We further validate the generalization ability of the proposed ProDepth and
related works [8, 38] on the Waymo Open dataset [34], which encompasses nu-
merous dynamic objects and challenging scenes like low-light conditions during
nighttime. We use 202 test video sequences for evaluation. The models are pre-
trained on the Cityscapes dataset. Given that DynamicDepth [8] necessitates
a pretrained semantic segmentation network during inference, we pre-compute
masks using EfficientPS [27], which is utilized in experiments on Cityscapes and
KITTI datasets. As shown in Table 3, ProDepth achieves superior performance
compared to related works, showcasing its effective generalization ability. For
evaluation only on dynamic areas, please refer to the supplementary material.

Table 3: Generalization study on the Waymo Open dataset.

Method Test frames Semantics Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

ManyDepth [38] 2 (-1, 0) 0.260 3.916 10.463 0.313 0.606 0.856 0.941
DynamicDepth [8] 2 (-1, 0) ✓ 0.255 3.521 9.902 0.313 0.601 0.856 0.942

ProDepth 2 (-1, 0) 0.247 3.462 9.544 0.300 0.628 0.873 0.949

5 Conclusion

We present ProDepth, a multi-frame depth estimation framework addressing the
inconsistency problem caused by dynamic objects in a probabilistic manner. Our
contributions involve novel approaches of discerning the probability of areas be-
ing dynamic, direct rectification of misaligned cost volume with adaptive fusion
of single-frame and multi-frame cues, and alleviating incorrect self-supervision in
potential dynamic areas with a loss reweight strategy. ProDepth achieves state-
of-the-art performance on both Cityscapes and KITTI datasets, and extensive
experiments demonstrate the effectiveness of the proposed method.
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