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Abstract. In anomaly segmentation for complex driving scenes, state-
of-the-art approaches utilize anomaly scoring functions to calculate anomaly
scores. For these functions, accurately predicting the logits of inlier classes
for each pixel is crucial for precisely inferring the anomaly score. How-
ever, in real-world driving scenarios, the diversity of scenes often results
in distorted manifolds of pixel embeddings in the space. This effect is
not conducive to directly using the pixel embeddings for the logit pre-
diction during inference, a concern overlooked by existing methods. To
address this problem, we propose a novel method called Random Walk
on Pixel Manifolds (RWPM). RWPM utilizes random walks to reveal the
intrinsic relationships among pixels to refine the pixel embeddings. The
refined pixel embeddings alleviate the distortion of manifolds, improving
the accuracy of anomaly scores. Our extensive experiments show that
RWPM consistently improve the performance of the existing anomaly
segmentation methods and achieve the best results 1.

Keywords: Autonomous vehicles · Anomaly segmentation · Semantic
segmentation

1 Introduction

Semantic segmentation [9–11,13,39] plays a crucial role in the field of automated
driving, which can aid the automated driving system in perceiving and under-
standing the surrounding environment, thereby facilitating the system make ac-
curate decision. Typically, the semantic segmentation models are trained on
closed-datasets with fixed semantic categories, showing good recognition capa-
bilities for inlier classes (e.g ., roads, vehicles, etc.). However, these models often
fail to effectively detect potential outlier class objects (e.g ., animals, fallen tires,
etc.) in real-world scenarios. Due to the critical importance of correctly detect-
ing outlier class targets for the safety of autonomous driving, there is a growing
focus on addressing this task, namely, anomaly segmentation.

The standard paradigm for anomaly segmentation is assigning an anomaly
score to each pixel of an input image, where a higher score indicates a greater
probability that the pixel belongs to an outlier. Thus, the way used for es-
timating the anomaly score is crucial for anomaly segmentation methods. In
1 Code is available at: https://github.com/ZelongZeng/RWPM
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Fig. 1: A toy example about manifolds of pixel embeddings. The dashed cir-
cles indicate regions with high predicted logit to the corresponding inlier class. For
the pixel in these regions, its anomaly score is small. The prototype is the vector of
network weights of the classifier for the corresponding inlier class. (i) An ideal mani-
fold structure. All inlier pixels are within the corresponding high logit region, whereas
all outlier pixels are outside the areas. The anomaly score derived from the anomaly
scoring function effectively discriminates between them. (ii) The manifolds are affected
by the diversity of data, causing some inlier pixels to deviate from the corresponding
high logit region, while some outlier pixels approach the regions. This results in false
positives/negatives in the anomaly scores. However, pixels of the same class are
still in the same manifold, indicating that the manifold structure can be
utilized to reveal the intrinsic relationships between pixels. (iii) Our RWPM
utilizes random walks to capture the manifold structure to diffuse and update pixel
embeddings. The embeddings within the same manifold tend to become more similar
after the updating. Fig 3 and Fig 4 respectively present the visualization of
embedding distributions and the qualitative results of real examples, con-
sistent with the description of this toy example.

early approaches, the anomaly score is often given by estimating the predic-
tion uncertainty [16, 21, 27, 29], or by comparing the discrepancy between the
original image and its reconstructed image generated based on the semantic
segmentation predictions [14, 15, 31, 35]. Different from early methods, recent
methods [12,19,32,34,36,37] adopt Outlier Exposure (OE) strategy [22], which
directly learn a pixel-level anomaly class to detect anomalous pixels that deviate
from inlier classes. Specifically, these methods propose anomaly scoring func-
tions to infer the anomaly scores and, based on the functions, leverage auxiliary
outlier data to fine-tune a semantic segmentation model. The auxiliary outlier
data is typically generated by extracting outlier-class objects from other datasets
(e.g ., COCO [30]) and incorporating them into driving scene images [34,36,37].
Furthermore, some of them [19,34,36] adopt mask-based segmentation networks
instead of pixel-based segmentation networks, achieving state-of-the-art (SOTA)
performance in anomaly segmentation. In this paper, we concentrate on the cur-
rent methods using OE strategy. These methods indicate superior performance
to the early methods using prediction uncertainty or image reconstruction.

The anomaly scoring functions in OE methods infer anomaly scores based on
the inlier class logit predictions from a semantic segmentation model. Specifically,
the logic of these functions can be represented as follows: when the predicted
logits of a pixel embedding are small across all inlier classes, indicating that the
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pixel is dissimilar to all inlier classes and is an outlier with high probability, the
function yields a higher anomaly score. Therefore, accurately measuring the log-
its of each pixel is crucial for precisely evaluating the anomaly score. However, in
practical open-world driving scenarios, various environmental conditions (such
as lighting, road materials, etc.) and a diverse range of unknown class objects
are present. During the inference phase, the diversity of driving scenes often re-
sults in distorted manifolds of pixel embedding in the embedding space, causing
pixel embeddings to deviate from the ideal distribution. This phenomenon has
been validated in previous works of metric learning [3,25,40,41]. Since the logits
are calculated from the inner product (i.e., cosine distance) of the pixel embed-
dings and the vectors of classifiers’ network weights, the distorted manifolds are
not conducive to directly using the pixel embeddings for the logit prediction.
However, current anomaly segmentation methods ignore this issue and directly
use the pixel embeddings for the logit prediction in the inference phase, so the
results often fail to accurately reflect the anomaly score for the corresponding
pixels, causing high false positive/negative rate (see Fig. 1(i) and Fig. 1(ii)).

In this paper, we propose a novel method, called Random Walk on Pixel
Manifolds (RWPM), to alleviate the effect of data diversity on the manifolds.
RWPM utilizes random walks to capture the manifold structure of the pixel
embeddings to diffuse and update the embedding of each pixel. Since the struc-
ture of data manifolds implicitly contains the intrinsic relationship among data
points (see Fig. 1(ii)) [3,24,40,43], using random walks to measure the similarity
between pixels on manifolds (i.e., distance on manifolds rather than Euclidean
distance) better reflects the intrinsic relationships between pixels. Consequently,
diffusing and updating pixel embeddings based on the similarity on manifolds
results in high similarity among pixels on the same manifold and low similarity
among pixels on different manifolds. In the embedding space, this manifests as
pixel embeddings on the same manifold forming more compact clusters, thereby
mitigating the distortion effect of data diversity on the manifolds, which facili-
tates the logit prediction (see Fig. 1(iii)). Furthermore, since the typically large
number of pixels in an image, utilizing all pixels for the random walks results in
significant memory and computational overhead, which damages the deployment
and real-time execution of our RWPM. To address this issue, we introduce the
Partial Random Walk strategy for RWPM, reducing memory consumption and
enhancing the operational efficiency of RWPM. Note that, RWPM is proposed
to use in the inference phase, thus no any additional training is required. Addi-
tionally, RWPM can be directly integrated into existing anomaly segmentation
framework without the need for any extra modification to the network structure.
Extensive experiments in various anomaly segmentation benchmarks of road
scenes, namely Fishyscapes [5], Road Anomaly [31], and SMIYC [6], demon-
strate that RWPM consistently improves the performance of existing methods,
achieving SOTA results. To summarise, our contributions are the following:

– We introduce that the diversity of driving scenes results in distorted mani-
folds of pixel embedding, thereby affecting the accuracy of anomaly scoring



4 Z. Zeng et al.

functions in inferring anomaly scores. This problem is ignored by existing
anomaly segmentation methods.

– We propose the Random Walk on Pixel Manifolds (RWPM) that utilizes
random walks to reveal the intrinsic relationships among pixels to refine the
pixel embeddings. This way alleviate the effect on manifolds caused by the
driving scene diversity.

– We propose the Partial Random Walk strategy for RWPM to reduce the
memory consumption and improve the operational efficiency.

2 Related Work

Anomaly Segmentation. Anomaly segmentation aims to detect the outlier
class object in some specific scenes, such as complex driving scenes [6, 13, 31].
Existing anomaly segmentation can be broadly divided into three categories:
(a) Uncertainty-based methods, (b) Reconstruction-based methods and (c) Out-
lier Exposure methods. Uncertainty-based methods assume that outlier samples
result in low-confidence predictions. Based on this assumption, they focus on
measuring the pixel-wise anomaly score by estimating the prediction uncertainty
through various ways, such as ensembles [27], Bayesian estimation [16], maxi-
mum softmax probability [21, 29], and logit [20, 26]. Since segmentation models
are trained on close-set, they may misclassify unseen classes with high confidence,
leading uncertainty-based methods fail to detect anomalies. Reconstruction-
based methods detect anomaly pixel by comparing the discrepancy between
the original image and its reconstructed image generated based on the seman-
tic segmentation predictions [14,15,31,35]. These methods are challenged by the
accuracy of segmentation prediction and the difficulties of training. Recent meth-
ods [7, 12, 19, 34, 36, 37] introduce the Outlier Exposure (OE) strategy [22] that
utilizes auxiliary outlier data and anomaly scoring functions to learn models.
The auxiliary outlier data is the image from other datasets (e.g ., COCO [30]),
or cutting the outlier objects from other datasets and pasting them into the in-
lier scenes, and the anomaly scoring functions are used to calculate the anomaly
score for each pixel. Compared with previous works, OE strategy can reach better
performance. More recently, some OE methods [19,34,36] adopt mask-based seg-
mentation networks [10,11], instead of pixel-based segmentation networks [8,9],
as their backbones. Based on the powerful capability of mask-based networks
in segmentation tasks, these methods significantly reduces false detection rates,
achieving SOTA results. In this paper, we only concentrate on the OE methods.
The anomaly scoring functions employed in OE methods are based on the pre-
dicted logits of inlier classes. However, during the inference phase, the diversity
of driving scenes results in distorted manifolds of pixel embeddings. As a result,
the scoring functions may fail to use the embeddings to accurately calculate
logits, thereby affects the accuracy of measuring anomaly scores. Current OE
methods ignore this problem. Our proposed RWPM addresses this problem by
utilizing random walks on pixel manifolds to reveal the intrinsic relationships
among pixels and refine the pixel embeddings. To the best of our knowledge,
RWPM is the first work to propose and resolve this problem.
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Mining on Data Manifolds. Mining on data manifolds, also known as diffu-
sion process, is a well-established technique commonly used in retrieval tasks [3,
4, 25, 40, 43]. These works utilize random walks on data manifolds to capture
the data manifold structure for revealing the intrinsic relationship between data
points. The data manifold is constructed by a graph, where each node represents
a sample and each edge presents the connection between a node and its neighbor-
hoods, weighted proportionally according to their distance. For retrieval tasks,
the images of the same object may be shown in different conditions (e.g ., lighting
and angles). This diversity often leads to the manifold structure is not conducive
to accurately ranking using distance metrics directly [25,40]. Thus, diffusion pro-
cess is used to diffuse the state (typically initialized to 1) of a query image on
the data manifolds. If a sample is on the same data manifold with the query
(the distance on manifolds is close), then more energy of the state will flow to
that sample. Therefore, the final state of all samples can be seen as the accurate
ranking scores. Moreover, diffusion process is also adopted in semi-supervised
learning [24, 42] to propagate the label of labeled samples to unlabeled sam-
ples. Similarly, some unsupervised segmentation works [17, 23] utilize diffusion
process to propagate the labels of manually annotated pixels to the unlabeled
pixels. These existing works utilize random walks on data manifolds for rank-
ing or label propagation. Different from these works, our target is to solve the
problem occurring in pixel manifolds for anomaly scoring functions. We propose
innovatively using random walks to diffuse and update pixel embeddings, elimi-
nating the effect of distorted manifolds directly at the embedding-level, thereby
improving the accuracy of subsequent processing.

3 Proposed Method

3.1 Preliminaries

We denote an image space X ⊂ R3×H×W , where H and W are the height
and width, respectively. During the inference phase, the goal for an anomaly
segmentation model f is to map an input image x ∈ X to an anomaly space,
i.e., f : x 7→ Z ⊂ RH×W . Specifically, an anomaly segmentation model typically
consists of the backbone encoder-decoder F and the classifier C. For an input
image x, firstly, its pixel embedding map is encoded as p = F (x) ∈ Rd×H×W ,
where d is the dimension of the pixel embedding. Then, its logit map l is predicted
by l = C (F (x)) ∈ RK×H×W , where K is the number of inlier classes. Note
that, depending on the backbone network, the size of the embedding map and
logit map may sometimes be smaller than the original image. For the sake of
convenience in this paper, we do not make a special distinction. Finally, a scoring
function is used to calculate the anomaly score map z ∈ Z based on the logit
map l.

For anomaly scoring functions, their logic can be represented as follows: when
the predicted logits of a pixel embedding are small across all inlier classes, in-
dicating that the pixel is dissimilar to all inlier classes and is likely an outlier,
the function generates a higher anomaly score. For example, let’s define lh,w (k)
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Fig. 2: Overview. This figure illustrates the application of RWPM to an existing
anomaly segmentation framework during the inference phase. The red dashed box
highlights the RWPM part. First, the encoder-decoder is used to extract the pixel
embedding map of the input image. The pixel embedding map are subsequently parti-
tioned into n2 sub-maps. For each sub-map, we update its pixel embeddings by using
random walks to obtain a refined sub-map. Finally, the refined sub-maps are concate-
nated to form the refined embedding map, which are then input into the subsequent
network structure. Notably, RWPM can be directly integrated into existing frameworks
without requiring extra training or changes to the network structure.

is the logit of a pixel xh,w for class k. The scoring function in PEBAL [37] is
Eh,w = − log

∑
k∈{1···K} exp (lh,w (k)). Obviously, when the anomaly score Eh,w

is large, it indicates that the logits of the pixel across all inlier classes are small,
i.e., the pixel xh,w is dissimilar from all inlier classes (see Section S.2 of the
supplementary material for the analysis of other anomaly scoring functions).

3.2 Graph Construction

We begin by constructing a graph to represent the manifolds of pixel embed-
dings. In our approach, we utilize an affinity matrix based on cosine similarity
to characterize the relationships between pixels. Specifically, we first use the
encoder-decoder component of an anomaly segmentation model to extract the
pixel embeddings p ∈ Rd×H×W . For ease of description and computation, we
reshape the p as pr ∈ RHW×d, where each row represents a pixel’s embedding.
We then normalize each row of pr to obtain p̂r, i.e., p̂r

i = pr
i /∥pr

i ∥. The affinity
matrix is define as W ∈ RHW×HW , where each component is obtained by:

Wij =

{〈
p̂r
i , p̂

r
j

〉
i ̸= j

0 i = j
, (1)

where ⟨·, ·⟩ denotes inner product, Wii = 0 is guaranteed to circumvent self-loops
in the graph represented by W.

To mitigate the influence of noise, locally constrained random walk meth-
ods [24, 40, 41] adopt local constraints to construct the graph, i.e., each point
is only connected to its locally nearest neighbors in the graph. Determining the
nearest neighbors for each point traditionally involves applying nearest neighbor
search algorithms, such as the k-NN algorithm. However, in anomaly segmen-
tation tasks, the size of the graph is large and the graph is constructed online,
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making the search algorithms impractical. To benefit from the local constraints,
we utilize a softmax function to normalize each row of W to obtain locally
constrained graph S:

Sij =

{
exp(Wij/τ)∑HW

i=1,i ̸=j exp(Wij/τ)
i ̸= j

0 i = j
, (2)

where τ is a temperature hyper-parameter, we set its value less than 1.0 to
remove the effect of non-neighbor points. Compared to typical search algorithms,
Eq. 2 can impose local constraints more efficiently and effectively (see Section S.4
of the supplementary material), and keep the scale of embedding in subsequent
random walks.

3.3 Random Walk Process

Now we have constructed the graph S, we can start the random walks. Different
from previous mining on data manifolds works utilizing random walks to prop-
agate the states of known samples to other unknown samples, we use a random
walk to propagate the embedding between pixels on manifolds.

We first define mt ∈ RHW×d as the updated pixel embeddings in the t-th
step of the random walks. m0 is initialized as pr. Then, each iteration step of
the random walks is described as:

mt+1 = αSmt + (1− α)m0, α ∈ (0, 1), (3)

where α is the probability continuing the random walk from the current state
mt, while (1− α) represents the probability of restarting from the initial state
m0. At each iteration, guided by the manifold structure, each pixel diffuses its
embedding to other pixels while also receiving embedding from other pixels for
updating its own embedding. The updated pixel embedding can be seen as a
weighted ensemble of other pixel embeddings. If pixels are similar on manifolds,
their embeddings will gradually become similar. Mathematically speaking, the
whole iteration process can be written as a closed-from as follows [43]:

m∞ = (1− α) (I− αS)
−1

m0, (4)

where I ∈ RHW×HW is an identity matrix. Finally, m∞ is used as the refined
pixel embeddings for the subsequent anomaly segmentation process.

3.4 Partial Random Walk

When the size of the image is large, the size of the relevant matrices used for the
calculation of random walks becomes extremely huge as well. For instance, when
the image size is (512× 1024), the size of matrix S reaches (524288× 524288).
This significantly increases the memory consumption and computational time of
RWPM, which is not conducive to online operation. Unfortunately, in the field
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of autonomous driving, the image size of driving scenes is generally large. To
address this problem, we propose Partial Random Walk, which consists of the
following two aspects: embedding map partitioning and limited iteration.

To improve efficiency, we first propose embedding map partitioning strat-
egy to reduce the size of the pixel embedding map used for random walks.
Specifically, for a pixel embedding map p ∈ Rd×H×W , we equally divide it
into n × n sub-maps

{
p(1), · · · ,p(n2)

}
∈ Rd×H

n ×W
n . Then, for each sub-map

in
{
p(1), · · · ,p(n2)

}
, we follow the steps of Eq. 1 and Eq. 2 to construct their

sub-graphs
{
Sp(1) , · · · ,Sp(n2)

}
∈ Rd×HW

n2 ×HW
n2 . We also attempted other meth-

ods to reduce the number of pixel embeddings, such as resize or superpixel [1].
Experimental results indicate that embedding map partitioning is the optimal
solution among them (see Section 4.2).

Next, for each sub-map p(i), we perform random walks with the limited iter-
ation strategy in their corresponding sub-graphs Sp(i) . That is, we use Eq. 3 for
a small number of iterations instead of using the closed-form Eq. 4. We found
that a few iterations by using Eq. 3 are enough to yield high quality results. The
time complexity of Eq. 3 with T iterations for each sub-map is O(Td(HW

n2 )2),
while the time complexity of Eq. 4 is O((HW

n2 )3) + O(d(HW
n2 )2). Since Td is

much smaller than HW
n2 , the limited iteration strategy can significantly improve

the efficiency of RWPM. After the random walks, we obtain the refined pixel
embeddings sub-map mT

p(i) for each sub-map p(i). Finally, we concatenate the
refined sub-maps based on their positions to obtain the final refined pixel em-
bedding map. Additionally, When n is large (observed experimentally as n > 2),
due to spatial constraints, the baseline values of anomaly scores outputted on
each sub-map may vary. Hence, a calibration is performed. For adjacent refined
sub-maps p(i)′ and p(j)′ , we compute the average anomaly scores I and J of
all pixels on their adjacent edges, respectively. Subsequently, using p(i)′ as the
reference, we calculate the ratio I

J , and then multiply all anomaly scores on
sub-map p(j)′ by this ratio to achieve the calibration.

Fig. 2 shows the workflow of the proposed RWPM.

4 Experiment

Dataset: We evaluate our approach on three standard benchmark datasets for
anomaly segmentation, i.e., Fishyscapes Lost&Found [5], Road Anomaly [31]
and Segment Me If You Can (SMIYC) [6]. Fishyscapes Lost&Found has 100 val-
idation images. The domain of this dataset is similar to that of Cityscapes [13]
dataset. Road Anomaly dataset contains 60 images of real-world road scenes. Un-
like the Fishyscapes Lost&Found dataset, the images in Road Anomaly contain
various classes and sizes of anomaly objects, making it more challenging. SMIYC
consists of two subsets, Anomaly track and Obstacle track. The Anomaly track
focuses on detecting large anomalous objects, while the Obstacle track empha-
sizes detecting small anomalous objects on the road. Anomaly track contains 10
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validation images and 100 online test images, while Obstacle track contains 30
validation images and 327 online test images. The Road Anomaly and SMIYC
datasets both exhibit high domain shifts compared to the Cityscapes dataset.
Evaluation Metrics: Following the previous works, we evaluate our method on
the standard metrics for anomaly segmentation. On the Fishyscapes Lost&Found
and Road Anomaly, we adopt the the area under receiver operating character-
istics (AUROC), average precision (AP), and the false positive rate at a true
positive rate of 95% (FPR95). On the SMIYC, in addition to reporting per-pixel
metrics such as AP and FPR95, we also calculate results for component-level
metrics [6] such as the component-wise intersection over union (sIoU), positive
predictive value (PPV), and mean F1.
Implementation Details: To demonstrate the effectiveness of RWPM for
anomaly segmentation methods, we selected representative methods from both
pixel-based and mask-based networks. For pixel-based methods, we chose PE-
BAL [37] and Balanced Energy [12]. These methods all utilize DeepLabv3+ [9]
with WideResnet38 as the backbone and were trained on the Cityscapes dataset
and COCO OE images [37]. For mask-based methods, we selected RbA [34] and
Mask2Anomaly [36]. These methods use Mask2Former [10] with Swin-L [33] as
the backbone and were also trained on the Cityscapes and COCO OE images.
All experiments are conducted on a single NVIDIA RTX A6000 GPU. To ensure
efficient implementation on a single GPU for all experiments, we adopt embed-
ding map partitioning and limited iteration in all experiments. Specifically, for
pixel-based methods, we set the partitioning parameter n = 4. For mask-based
methods, as their embedding map size is smaller, we set n = 2. Additionally, for
the random walk, if not specifically emphasized, we set the number of iterations
T = 20/T = 5 for the Road Anomaly/the other datasets and the transition
probability α = 0.99 for all datasets. The τ is set as 0.01. It is important to note
that our method is used in the inference phase. In other words, RWPM is di-
rectly applied to the pre-trained models of other existing anomaly segmentation
methods, thus requiring no additional training.

4.1 Effectiveness of RWPM

First, to validate that RWPM can improve the performance of existing anomaly
segmentation methods, we integrate our approach with four recent representa-
tive methods, namely PEBAL [37], Balanced Energy [12], Mask2Anomaly [36]
and RbA [34]. PEBAL and Balanced Energy employ pixel-based networks as
their backbones, whereas Mask2Anomaly and RbA utilize mask-based networks
as their backbones. We evaluate the results on both the Fishyscapes Lost&Found
validation set and Road Anomaly test set. The experimental results are reported
in Table 1. These results demonstrate that our proposed RWPM consistently and
significantly enhances the performance of existing anomaly segmentation meth-
ods, across different backbone architectures. Additional results and parameters
details are shown in Section S.3 of the supplementary material.
2 We carefully reproduce the experiments by using the official code.
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Table 1: Comparison with strong and representative anomaly segmentation base-
lines across different backbone Architectures (Arch). Bold denotes the better results
between using RWPM and not using RWPM with the same anomaly segmentation
baselines. † indicates that use the calibration in sub-map concatenation as described
in Section 3.4.

Benchmark→ Fishyscapes Lost&Found Road Anomaly

Method ↓ Arch AuROC↑ AP↑ FPR95↓ AuROC↑ AP↑ FPR95↓

PEBAL [37] Pixel-based 98.96 58.81 4.77 87.63 45.10 44.58
PEBAL + RWPM† (Ours) Pixel-base 99.20 66.85 3.68 89.48 50.29 36.81

Balanced Energy [12] Pixel-based 99.03 67.07 2.93 88.31 41.48 41.46
Balanced Energy + RWPM† (Ours) Pixel-base 99.29 72.95 2.38 90.51 48.26 32.10

Mask2Anomaly2 [36] Mask-based 95.47 65.27 7.79 96.54 80.04 13.95
Mask2Anomaly + RWPM (Ours) Mask-base 95.48 65.38 7.33 97.44 80.09 7.45

RbA [34] Mask-based 98.62 70.81 6.30 97.99 85.42 6.92
RbA + RWPM (Ours) Mask-base 98.82 71.16 6.12 98.04 87.34 5.27

Table 2: Comparison with state-of-the-art anomaly segmentation methods across dif-
ferent backbone Architectures (Arch). Bold and underline denote the best and the
second best results, respectively.

Benchmark→ Fishyscapes L&F Road Anomaly Anomaly Track Obstacle Track Average

Method ↓ Arch AP↑ FPR95↓ AP↑ FPR95↓ AP↑ FPR95↓ AP↑ FPR95↓ AP↑ FPR95↓

Synboost [15] (CVPR’21) Pixel-based 60.58 31.02 41.84 59.72 56.44 61.86 71.34 3.15 57.46 38.94
SML [26] (ICCV’21) Pixel-based 22.74 33.49 25.82 49.47 46.8 39.5 3.4 36.8 24.69 39.82
Meta-OOD [7] (ICCV’21) Pixel-based 41.31 37.69 48.84 31.77 85.47 15.00 85.07 0.75 65.13 21.30
Learning Embedding [5](IJCV’21) Pixel-based 4.65 24.36 - - 37.52 70.76 0.82 46.38 - -
Void Classifier [5](IJCV’21) Pixel-based 10.29 22.11 - - 36.61 63.49 10.44 41.54 - -
GMMSeg-DL [28] (NeurIPS’22) Pixel-based 43.47 13.11 34.42 47.90 - - - - - -
DenseHybrid [18] (ECCV’22) Pixel-based 69.79 5.09 31.39 63.97 77.96 9.81 87.08 0.24 65.56 19.78
PEBAL [37] (ECCV’22) Pixel-based 58.81 4.77 45.10 44.58 49.14 40.82 4.98 12.68 39.58 25.71
Balanced Energy [12] (CVPR’23) Pixel-based 67.07 2.93 41.48 41.46 - - - - - -
RPL-CoroCL [32] (ICCV’23) Pixel-based 70.61 2.52 71.61 17.74 83.49 11.68 85.93 0.58 77.91 8.13
Mask2Anomaly [36] (ICCV’23) Mask-based 69.44 9.22 80.04 13.95 88.62 14.57 93.10 0.20 82.87 9.49
M2F-EAM [19] (CVPRW’23) Mask-based 52.03 20.51 66.67 13.42 76.3 93.9 66.9 17.9 65.48 36.43

RbA [34] (ICCV’23) Mask-based 70.81 6.30 85.42 6.92 90.86 11.59 91.85 0.46 84.73 6.33
RbA + RWPM (Ours) Mask-based 71.16 6.12 87.34 5.27 92.00 10.15 93.30 0.28 86.00 5.46

Second, to further demonstrate the effectiveness of our RWPM, we compare
it with other state-of-the-art (SOTA) methods. Specifically, we adopt the com-
bination of RbA with RWPM as our instance approach for the comparison. In
addition to the Fishyscapes and Road Anomaly datasets, we also evaluate our
approach on a more challenging dataset, i.e., SMIYC online test set (Anomaly
track and Obstacle track). SMIYC is characterized by its high domain shift and
diversity of objects. Table 2 presents the results. The results indicate that our
method can consistently achieve high performance across various datasets, while
the previous SOTA methods fail to do so. We also compare all approaches by
computing the average results of AP and FPR95. The results shows that our
approach outperforms the previous methods and achieve the best results.

Furthermore, in addition to pixel-level metrics, we also utilize component-
level metrics [6] to evaluate performance on the SMIYC online test set. Compared
to pixel-level metrics, component-level metrics provide a better evaluation of the
detection results for all anomalous objects in the scene. We report the results
in Table 3. The experimental results show that RWPM significantly improves
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the performance of RbA in component-level metrics, surpassing other existing
SOTA methods by a large margin. This indicates that RWPM can assist models
in better detecting anomalous objects and achieving more precise localization of
these anomalies [6].

Table 3: Component level evaluation: Comparison with state-of-the-art anomaly seg-
mentation methods on the SMIYC online test set. Bold denote the best results.

Benchmark→ Anomaly Track Obstacle Track

Method ↓ Arch sIoU ↑ PPV↑ mean F1↑ sIoU ↑ PPV↑ mean F1↑

Synboost [15] (CVPR’21) Pixel-based 34.68 17.81 9.99 44.28 41.75 37.57
SML [26] (ICCV’21) Pixel-based 26.00 24.70 12.20 5.10 13.30 3.00
Meta-OOD [7] (ICCV’21) Pixel-based 49.31 39.51 28.72 47.87 63.64 48.51
Void Classifier [5](IJCV’21) Pixel-based 21.14 22.13 6.49 6.34 20.27 5.41
Learning Embedding [5](IJCV’21) Pixel-based 33.86 20.54 7.90 35.64 2.87 2.31
JSRNet [38] (ICCV’21) Pixel-based 20.20 29.27 13.66 18.55 24.46 11.02
DenseHybrid [18] (ECCV’22) Pixel-based 54.17 24.13 31.08 45.74 50.10 50.72
PEBAL [37] (ECCV’22) Pixel-based 38.88 27.20 14.48 29.91 7.55 5.54
RPL-CoroCL [32] (ICCV’23) Pixel-based 49.76 29.96 30.16 52.61 56.65 56.69
Mask2Fromer [36] (ICCV’23) Mask-based 25.20 18.20 15.30 5.00 21.90 4.80
Maskomaly [2] (BMVC’23) Mask-based 55.4 51.6 50.0 - - -

RbA [34] (ICCV’23) Mask-based 55.69 52.14 46.80 58.36 58.78 60.85
RbA + RWPM (Ours) Mask-based 57.00 61.25 58.44 58.89 72.51 69.85

4.2 Ablation Study

If not specifically emphasized, all the results reported in this section are con-
ducted on a RTX A6000 GPU.
The effect of the partitioning parameter n and calibration: We first test
the effect of the embedding map partitioning parameter n and the calibration,
and we report the results in Table 4. FPS denotes the frames-per-second results.
Row n = 1 displays the RWPM results without utilizing the embedding map par-
titioning strategy, indicating significant computational and memory overhead.
However, the partitioning strategy (n = 2, 4, 8) significantly improves the run-
ning speed and reduces memory consumption while maintaining effectiveness.
Additionally, as n increases, the running efficiency also improves, albeit with
a slight decrease in performance. However, when n > 2, the calibration can
enhance the performance, particularly for the FPR95 metrics.
The effect of iteration number T : Table 5 shows that, compared to using
Eq. 4 (T = ∞), utilizing the limited iteration strategy (T = 5 ∼ 100) can lead to
higher efficiency, resulting in even better performance for RWPM. Additionally,
as the number of iterations increases, performance tends to improve, but running
efficiency (FPS) decreases accordingly.
Different strategies for reducing the number of pixel embedding: We
also attempt other strategies to reduce the number of pixel embedding for
RWPM, such as resizing the embedding map or use SLIC [1] algorithm to ex-
tract superpixels. Table 6(Left) presents the results. The resize strategy achieves
good performance but requires preserving a larger map size. Therefore, it fails
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Table 4: The effect of the partitioning parameter n and calibration. We set T = 20
for all experiments. † indicates that use the calibration in sub-map concatenation.

Benchmark→ Road Anomaly

AP↑ FPR95↓ FPS↑ GPU Memory Usage↓

RbA w/o RWPM 85.42 6.92 11.12 3.49GiB

n=1 (two GPUs) 87.90 5.17 0.32 74.96GiB

n=2 87.34 5.27 2.04 7.24GiB
n=2† 87.18 5.25 2.04 7.24GiB

n=4 87.05 6.31 4.35 3.49GiB
n=4† 87.17 5.32 4.35 3.49GiB

n=8 86.67 6.42 6.26 3.55GiB
n=8† 86.91 5.41 6.26 3.55GiB

Table 5: The effect of iteration number T . We set n = 2 for all experiments.

Benchmark→ Road Anomaly

AP↑ FPR95↓ FPS↑ GPU Memory Usage↓

RbA w/o RWPM 85.42 6.92 11.12 3.49GiB

T=∞ 87.51 5.24 0.29 8.88GiB

T=5 86.89 5.98 3.70 7.24GiB
T=10 87.08 5.77 2.78 7.24GiB
T=20 87.34 5.27 2.04 7.24GiB
T=50 87.36 5.08 0.92 7.24GiB
T=100 87.54 5.02 0.50 7.24GiB

to substantially reduce the number of pixel embeddings, resulting in significant
GPU memory usage. On the other hand, the superpixel strategy requires a con-
siderable amount of runtime for the superpixel extraction. In comparison, our
proposed partitioning strategy can achieve good results with higher efficiency
and lower resource consumption. This makes it more suitable for applications on
practical platforms.
In-distribution segmentation performance on Cityscapes validation
set: We report the results on the Cityscapes validation set in Table 6(Right). All
methods use Mask2Former [10] as their backbones. We observe that most SOTA
methods affect the in-distribution segmentation performance of Mask2Former,
such as RbA (drop from 82.25 to 81.93). However, RWPM can alleviate this
problem. Additionally, even for the SOTA segmentation method (Mask2Former),
RWPM can further enhance its in-distribution segmentation performance.

Table 6: Ablation Tables: (Left) shows the results of different strategies for re-
ducing the number of pixel embedding. We find that partitioning is the best. (Right)
shows the segmentation performance on the Cityscapes validation set. RWPM can also
improve the segmentation performance of in-distribution.

Benchmark→ Road Anomaly

Strategy↓ AP↑ FPR95↓ FPS↑ Memory

Resize (0.9 full size) 87.80 5.39 1.41 23.82GiB
Resize (0.8 full size) 87.24 5.44 2.15 15.98GiB

Superpixel (30000 pixels) 87.51 5.50 0.19 11.46GiB
Superpixel (20000 pixels) 87.03 5.98 0.32 6.31GiB

Partitioning (n = 2) 87.34 5.27 2.04 7.24GiB

Benchmark→ Cityscapes

Method↓ mIoU↑

PEBAL-Mask [34] 75.32
DenseHybrid-Mask [34] 80.27

RbA [34] 81.93
RbA+RWPM(Ours) 82.16

Mask2Former [10] 82.25
Mask2Former+RWPM(Ours) 82.43
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4.3 Visualization of Pixel Embedding Distribution

To investigate the effect of RWPM in the embedding space, we visualized the
distribution of pixel embeddings by using t-SNE. We selected an image from the
Road Anomaly dataset (as shown in Fig 3(a)). Due to the gravel road surface in
this image, there is a significant domain gap between the road in this image and
the roads in the training set, resulting in many false positives on the road (as
shown in the PEBAL results in Fig 3(a)). Then, we randomly selected 300 inlier
pixels and 150 outlier pixels from the red dashed box region of this image for
visualization. Fig 3(b) and Fig 3(c) respectively show the distributions of these
pixels in the space without and with applying RWPM. In Fig 3(b) and Fig 3(c),
deep blue circles represent inlier pixels (road), light blue circles represent out-
lier pixels (boar), and X symbols represent the inlier class prototype (the vector
of network weights of classifier). From Fig 3(b), we observe that without using
RWPM, due to the influence of data diversity, the distribution of inliers and out-
liers is distorted. Consequently, it is difficult for an anomaly scoring function to
distinguish between inlier and outlier pixels based on their logits. However, from
Fig 3(c), we find that RWPM can significantly alleviate the problem. Specifically,
the pixel embeddings of the same category form more compact clusters, enabling
the anomaly scoring function to clearly discriminate between inliers and outliers
based on the logit. This is consistent with the description in the toy sample in
Fig 1. Note that, in the top left corner of Fig 3(c), some inlier points become
very close to outlier points after applying RWPM. This is because these points
are located in the boundaries of anomalous objects, making it very difficult to
discriminate them.

PEBAL PEBAL+RWPM
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Sample Image (b) Distribution w/o RWPM (c) Distribution with RWPM

Fig. 3: The visualization of pixel embedding distribution. All embeddings are
extracted from PEBAL model. We use cosine distance as the distance metric. We
observed that RWPM can optimize the distribution of pixel embeddings in the space.

4.4 Qualitative Result

Finally, to visually demonstrate the effectiveness of RWPM, we present qualita-
tive results. Specifically, we compare the results of RbA on the Road Anomaly
dataset without and with RWPM. The qualitative results are illustrated in Fig 4.
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Fig 4 shows that RWPM significantly improves the performance of RbA, reduc-
ing both the false positive rate and false negative rate. For example, in the first
row, RbA generates some false positive results on the road and some false nega-
tive results on the manhole region (third column of the first row). However, after
applying RWPM, these false positive/negative results are effectively eliminated
(fourth column of the first row). Additionally, RWPM assists the RbA model
to accurately detect and localize each anomalous object at the component level,
such as more precise edge detection. This observation aligns with the results of
the component-level metrics presented in Table 3.

Input Ground Truth RbA RbA+RWPM(Ours)

RbA+RWPM(Ours)RbAInput Ground Truth

RbA+RWPM(Ours)RbAInput Ground Truth

Fig. 4: Qualitative results: The first column displays the input image, while the
second column shows its corresponding ground truth. The third column displays the
anomaly score results generated by RbA, and the fourth column presents the anomaly
score results after applying RWPM to RbA. Yellow indicates high anomaly scores.

5 Conclusions and Discussions

In this paper, we propose a simple yet effective method, called Random Walk
on Pixel Manifolds (RWPM), to improve the performance of existing anomaly
segmentation methods. RWPM is a post-processing method that can be directly
integrated into existing anomaly detection frameworks without requiring addi-
tional training or modifications to the network structure. RWPM mitigates the
impact of data diversity on manifold structure by diffusing and updating pixel
embeddings on pixel manifolds using random walk. This process enables anomaly
scoring functions to obtain more accurate estimations of anomaly scores. Addi-
tionally, we propose Partial Random Walk strategy, which significantly improve
the efficiency of RWPM.

While RWPM achieves significant results in most cases, it is limited when
the pre-trained model itself exhibits significant inaccuracies. To address this
limitation, we plan to enhance the model’s generalization ability during training
to accurately detect a broader range of diverse and unknown anomalies.
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