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A GUlI-based Implementation for Click-Gaussian

To showcase interactive segmentation and manipulation using Click-Gaussian,
we design a Graphical User Interface (GUI) tool based on DearPyGui [2, 8], a
fast and powerful GUI toolkit for Python. As shown in Fig. 1, our GUI is de-
signed to allow users to easily click and segment objects at coarse and fine levels,
and provides tools for real-time manipulation tasks such as resizing, translation,
removal, and text-based editing for intuitive interaction with the segmented ob-
jects. The supplementary video demonstrates the effectiveness of our method in
enabling real-time interactive scene manipulation, showcasing its fast and pre-
cise 3D segmentation performance. We encourage readers to view this video for
a comprehensive understanding of the proposed approach’s capabilities.
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Fig. 1: Graphical User Interface (GUI) for Click-Gaussian.
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B SAM-based Multi-level Mask Generation

We utilized the official code’s automatic mask generation module for SAM mask
creation, which extracts masks without distinguishing levels, allowing us to get
only the highest-confidence segments in an image. These segments are then as-
signed to two masks by area: if multiple segments are assigned to a single pixel,
the coarse-level mask prioritizes the identity of the larger segment, while the
fine-level mask favors the identity of the smaller segments. This approach en-
ables us to assign a single mask identity per pixel at each level, facilitating stable
contrastive learning.

Comparative Analysis of Multi-level Mask Strategies. Our method can
adopt SAM’s three-level masks (whole, part, and subpart) in two ways: three-
level-score and three-level-area. Each approach prioritizes the highest score seg-
ment and smallest segment, respectively, for each level. In these cases, we split
f; € R?* into three levels of granularity. As shown in Fig. 2, the three-level-area
outperforms the three-level-score in fine-level mloU due to finer-grained mask
supervision (e.g., egg white and yolk), demonstrating the efficacy of the area-
based prioritization. Additionally, our method using two-level masks surpasses
the three-level-area thanks to the mask completeness and training efficiency: It
has fewer unassigned identities than the three-level-area and learns feature fields
more efficiently with the same feature dimension of 24. For these advantages, we
adopt the two-level granularity assumption.

) mioU (coarse / fine / total)

68.9/59.5/64.3

Fig. 2: Performance comparison of different mask generation strategies. Black areas
indicate pixels with unassigned identities.
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C Annotations for Evaluating Fine-grained Segmentation

We evaluate our approach’s segmentation performance using the LERF-Mask
dataset [9], a public real-world dataset for 3D segmentation tasks. This dataset
comprises three scenes (Figurines, Ramen, and Teatime) [3] with manually anno-
tated ground truth masks for semantically large objects, as shown in the first two
rows of Fig. 3. To assess fine-grained segmentation performance, we additionally
annotated masks for smaller objects within each scene using Make-Sense [7], a
free online image labeling tool, as shown in the last two rows of Fig. 3. This
additional annotation is necessary due to the lack of datasets suitable for fine-
level comparison. Note that the annotation process was conducted independently
from our segmentation experiments.

Figurines Ramen Teatime

Coarse-level

Fine-level

Fig. 3: Annotations for evaluating fine-grained segmentation. The first two rows of
each scene show the ground truth annotations for evaluating coarse-level segmentation
with two sampled test views. On the other hand, each scene’s last two rows show the
ground truth annotations for evaluating fine-level segmentation.
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D Additional Experiments and Results

D.1 3D Editing in Al-generated Videos

OpenAl recently announced Sora [1], a groundbreaking text-to-video generation
model, showing a promising path towards building general-purpose world simu-
lators. These simulators can be further improved by enabling interactive mod-
ification of generated realistic environments through accurate and fast 3D seg-
mentation methods like Click-Gaussian, enhancing their functionality and user
interaction capabilities. To demonstrate Click-Gaussian’s versatility in scene seg-
mentation and manipulation on these generated scenes, we applied our method
to videos (Santorini! and Snow-village?) generated by Sora. As shown in Fig. 4,
after pre-training 3DGS on each generated video using COLMAP [5, 6], users
can flexibly make desired modifications, resulting in more creative and diverse
3D environments with Click-Gaussian.

Localized editi

Original video g in 3D scene (novel views)

() wresizing and translation :text-based editing

Fig. 4: Versatile applications of Click-Gaussian on synthetic videos generated by Sora.
After pre-training 3DGS on Sora-generated videos, users can flexibly modify the recon-
structed 3D scenes in real-time, including resizing, translation (sky blue circle), and
text-based editing ( ). In the Snow-village scene (first row), we manipulated
the scene by enlarging and translating three snowmen, two houses, and a tree, while
stylizing other house roofs to crystal. In the Santorini scene (second row), we applied
text-based editing to buildings, transforming them into cyberpunk neon, crystal, and
rainbow styles from the bottom left, respectively.

"https://cdn.openai.com/sora/videos/santorini.mp4
2https://cdn.openai.com/tmp/s/interp/b2.mp4. This video has no official name,
so we refer to it as Snow-village.


https://cdn.openai.com/sora/videos/santorini.mp4
https://cdn.openai.com/tmp/s/interp/b2.mp4
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D.2 Open-vocabulary 3D Object Localization

Once trained, our method can perform open-vocabulary 3D object localization
as shown in Fig. 5, using the obtained global feature candidates, which we call
global clusters. Specifically, for all two-level global clusters, we render only the
Gaussians corresponding to each cluster in multiple views (10 randomly sampled
views) as shown in Fig. 6. We then input these rendered images into the CLIP
image encoder [4] to obtain the CLIP embeddings of each cluster. Thanks to the
real-time rendering speed of 3DGS, this process of obtaining CLIP embeddings
for all global clusters completes in 20-40 seconds, depending on the number of
global clusters in the scene. Note that this process only needs to be performed
once before any text query. Subsequently, given text queries, open-vocabulary
3D object localization is performed by returning the global cluster with the
highest cosine similarity between the obtained image embeddings of all global
clusters and the text query embedding. Fig. 5 qualitatively demonstrates that
our approach precisely localizes 3D objects for given text queries using globally
obtained clusters.

Scene View 1 View 2 View 3

Figurines

M rubics cube M strap B jake figure B miffy figure pirate hat
I striped T-shirt B green chair B necklace spatula I green apple

B kamaboko I chopsticks B jacket M nori sake bottle
I vyellow bow! B table I black spoon wavy noodles I water glass

B tea bags W apple B teainaglass B white plate cup handle
[ sheep doll Il DALL-E W napkin teddy bear Il coffee bag

Fig. 5: Open-vocabulary 3D object localization results on the LERF-Mask Dataset.
Segmentation results are color-overlaid for visualization in three different scenes.
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Fig. 6: Examples of rendered images using the Gaussians corresponding to each global
cluster. Five representative images are shown per cluster for simplicity. These images
are used to obtain CLIP embeddings for each cluster via the CLIP image encoder.

D.3 Additional Results for 3D Segmentation

Experiments on LeRF Dataset. In addition to user-guided segmentation,
our approach can also automatically segment everything by calculating the co-
sine similarity between the rendered 2D feature map and global clusters’ features,
assigning a global cluster ID with the maximum similarity value to each pixel.
By performing this process for each of the two granularity levels, we obtain auto-
matic segmentation results at both coarse and fine levels. Figs. 7, 8, and 9 show
the results of automatic segmentation for several complicated real-world scenes
from the LeRF dataset [3], along with PCA visualizations of rendered feature
maps at two levels. These results qualitatively demonstrate that Click-Gaussian
achieves high-fidelity, fine-grained segmentation of everything in complex real-
world scenes.

Experiments on SPIn-NeRF Dataset. We further showcase the 3D multi-
view segmentation results on the SPIn-NeRF Dataset using the label propagation
method, as illustrated in Fig. 10. These results offer additional examples demon-
strating the effectiveness of Click-Gaussian across various real-world scenes.
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Feature fields (coarse) Segment everything (coarse) Feature fields (fine) Segment everything (fine)
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View 3
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Dozer-nerfgun-waldo
View 2

View 2 View 1

Espresso

View 3

Fig. 7: Segmentation of everything results on the LeRF Dataset. We present auto-
matic segmentation results (third and fifth columns) along with PCA visualizations of
rendered feature maps (second and fourth columns) at two granularity levels for Bou-
quet, Dozer-nerfgun-waldo, and Espresso scenes (first column) from the LeRF Dataset.
Objects classified with the same ID in the segmentation results share the same over-
laid color across the three given views, as each global cluster ID remains consistent
throughout a scene.
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Fig. 8: Segmentation of everything results on the LeRF Dataset. We present automatic
segmentation results (third and fifth columns) along with PCA visualizations of ren-
dered feature maps (second and fourth columns) at two granularity levels for Figurines,
Fruit-aisle, and Ramen scenes (first column) from the LeRF Dataset. Objects classified
with the same ID in the segmentation results share the same overlaid color across the
three given views, as each global cluster ID remains consistent throughout a scene.
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Fig.9: Segmentation of everything results on the LeRF Dataset. We present auto-
matic segmentation results (third and fifth columns) along with PCA visualizations
of rendered feature maps (second and fourth columns) at two granularity levels for
Shoe-rack, Teatime, and Donuts scenes (first column) from the LeRF Dataset. Objects
classified with the same ID in the segmentation results share the same overlaid color
across the three given views, as each global cluster ID remains consistent throughout

a scene.
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Fig. 10: 3D segmentation results on the SPIn-NeRF Dataset. We use the label prop-
agation method based on the ground truth mask of a reference view (first column)
to identify the cluster IDs belonging to the target object. These IDs are then used to
generate 2D masks for test views (subsequent columns).
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