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Abstract. Image super-resolution (SR) is a critical technique for en-
hancing image quality, playing a vital role in image enhancement. While
recent advancements, notably transformer-based methods, have advanced
the field, infrared image SR remains a formidable challenge. Due to the
inherent characteristics of infrared sensors, such as limited resolution,
temperature sensitivity, high noise levels, and environmental impacts, ex-
isting deep learning methods result in suboptimal enhancement outcomes
when applied to infrared images. To address these challenges, we propose
a specialized Contourlet residual framework tailored for infrared images
to restore and enhance the critical details from the multi-scale and multi-
directional infrared spectra decomposition. It precisely captures and am-
plifies the high-pass subbands of infrared images, such as edge details
and texture nuances, which are vital for achieving superior reconstruc-
tion quality. Moreover, recognizing the limitations of traditional learning
techniques in capturing the inherent characteristics of infrared images,
we incorporate a prompt-based learning paradigm. This approach facil-
itates a more nuanced understanding and targeted optimization process
for infrared images by leveraging the semantic comprehension offered by
the visual language model. Our approach not only addresses the common
pitfalls associated with infrared imaging but also sets a new paradigm
for infrared image SR. Extensive experiments demonstrate that our ap-
proach obtains superior results, attaining state-of-the-art performance.
Project page: https://github.com/hey-it-s-me/CoRPLE.
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1 Introduction

Single image super-resolution (SR) [10, 14, 26] recovers a high-resolution image
from its lower-resolution counterpart without necessitating modifications to the
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imaging hardware. Its applications span across diverse fields, including medical
imaging [20, 50], security surveillance [40], and remote sensing image process-
ing [19, 44]. Infrared imaging, which captures grayscale images reflecting the
infrared radiation energy emitted by objects, has proven a crucial role in mil-
itary and civilian domains such as wilderness reconnaissance, aerospace, and
home care [51]. However, the intrinsic properties of infrared cameras, includ-
ing low resolution, temperature sensitivity, high noise levels, and dynamic range
limitations, pose prevalent challenges that compromise the quality of infrared im-
ages [29]. These issues obstruct crucial tasks including object detection, tracking,
and segmentation [13,34,54]. Therefore, the enhancement of infrared image res-
olution to bolster contrast and detail is imperative for augmenting the efficiency
and accuracy of these vision tasks.

The evolution of super-resolution methodologies, from convolutional neural
network (CNN)-based approaches to transformer-based innovations, has signifi-
cantly advanced the field. Most CNN-based methods [10, 11, 26] prioritize intri-
cate architectural designs, leveraging spatially invariant kernels to extract local
features, which are inefficient in modeling the relations among pixels and are not
adequate for the establishment of long-range dependencies [25]. Transformer-
based methods [5, 25, 46] resolve those issues by the design of the self-attention
mechanism that captures global interactions between contexts and has shown
promising performance.

However, most existing methods are designed with visible light images and do
not adequately address the unique characteristics of infrared light, thus result-
ing in unsatisfactory performance when applied to infrared images. Infrared im-
ages, characterized by longer wavelengths and less susceptibility to atmospheric
scattering, contain fewer high spatial frequency components. Furthermore, the
process of forward propagation in neural networks often results in the diminu-
tion of high-frequency details [30, 53]. Additionally, the optical components of
infrared imaging systems may not focus infrared light as effectively as visible
light, therefore impacting the clarity of high-frequency details in images [12].

To bridge this gap, we propose a Contourlet residual-based prompt learn-
ing approach for infrared SR. Our approach leverages the multi-directional and
multi-scale analysis capabilities of the Contourlet transform, along with its ef-
ficient edge representation and noise reduction properties, to enhance the deep
feature extraction of infrared images efficiently. Furthermore, by employing the
visual language model, we imbue our model with a profound semantic under-
standing through a two-stage prompt learning strategy which learns right from
wrong, guiding the optimization process through paired positive and negative
textual prompts, meanwhile bolstering its learning capability and generalization.
Our contributions are three-fold:

– We introduce a specialized Contourlet residual framework tailored for in-
frared images to restore and enhance the high-frequency details from the
multi-scale infrared spectra decomposition, crucial for reconstructing high-
pass subband lacked infrared images.
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– We devise a prompt learning strategy that guides our super-resolution model
to optimize the unique nuances of infrared image characteristics through the
positive and negative prompt pairs.

– Our method surpasses existing super-resolution algorithms and achieves state-
of-the-art (SOTA) performance, setting a new paradigm in the realm of in-
frared image super-resolution.

2 Related Work

2.1 Image Super-Resolution

GAN-based SR Method. Starting from SRCNN [9], numerous deep learning-
based Super-Resolution (SR) have been proposed. Recently, BSRGAN [48] and
Real-ESRGAN [42] use a wide variety of training samples with different types
of degradation, leveraging GAN to enhance the quality of SR images but may
introduce artifacts. Subsequent methods like LDL [24] and DeSRA [43] have
mitigated these artifacts but struggle to reproduce natural details.
Transformer-based SR methods. Methods such as IPT [3] demonstrate the
adaptability of the Transformer to various image processing tasks but require
large datasets to reach their potential [55]. VSR-Transformer [2] enhances the
resolution of video frames through temporal and spatial features but features
are still extracted from CNN. Liang et al. proposed Swin IR [25], to combine the
strengths of both CNNs and Transformers to enhance SR tasks. ELAN [49] is
capable of computing self-attention in larger windows, and Restormer [46] can
learn long-range dependencies while maintaining computational efficiency.
Diffusion-based SR methods. Methods like SR3 [39] condition a diffusion
model (DM) on low-resolution (LR) images, gradually refining them to high-
resolution (HR) images. Recently, SRDiff [21] employs a residual prediction
strategy to accelerate training efficiency and utilizes encoded LR information
for noise prediction.

2.2 Text Prompt Image Processing

Methods like DALL-E-2 [36], Imagen [38] and Stable Diffusion [37] all utilize
diffusion models for text-to-image generation. For image manipulation, Style-
CLIP [32] combines the generative capabilities of StyleGAN [17] with the vision-
language abilities of CLIP [35], and DiffusionCLIP [18] uses diffusion models
alongside CLIP for image generation. Meanwhile, Prompt-to-Prompt [15] and
InstructPix2Pix [1] are pre-trained and fine-tuning-free approaches, edit images
within a pre-trained diffusion model by modifying prompts [52]. However, the
use of text prompts in image SR has seen limited exploration. In our work, we
investigate the application of text prompts in the context of infrared image SR.

2.3 Infrared Image Enhancement

Infrared image enhancement aims to improve the quality of images captured by
IR sensors. However, reconstructing IR details presents a significant challenge.
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Fig. 1: Overall architecture of our network, Contourlet transform and prompt leaning
optimization process.

The defects of infrared imaging devices and external environmental factors of-
ten result in images with low contrast, unclear target edges, and poor visual
effects [23,27]. These challenges are exacerbated by the longer wavelengths of in-
frared radiation than visible light, leading to images with reduced spatial resolu-
tion and diminished detail [28]. Many efforts have started investigating IR image
enhancement [31,45]. Marivani et al. [31] initially integrate sparse edge informa-
tion from visible light images and combine it with interpretable sparse priors.
Other researchers have developed modules capable of extracting high-frequency
information from visible light images and using attention mechanisms to effec-
tively introduce this pattern information into the IR feature domain [16,33].

3 Methods

3.1 Architecture

As shown in Figure 1, the architecture of our proposed network delineates three
core modules: the shallow feature extraction module, the deep feature extrac-
tion module, and the high-resolution (HR) image reconstruction module. The
process begins with a low-resolution (LR) input image being processed through
a shallow feature extraction phase, employing a 3 × 3 convolutional layer to
preliminarily parse the image’s basic features. Progressing deeper, the model
advances into the deep feature extraction phase, which amalgamates spatial and
infrared spectral features through the channel and spatial self-attention mech-
anisms alongside the Contourlet residuals. In the final phase, the HR image is
reconstructed through the HR image reconstruction module. Here, the fused
features undergo an upscaling process using the pixel shuffle method [41] with
convolutional layers employed to aggregate features into the final HR image.
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Fig. 2: Visual demonstration of the sparsity for (a). traditional wavelet transform and
(b). Contourlet transform.

3.2 Contourlet Residual Deep Feature Extraction

The deep feature extraction module leverages channel and spatial self-attention
mechanisms with the Contourlet transform, optimizing infrared feature fusion
across spatial, channel, and infrared spectra for enhanced representation.
Spatial Window Self-Attention. This mechanism operates by segmenting
feature spaces into discrete spatial windows, applying self-attention within each
to capture intricate spatial relationships. For an input feature matrix X ∈
RH×W×C , we employ learnable weights to generate query (Q), key (K), and
value (V) matrices. These matrices are then subdivided into non-overlapping
windows, with each window processed independently to emphasize localized
feature interactions. The process involves dividing these matrices into multiple
heads, enabling parallel processing of diverse feature aspects. Attention scores
are computed through the dot product of the queries and keys, normalized with
the softmax function to obtain attention weights for each position. The attention
outputs from all heads are then concatenated and subjected to a linear projec-
tion, ensuring a comprehensive integration of spatially attentive features into a
unified representation.
Channel-Wise Self-Attention. Unlike Spatial Window Self-Attention, Channel-
Wise Self-Attention applies attention across channels for each spatial window,
capturing global channel relationships. Given input X ∈ R, we linearly project
it to form query (Q), key (K), and value (V) matrices. These are then reshaped
to Qc, Kc, and Vc with dimensions RHW×C , and divided into multiple heads
(h). Attention is computed for each head, using a learnable scaling factor (α) for
normalization:

Y i
c = softmax

(
(Qi

c)
TKi

c

α

)
· V i

c , (1)

yielding the final channel-wise attention output by concatenating and reshaping
head outputs, akin to the spatial attention process.
Spatial Feed-forward Neural Network. The Spatial Feed-Forward Neural
Network (SFNN) is a neural network architecture that enhances traditional feed-
forward networks by incorporating a spatial gating mechanism for improved spa-
tial information processing and channel redundancy reduction via depth-wise
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Fig. 3: Architecture of the Contourlet transform, The input feature is first decomposed
by an LP filter to low- and high-pass subbands. Then, the high-pass subbands are
decomposed into 2i directional subspaces through the DFB.

convolution and element-wise multiplication. It makes the architecture more ef-
ficient by using depth-wise convolution. SFNN splits the input feature map (X̂)
along the channel axis, processes each part through convolutional and multi-
plicative operations, and then merges them:

X̂ ′ = σ(W 1
p X̂), [X̂ ′

1, X̂
′
2] = X̂ ′,

SFNN(X̂) = W 2
p (X̂

′
1 ⊙ (WdX̂

′
2)),

(2)

where ⊙ denotes the element-wise multiplication, W 1
p and W 2

p is the weight
matrix used for linear projection. σ represents the GELU function, and Wd

represents the depth-wise convolutional parameters.
Contourlet Residual. Our preference for the Contourlet transform over the
conventional wavelet transform stems from its superior ability to handle the
multidimensional singularities typical of infrared images, such as lines, edges,
and contours. Although wavelet transform exhibits satisfactory time-frequency
localization, its square supports are suboptimal for effectively capturing high-
dimensional features and fail to provide a sparse representation. Additionally, the
convolutional nature of wavelet transform is computationally intensive and does
not possess translation invariance, which can result in the Gibbs phenomenon [8].
In contrast, the Contourlet transform leverages the strengths of wavelets into a
higher-dimensional space, and achieves a sparse representation where smooth
image contours can be efficiently captured with fewer coefficients, thereby en-
hancing robustness across scales and orientations as shown in Figure 2.

Upon extracting global deep features through the SFNN block, we employ
a Contourlet-based residual network, as depicted in Figure 3. This network
initiates with a Laplacian Pyramid decomposition of the deep features, de-
noted as X, segregating them into low and high-pass components. The low-
frequency subband Xlow, encapsulating the core structure and broad contours
of the image, is procured through Gaussian filter down-sampling expressed as
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semantics in the latent space. (b). The degradation loss guides the SR to align with
positive prompts while distancing from the negative ones with the locked text encoder.

Gi(x, y) = (Xi−1 ∗ h)(2x, 2y), where Gi represents the image at the ith level of
the Gaussian pyramid, Xi−1 is the feature from the previous level, h denotes the
Gaussian filter, ∗ is the convolution operation, and (2x, 2y) signifies the down-
sampling process, capturing the general features across scales. The Laplacian
layer Li, embodying the high-frequency subband Xhigh, is derived by:

Li(x, y) = Xi−1(x, y)− (Gi ∗ hT )(x, y), (3)

with Li forming the ith level of the Laplacian pyramid and hT being the trans-
posed Gaussian filter for reconstructing the preceding layer’s features. The high-
frequency subband Xhigh, ensuing from the LP decomposition, undergoes a sub-
sequent refinement via the Directional Filter Bank decomposition:

Bl,k(x, y) = (Xl ∗ fk)(x, y), (4)

where Bl,k denotes the subband for the lth level and kth direction, and fk is the
directional filter. The DFB decomposition dissects the image into directionally-
sensitive subbands, allowing the model to discern textural and edge details within
the high-frequency domains of the infrared spectrum. This decomposition is
iteratively applied to the low-pass subband at each LP level, recursively utilizing
both LP and DFB to extract and refine features across the infrared spectrum
from coarse to fine.

The resultant coefficients Xspectral are a confluence of the multi-scale, multi-
directional features, expressed as Xspectral = {Li(x, y)} ∪ {Bl,k(x, y)}, where
{Li(x, y)} is the set of all Laplacian pyramid layers, and {Bl,k(x, y)} is the set
of all DFB decomposed subbands. These coefficients encompass not only the
sparse high-frequency nuances but also the fundamental low-frequency aspects,
delivering a comprehensive suite of features characteristic of infrared images.
After employing the Contourlet transform to enrich the spectral features, we
fuse these with the spatial features extracted from the SFNN block through
residual to enhance the detail representation in infrared images.
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3.3 Prompt Learning Based Optimization

To refine the quality of super-resolved infrared images, we introduce a two-stage
prompt learning strategy leveraging the capabilities of the CLIP model. This
strategy augments the capacity to adaptively interpret and improve upon the
quality of SR and detail within reconstructed scenes.

The foundation of this prompt learning strategy is the prompt-based degra-
dation loss, which utilizes the CLIP model’s proficiency in semantic parsing to
align the generated images with textual descriptors. We apply the three pairs
of prompts to represent degradation specifically common in infrared images and
formulate the degradation loss using CLIP to guide the super-resolution process
toward generating images that semantically align with positive textual descrip-
tors while distancing from the negative ones.

As shown in Figure 4, our method initializes the prompt pairs from high-
resolution (HR) and low-resolution (LR) image counterparts. The HR image
undergoes encoding via the locked image encoder Φimage of the CLIP model,
producing its latent representation. Concurrently, the latent codes for the di-
chotomous prompts are derived through the unlocked text encoder Φtext. Lever-
aging the latent space similarity metric SIM(I,T) = ecos(Φimage(I),Φtext(T)), we
apply binary cross-entropy loss to fine-tune the initial prompt pair, distinguish-
ing HR from LR images:

L = −(y ∗ log(ŷ) + (1− y) ∗ log(1− ŷ)), (5)

ŷ =
SIM(Φimage(I),Φtext(Tpos))∑

i∈{neg,pos} SIM(Φimage(Ii),Φtext(Ti))
, (6)

where I signifies the paired HR and LR images, and y is their corresponding
label, designated 0 for LR and 1 for HR. Tpos and Tneg encapsulate the encoded
features of the positive and negative prompts, respectively. After the initial stage
of prompt optimization, we then lock the text encoder Φtext, and advance to
refine our network with the degradation loss. The degradation loss Ldegrad for a
batch of SR images I is computed as:

Ldegrad =
1

N

N∑
i=1

SIM(Φimage(Ii),Φtext(Tneg))

SIM(Φimage(Ii),Φtext(Tpos))
, (7)

where N indicates the batch size. This loss function motivates the network to
yield visually aligned images with high-quality descriptors while diverging from
the qualities of the low-quality ones, thus ensuring a visual alignment. The train-
ing alternates between refining the prompts and fine-tuning the enhancement
network until the outputs achieve visual excellence. The total loss, Ltotal, in-
tegrates the degradation loss with pixel and perceptual losses to holistically
optimize the infrared images for visual fidelity, perceptual quality, and semantic
congruence with high-quality image descriptions:

Ltotal = Ldegrad + Lpixel + Lperceptual, (8)
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Table 1: Quantitative comparison with the SOTA SR methods. The best result is in
red whereas the second best one is in blue.

Set5 Set15 Set20Methods Scale
PSNR↑ MSE ↓ SSIM ↑ PSNR ↑ MSE ↓ SSIM ↑ PSNR ↑ MSE ↓ SSIM ↑

SwinIR-Light x2 46.670 5.365 0.9896 47.120 5.158 0.9900 47.680 4.151 0.9900
SwinIR x2 46.880 5.121 0.9899 47.240 5.001 0.9902 47.820 4.023 0.9901
DAT-Light x2 48.188 5.196 0.9920 48.555 5.175 0.9922 49.093 4.196 0.9924
DAT-S x2 48.454 4.868 0.9919 48.825 4.831 0.9917 49.366 3.902 0.9918
DAT x2 48.434 4.818 0.9922 48.779 4.800 0.9924 49.348 3.848 0.9925
CAT-R-2 x2 48.467 4.784 0.9911 48.817 4.721 0.9923 49.422 3.763 0.9914
CAT-R x2 48.490 4.710 0.9915 48.842 4.652 0.9923 49.453 3.707 0.9918
ART-S x2 48.368 5.858 0.9913 48.747 5.214 0.9923 49.361 5.705 0.9916
ART x2 48.470 5.096 0.9917 48.834 4.479 0.9924 49.443 4.061 0.9925
HAT-S x2 48.456 4.805 0.9919 48.841 4.740 0.9914 49.416 3.811 0.9918
HAT x2 48.430 4.878 0.9921 48.790 4.805 0.9923 49.368 3.867 0.9924
HAT-L x2 48.584 4.474 0.9921 48.974 4.418 0.9924 49.518 3.561 0.9925
EDT-T x2 48.115 4.837 0.9917 48.601 4.598 0.9920 49.104 3.797 0.9921
EDT-B x2 48.188 4.497 0.9919 48.709 4.392 0.9921 49.243 3.550 0.9922
EDT-B† x2 48.570 4.527 0.9921 49.008 4.354 0.9924 49.558 3.503 0.9925

Ours x2 48.581 4.476 0.9930 49.233 4.389 0.9932 49.614 3.525 0.9930

SwinIR-Light x4 38.720 35.478 0.9502 38.780 38.190 0.9473 40.070 24.694 0.9620
SwinIR x4 39.010 33.155 0.9524 40.120 36.662 0.9598 41.680 22.877 0.9700
DAT-Light x4 40.345 32.555 0.9606 40.399 35.299 0.9574 41.637 23.078 0.9701
DAT-S x4 40.679 30.101 0.9622 40.702 32.518 0.9593 41.919 21.232 0.9709
DAT x4 40.764 29.454 0.9625 40.812 31.854 0.9597 42.046 20.783 0.9712
CAT-R-2 x4 40.580 30.675 0.9617 40.621 32.879 0.9588 41.940 21.139 0.9708
CAT-R x4 40.604 30.786 0.9619 40.612 33.615 0.9585 41.879 21.390 0.9706
ART-S x4 40.597 30.604 0.9615 40.626 30.250 0.9586 41.917 33.101 0.9708
ART x4 40.696 32.469 0.9619 40.754 31.241 0.9593 42.045 20.702 0.9712
HAT-S x4 40.677 30.536 0.9620 40.760 32.389 0.9594 41.994 21.191 0.9710
HAT x4 40.736 30.118 0.9622 40.740 32.487 0.9594 41.996 20.991 0.9711
HAT-L x4 40.754 30.467 0.9624 40.741 31.985 0.9595 41.997 20.753 0.9713
EDT-T x4 40.136 34.249 0.9532 40.383 34.953 0.9523 41.259 23.516 0.9621
EDT-B x4 40.520 31.501 0.9610 40.641 33.549 0.9584 41.877 21.817 0.9706
EDT-B† x4 40.618 30.606 0.9616 40.715 32.497 0.9590 41.948 21.041 0.9708

Ours x4 40.779 29.387 0.9626 40.765 30.196 0.9600 41.949 20.691 0.9717

where the pixel loss Lpixel, fundamentally an MSE calculation, assesses the pixel-
level discrepancies between the super-resolved images and their high-resolution
ground truth counterparts. Conversely, the perceptual loss Lperceptual leverages
a VGG network to extract and compare feature representations of the generated
and ground truth images, focusing on minimizing differences in high-level feature
representations. This comprehensive loss function ensures that our SR network
produces high-quality images that not only closely resemble the ground truth
but also align with the semantic expectations.

4 Experiments

4.1 Experimental Settings

Dataset and evaluation metrics. We assessed our model against several
benchmarks using publicly accessible infrared datasets M3FD, TNO, and Road-
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Table 2: Quantitative analysis of model complexity comparisons (×4). PSNR (dB)
on TNO and RoadScene, FLOPs, and Params are reported with the best result in red
whereas the second best one in blue.

Methods SwinIR DAT CAT-R ART HAT EDT Ours

Params(M) 11.90 14.90 16.20 16.55 20.80 11.6 6.28
FLOPS(G) 215.3 275.8 292.7 573.2 102.4 37.6 52.5
TNO 35.32 36.65 36.87 36.86 36.88 36.73 36.91
RoadScene 27.86 29.28 29.24 29.27 29.25 28.84 29.31

Set5 (×4)

HR SwinIR DAT CAT

ART HAT EDT Ours

Set15 (×4)

HR SwinIR DAT CAT

ART HAT EDT Ours

Set20 (×4)

HR SwinIR DAT CAT

ART HAT EDT Ours

Fig. 5: Visual comparison of infrared image SR (×4) with SOTA methods.

Scene. For training, we randomly selected 182 images from M3FD, while a set
of 78 images from the same dataset was reserved for validation. To ensure a
thorough evaluation of fusion performance, we employed M3FD Set5, Set15,
and Set20 along with RoadScene (60 images), and TNO (37 images) as test
datasets. We conduct experiments with upscaling factors of ×2 and ×4, where
low-resolution (LR) images are derived from high-resolution (HR) counterparts
through bicubic degradation. To quantitatively assess the performance of our
model, we utilize three metrics, PSNR, MSE, and SSIM, offering a comprehen-
sive evaluation of our model’s effectiveness in image super-resolution.
Implementation Details. Our network was trained on a GeForce RTX 4090
GPU, utilizing the Adam optimizer for parameter updates. We set the initial
learning rate to 1e−4, employing an exponential decay strategy to refine the
learning process over time. The training was executed with patch size 64×64
and batch size 32. To enhance the robustness and generalizability of our model,
we employed data augmentation techniques including random rotations (90◦,
180◦, 270◦) and horizontal flips.
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HR SwinIR DAT CAT

ART HAT EDT Ours
(a) TNO

HR SwinIR DAT CAT

ART HAT EDT Ours
(b) RoadScene

Fig. 6: Visual comparison with SOTA methods on TNO and RoadScene datasets (×4)
with pixel intensity variations visualized as line charts. The colors are added solely for
a better view.

4.2 Comparison with State-of-the-Art Methods

We conduct a comprehensive comparison of our approach against six state-of-
the-art methods, including SwinIR [25], DAT [6], CAT [7], ART [47], HAT [4],
and EDT [22] with their large, classic, and light versions.
Quantitative Results. Our method’s quantitative super-resolution results, as
summarized in Table 1, demonstrate its superior performance across different
scales when benchmarked against 15 state-of-the-art models on three represen-
tative sets from the M3FD. Notably, our approach consistently outperforms ex-
isting methods in terms of PSNR and SSIM metrics, which are critical indicators
of image quality and structural integrity. At a scale of ×2, our technique not
only surpasses all classic and light models but also outmatches the majority of
the larger versions of six cutting-edge methods. It trails only marginally behind
HAT-Large and EDT-B†, marking a substantial advancement over its contem-
poraries. At a scale of ×4, our model secures the leading position in Set5, and
closely contends with DAT, which achieves a marginally higher PSNR in Set15
and Set20, underscoring our model’s efficacy in reconstructing finer details and
achieving higher fidelity in super-resolved images. Crucially, our model obtains
this superior performance with notably less computational complexity and model
size over its contemporaries as quantized in Table 2.
Qualitative comparison. We further conduct a qualitative analysis to compare
the super-resolution quality of our model against various baseline models. The ×4
SR outcomes depicted in Figure 5 highlight our method’s proficiency in dimin-
ishing artifacts while retaining more structural integrity and finer high-frequency
details. For example, in the Set5 results, competing methods often yielded over-
smoothed reconstructions, failing to preserve infrared high-frequency details.
This tendency is similarly observed in the Set20 results, where other models
struggled with the maintenance of high-frequency details in complex infrared
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LR w/o SSA w/o CSA Ours HR

Fig. 7: Visual ablation results (×4) of different attention choices.

Table 3: Ablation study of Contourlet
structure.

DFB LP Params(M) FLOPS(G) PSNR SSIM

✓ 6.27 52.2 40.462 0.9598
✓ 6.26 52.1 40.517 0.9601

✓ ✓ 6.28 52.5 40.779 0.9626

Table 4: Ablation study of prompt
choice.

Baseline Positive Negative PSNR SSIM

✓ 40.342 0.9606
✓ ✓ 40.731 0.9622
✓ ✓ ✓ 40.779 0.9626

scenes. In contrast, our approach demonstrates an efficient preservation of in-
frared detail and texture, as evidenced by the sharper and more defined recon-
structions. The experiment illustrated in Figure 6 further intuitively corroborates
the nuanced multi-scale and multi-directional spectral comprehension of infrared
images by our model. We draw line charts that trace pixel intensity variations
along the image diagonals, the HR image is delineated in blue, while the recon-
structed SR output is drawn in red. Notably, the red lines in our charts closely
overlay the blue in regions where high-frequency details are ignored by other
methods, underscoring our method’s efficient edge representation and spectral
comprehension properties.

4.3 Ablation Studies

Experiments on Attention Strategy. Figure 7 delineates the individual and
combined contributions of Spatial Window Self-Attention (SSA) and Channel-
Wise Self-Attention (CSA) mechanisms in our framework. The experimental
results highlight that utilizing both SSA and CSA synergistically yields a sig-
nificant enhancement in restoring the spatial features in the reconstruction of
infrared super-resolved images. Models devoid of SSA exhibit a noticeable de-
cline in maintaining structural details, while those lacking CSA demonstrate an
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Fig. 8: Similarity comparison of ablation
study on the prompt learning strategy.

Table 5: Ablation study of prompt learn-
ing strategy.

Methods PSNR SSIM

Fixed prompts(Positive and Negative) 40.655 0.9611
Learned prompts(Negative) 40.718 0.9621
Learned prompts(Positive) 40.702 0.9619

Ours 40.779 0.9626

impaired ability to reconstruct textural nuances. In contrast, our integrated ap-
proach, which leverages both SSA and CSA, closely mirrors the high-resolution
(HR) target, capturing the intricate high-frequency details and preserving the
fidelity of the HR image.
Examine Contourlet Residual mechanisms. The results illustrated in Ta-
ble 3 provide an insight into the influence of the Laplacian Pyramid (LP) and
Directional Filter Bank (DFB) within our Contourlet Residual block. Three
scenarios were tested: the combined use of DFB and LP, the exclusive use of
DFB, and the sole employment of LP. The result indicates the efficacy of DFB
and LP, using both components achieves the highest PSNR, highlighting their
complementary roles in capturing the multi-directional and multi-scale infrared
high-pass details. The omission of either component reduces the model’s effec-
tiveness, emphasizing the importance of these components in our model.
Analyzing the Prompt Choice. The impact of positive and negative prompts
on the super-resolution process is detailed in Table 4. The baseline model, devoid
of any prompts, set the foundation for our comparison. Subsequent incorpora-
tion of positive prompts guided the model closer to the positive description and
resulted in a marked improvement in both PSNR and SSIM metrics, signify-
ing the utility of infrared characteristic relevant textual guidance. The addition
of negative prompts further guided the model closer to the positive cues while
distancing from the negative ones, refining the results as evidenced by the high-
est recorded PSNR and SSIM scores. This progression underscores the nuanced
role that prompts play, effectively steering the model towards a more precise
reconstruction of high-fidelity infrared images.
Impact of Learning Strategy. Figure 8 delves into the effects of the prompt
learning strategy, presenting the kernel density estimates of similarity scores be-
tween prompts and images across the M3FD test dataset. The curves exhibit
how learned prompts, as opposed to fixed ones, yield a distinct peak in similar-
ity scores when compared with SR images, suggesting a closer alignment with
the SR outputs. In contrast, the flatter distribution associated with the fixed
prompts indicates a less accurate reflection of the SR image attributes. Notably,
the shift towards higher similarity scores underscores the effectiveness of our two-
stage learning strategy in fine-tuning the prompts to embody the high-resolution
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1 level 2 level 3 level 4 level
Fig. 9: Colored visual comparison of dif-
ferent contourlet decomposition levels.

Table 6: Ablation study of different Con-
tourlet levels.

Methods Params(M) FLOPS(G) PSNR SSIM

1-level 5.35 49.7 40.735 0.9621
2-level 5.66 50.8 40.752 0.9625
3-level 5.97 51.2 40.768 0.9626
4-level 6.28 52.5 40.779 0.9626

characteristics more faithfully. As the quantitative results indicate in Table 5,
learned prompts maximize the distance between the representation of negative
and positive samples in the CLIP latent space. Consequently, this precision in
representation ensures that the learned prompts more effectively guide the model
toward emulating positive attributes while avoiding negative ones.
Evaluating the Contourlet Level. To further validate the influence of vary-
ing levels in the Contourlet decomposition process on image super-resolution,
we provide the quantitative comparison in Table 6. An increase in the num-
ber of Contourlet levels augments the layers in the Laplacian Pyramid and the
corresponding directional filter banks (DFBs) at each layer. This multi-layered
approach empowers our model to capture high-frequency details across a broader
spectrum of scales and orientations, thereby enriching the interpretation of in-
frared spectral characteristics. As presented, the slight uptick in PSNR and SSIM
metrics with each added level substantiates the model’s enhanced proficiency in
delineating intricate infrared image textures. While a corresponding increase
in Parameters and FLOPS is observed, the marginal improvement in captur-
ing the nuanced details of infrared images justifies the additional computational
overhead. The visual ablation results in Figure 9 also prove the efficacy of the
decomposition level.

5 Conclusion

In this paper, we propose an efficient paradigm for infrared image SR through the
development of a Contourlet residual-based prompt learning framework. Differ-
ent from existing SR techniques predominantly optimized for visible light imag-
ing, which neglect the distinctive characteristics of infrared light, we analyze
the unique spectral signatures of infrared images and efficiently restore high-
frequency details. Specifically, the Contourlet residual amalgamates spatial and
infrared spectral features through the Contourlet transform, capturing multi-
directional and multi-scale high-pass subband effectively. Our two-stage prompt
learning strategy incrementally optimizes the model, facilitating the alignment
with infrared image characteristics. Extensive experiments demonstrate that our
method gains a deeper understanding of infrared imaging with relatively fewer
parameters and FLOPS, achieves state-of-the-art performance, and establishes
a new paradigm in the field of infrared image SR.
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