
Appendix for
Accelerating Image Super-Resolution

Networks with Pixel-Level Classification

Jinho Jeong1 , Jinwoo Kim1 , Younghyun Jo2 , and Seon Joo Kim1

1 Yonsei University
2 Samsung Advanced Institute of Technology

1 Adaptive Decision Making (ADM)

During the inference phase of our PCSR, we provide additional functionality:
Adaptive Decision Making (ADM), which automatically assigns pixels to proper-
sized branches. While a simple approach is to allocate the pixel to the branch
with the highest probability, ADM differs by taking into account statistical values
of probabilities across the entire image. The value for each i-th pixel in the image
initially determined through sum0≤j<⌊(M+1)/2⌋pi,j to represent the restoration
difficulty of that pixel, considering Uj∈[0,⌊(M+1)/2⌋) as heavy upsamplers. Subse-
quently, these difficulty values are used to perform k-means clustering with M
clusters and each clusters are assigned to the corresponding branch.

We show the potential of ADM through Fig. 1. While the simple approach
fixes the threshold at 0.5 regardless of images, ADM adaptively forms the thresh-
old at the point where the density of difficulty starts to sufficiently decrease by
clustering areas with high value density. That is, ADM avoids regions where
even minor variations in the threshold could lead to sensitive changes in pixel
allocation. It instead allows the threshold to be established in a section that
remains stable against these variations, ensuring a more consistent allocation.
Additionally, since only a few iterations (about 2-7 iters per image) are required
for clustering to converge, the additional overhead by ADM is negligible.

2 More Experiments

2.1 Results on other benchmarks

We provide results for other benchmarks including Set14, B100, and Manga109.
As shown in Tab. 1, our method is still efficient even for images of moderate
size, compared to patch-based methods.

2.2 Running Time Comparison

Tab. 2 compares the running time between the patch-based methods and our
method. Although the running time of ours is much faster, note that all methods
primarily aim to reduce FLOPs, and the implementations are not fully optimized
for the running time. We will look into more efficient implementation.

https://orcid.org/0009-0004-0947-0508
https://orcid.org/0009-0001-3250-1788
https://orcid.org/0000-0002-8530-9802
https://orcid.org/0000-0001-8512-216X

2 J. Jeong et al.

Fig. 1: Difficulty density curve for the image “0855” (DIV2K) with M=2 on ×4. The
range of values are divided into 100 bins, with density calculated as the count of
values per bin divided by the total value count. The density, associated with each bin’s
center, is interpolated to form a smooth curve. Each dotted line indicates threshold for
assigning pixels: pixels left of a line go to the light upsampler, those to the right to
the heavy upsampler. The black dotted line represents a threshold (= 0.5) of simple
approach (i.e., allocating pixels to the upsampler with the highest probability), while
red dotted line indicates an adaptively determined threshold by ADM.

3 More Ablation Studies

3.1 Impact of the condition for pixel-wise refinement

Pixel-wise refinement is designed to minimize artifacts by adjusting the RGB
values of pixels assigned to light upsamplers to the average RGB value of their
neighbors if any adjacent pixels are assigned to heavy upsamplers. We investi-
gate how many neighboring pixels should be allocated to heavy upsamplers to
effectively reduce artifacts while maintaining performance, as shown in Tab. 3.

Interestingly, we observe negligible performance degradation for any condi-
tion, even when all the pixels assigned to light upsamplers are replaced regardless
of the status of neighboring pixels (i.e., #h=0). According to the table, while
there is a slight decrease in performance when at least one neighboring pixel is
allocated to heavy upsamplers (i.e., #h=1), this condition results in a greater
number of replaced pixels, which is beneficial for artifact removal. Therefore, we
choose #h=1 and always activate refinement in our evaluation.

3.2 Impact of the LIIF Upsampler

We compare between LIIF-based and CNN (or pixelshuffle)-based upsamplers
in Tab. 4. The performance of the model can be higher with the LIIF upsampler

Accelerating Image SR Networks with Pixel-Level Classification 3

Table 1: PSNR and FLOPs for additional benchmarks on ×4.

Model Set14(dB) FLOPs B100(dB) FLOPs Manga109(dB) FLOPs
CARN 26.52 13.53G 26.37 7.86G 27.93 64.01G

+ClassSR 26.48 13.25G 26.32 6.88G 27.86 68.04G
+ARM 26.48 14.12G 26.32 6.56G 27.88 69.79G

+PCSR 26.48 8.14G 26.32 4.19G 27.86 40.66G

Table 2: Comparison of running time per image on ×4, when the performance of ARM
and PCSR is set to be the same as ClassSR.

Model(CARN) Urban100 Test2K Test4K
+ClassSR 1994ms 4595ms 19072ms
+ARM 518ms 1069ms 4608ms

+PCSR 45ms 62ms 203ms

than the original (e.g ., FSRCNN, CARN), but for SRResNet, the performance
is same or even lower than the original. Hence, we argue that the adoption of
the LIIF does not guarantee the higher performance.

4 Effectiveness on the Recent Lightweight Model

To further demonstrate PCSR’s broad applicability and efficiency, we apply our
PCSR method to the recent lightweight model, BSRN [3]. BSRN is the model
that won first place in the model complexity track of the NTIRE 2022 Efficient
SR Challenge, utilizing separable convolutions to enhance its scalability. The
result is shown in Tab. 5, illustrating that PCSR achieves performance compa-
rable on several large image-based benchmarks while using fewer FLOPs. This
highlights the versatility and effectiveness of our approach.

5 More Visual Comparisons

In this section, we provide additional visual comparisons to ClassSR and ARM,
along with PSNR values and FLOPs, demonstrating our method’s efficiency and
capability. In Fig. 2b, the patch-based methods engage in over-computation,
which results in unnecessary computational expense. Our method saves com-
putations by efficiently allocating resources on a pixel basis while maintaining
high quality. In Fig. 2c, while under-computation by patch-based methods re-
sults in blurry outcomes, our method differentiates difficulties with precision,
producing sharper and more defined restorations. For Fig. 2d and 3d, instead of
applying moderate computation uniformly across patches, our method focuses
on challenging areas, achieving higher image quality with comparable computa-
tional cost. Across various cases, the patch-based methods struggle with mixed
restoration difficulties within a patch, but our pixel-level classification manages
these variations effectively, improving both PSNR and FLOPs efficiency.

4 J. Jeong et al.

Classification (Ours) ClassSR ARM Ours Backbone GT

(a)

21.89dB
87.4G(83%)

21.89dB
78.5G(75%)

21.90dB
67.5G(64%)

21.92dB
105.2G(100%)

(b)

23.38dB
101.4G(84%)

23.26dB
82.3G(68%)

23.42dB
75.3G(63%)

23.45dB
120.3G(100%)

(c)

21.68dB
94.8G(79%)

21.68dB
86.6G(72%)

21.69dB
74.4G(62%)

21.71dB
120.3G(100%)

(d)

28.95dB
53.3G(59%)

28.99dB
42.0G(47%)

29.11dB
52.8G(58%)

29.12dB
90.2G(100%)

Fig. 2: Qualitative results of the previous methods [1, 2] and our method with ×4 SR
on Test2K.

Accelerating Image SR Networks with Pixel-Level Classification 5

Classification (Ours) ClassSR ARM Ours Backbone GT

(a)

25.96dB
379.0G(84%)

25.94dB
393.3G(87%)

26.10dB
298.5G(66%)

26.13dB
451.0G(100%)

(b)

25.07dB
416.2G(81%)

25.04dB
451.1G(88%)

25.16dB
322.2G(63%)

25.20dB
511.2G(100%)

(c)

27.08dB
317.7G(75%)

27.10dB
366.8G(87%)

27.15dB
265.5G(63%)

27.20dB
421.0G(100%)

(d)

24.74dB
351.0G(69%)

24.71dB
291.1G(57%)

24.76dB
311.4G(61%)

24.81dB
511.2G(100%)

Fig. 3: Qualitative results of the previous methods [1, 2] and our method with ×4 SR
on Test4K.

6 J. Jeong et al.

Table 3: Variation in PCSR performance on Test2K (×4) depending on the condition
for pixel-wise refinement. Here, "#h" denotes the threshold number of neighboring
pixels allocated to heavy upsamplers required around a pixel to trigger its replacement.
#h=9 can be considered as the performance where no refinement is performed.

Model CARN-PCSR
#h 0 2 4 6 8 9

PSNR (dB) 25.995 26.011 26.016 26.021 26.022 26.022

Table 4: Comparison between pixel-shuffle upsampler and LIIF upsampler on ×4.
MAX denotes maximum PSNR and FLOPs by our method.

Model Test2K(dB) FLOPs Test4K(dB) FLOPs Urban100(dB) FLOPs
FSRCNN 25.69 45.3G 26.99 185.3G 23.05 19.9G

+PCSR(MAX) 25.69 44.5G 27.01 181.8G 23.27 19.6G
CARN 26.03 112.0G 27.45 457.8G 24.03 49.3G

+PCSR(MAX) 26.05 114.4G 27.47 467.7G 24.09 50.3G
SRResNet 26.24 502.9G 27.71 2056.2G 24.65 221.3G

+PCSR(MAX) 26.24 507.9G 27.71 2076.6G 24.63 223.5G

Table 5: Comparison of BSRN with and without PCSR on scale ×4 SR.

Models Params. Test2K(dB) GFLOPs Test4K(dB) GFLOPs Urban100(dB) GFLOPs
BSRN 352K 26.16 66.0 (100%) 27.52 270.0 (100%) 24.43 29.1 (100%)

BSRN-PCSR 198K 26.10 51.8 (78%) 27.52 208.4 (77%) 24.29 23.6 (81%)

References

1. Chen, B., Lin, M., Sheng, K., Zhang, M., Chen, P., Li, K., Cao, L., Ji, R.: Arm:
Any-time super-resolution method. In: European Conference on Computer Vision.
pp. 254–270. Springer (2022)

2. Kong, X., Zhao, H., Qiao, Y., Dong, C.: Classsr: A general framework to accelerate
super-resolution networks by data characteristic. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 12016–12025 (2021)

3. Li, Z., Liu, Y., Chen, X., Cai, H., Gu, J., Qiao, Y., Dong, C.: Blueprint sepa-
rable residual network for efficient image super-resolution. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 833–843
(2022)

	Appendix for Accelerating Image Super-Resolution Networks with Pixel-Level Classification

