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Supplementary

A CaDeX++ and Canonical Space

We implemented the temporal feature grid  l(i) in three resolutions: T/20, T/4,
and 13T/20, where T is the number of frames. Each resolution has a feature
dimension of 16. For the spatial feature grid �l(x, y), we implemented 2 resolu-
tions 12 and 96, with feature dimensions 32 for each resolution. 2 hidden layers
are set for the tiny MLP. We perform ablation studies on DAVIS [26] scenes:
breakdance, bmx-trees, libby, parkour, and blackswan.

The tiny MLP predicts the positive incremental bias of the control points as
[(�↵1,��1)...(↵B ,��B)] together with the positive outlier slope kl, kr. We di-
vide the incremental bias into two sets {(�↵i

N ,��i
N )}B/2

i=1 and {(�↵i
P ,��

i
P )}

B/2
i=1

to generate the control points with negative and positive ↵ values. For the control
points with negative ↵ values, their coordinates are computed as:

(↵k
N ,�k

N ) = �(
kX

i=1

�↵i
N ,

kX

i=1

��i
N ) (13)

While the control points with positive ↵ values are aggregated as:
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For the input that lies outside the left-most or right-most control point (↵m,�m),
we compute the output as:

z0 = km(z � ↵m) + �m (15)

where km is the outlier slope.
Although introducing CaDeX++ will not improve the accuracy substantially,

it significantly accelerates the fitting as shown in the main paper Fig. 6 (2 times
faster). Due to the efficient design, the average memory consumption while using
CaDeX++ is 2752 MB, compared to 9240 MB for the version without it. We
agree that the multiplication of spatial-temporal features is a feasible option
and we further study it. However, the ablation study in Tab. 5 shows a slight
performance decrease.

While OmniMotion adopts an implicit NeRF-like representation of the shared
canonical space over the scene, our design replaces it with an explicit set of points
that are consistently aligned via supervision. We warp and merge the points
from different frames to the canonical space and observe a relatively consistent
reconstruction as shown in Fig. 9. Such a design significantly accelerates the
fitting by avoiding expensive volume rendering and the ambiguities inherent
in alpha blending. Furthermore, the canonical space representation can also be
coupled with other feature-render methods like 3D Gaussian splatting, which
may be explored in future work.



CaDeX++ 19

Fig. 9: The panorama-like canonical space points of the soapbox scene.

B Preparing Long-term Correspondence

During training, we sample the flow for each query frame among a neighborhood
of 12 frames and search for long-term correspondence outside a neighborhood of
10 frames. Coarse correspondences are computed on the low-resolution feature
maps of DINOv2 [25]. We applied three strong filters to remove noise and keep
representative matches.

– Mutual Maximum. For a matched pair (pi, pj) of two frames Fi, Fj , the
best matching of pi in frame Fj should be pj and vice versa:

argmax
pi2Fi

Shargmax
pj2Fj

Shpk, pji, pii = pk, pk 2 Fi (16)

where Shpi, pji denotes the cosine similarity between the feature of points
pi, pj . We only choose the pairs that have similarity over ✓m = 0.75.

– Background Filter. For a point pk in a matched pair, we compute the
similarity between pk with all other points in its feature map. Then we
count the number of similar points beyond a threshold of ✓s. We keep the
points that have less than Ns similar points. We set ✓s = 0.55 and Ns = 100.

X

pi2Fi

1(Shpk, pki > ✓s) < Ns (17)

– Local Noise Filter. For a point pk in a matched pair, we compute the
similarity among its 11 ⇥ 11 neighbor points M(pk) and sum up all the
similarity. We choose the points with total local similarity larger than ✓l =
30.

X

pi2M(pk)

Shpi, pki > ✓l (18)
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Fig. 10: Qualitative comparison of ablation configurations.

Table 5: Further ablation experiment results.

Configuration AJ " �xavg " OA " TC #

Fixed Depth 42.5 58.4 76.8 3.71
Random Init Depth - - - -
Noisy Depth±0.2 46.6 64.0 76.8 2.91
Noisy Depth±0.5 - - - -
UniDepth 48.0 64.4 80.9 1.42
GMflow 44.2 58.9 77.6 1.432
Noisy Flow±5pix 46.7 62.3 78.0 1.44
Noisy Flow±10pix 42.8 57.7 77.5 1.655
Feature Multiplication 46.5 63.3 77.9 1.296

Full (reported in main paper) 48.6 65.7 80.1 1.14

C Further Experiments

Qualitative results demonstrated in Fig. 10 prove that the introduction of the
depth prior makes the tracking of points within the same instance more concen-
trated and less prone to dispersion. Besides, without long-term supervision, our
method fails to handle large and frequent occlusions across time.

We conducted ablation experiments on different depth map configurations:
(1) Fixed Depth: Disabling optimizable depth. (2) Random Init Depth: Initial-
izing the depth maps from random noise. (3) Noisier Depth: Adding varying
magnitudes of uniform noise to the initial depth maps. As shown in Tab. 5,
fixing the depth maps limits the performance. The optimization diverges(rows
2 and 4 in Tab. 5) on randomly initialized or extremely noisy depth maps. Al-
though slight noise in depth initialization hardly affects tracking precision, it is
the prime factor affecting the robustness of tracking.

We adopt other SOTA depth and optical flow priors (UniDepth, GMflow) to
explore the essence of our method as shown in Tab. 5 rows 5 and 6. Based on
the result shown in Tab. 5, we find that the quality of optical flow is the primary
determinant of tracking precision, while the depth prior significantly impacts the
robustness.
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We further measure the optimization magnitude on the DAVIS dataset.
Tab. 6 shows the average mean and max pixel optimization magnitude, along
with their ratio over the depth range. The visualization of the magnitude is
illustrated in Fig. 11.

Table 6: Depth Optimization Magnitude

mean max

mag 0.053 2.844
ratio% 0.93 50.22

1.94

0

Fig. 11: Depth optimization visualization

D Optimization-based vs feed-forward

While the SOTA feed-forward methods pre-trained on large datasets with plenty
of computing are still relatively expensive for inference, we admit that their
inference time is faster than our fitting time. However, feed-forward methods rely
on the assumption that the training prior distribution generalizes to the testing
situation. As shown in Tab.3 and Fig. 7 of our main paper, this assumption does
not always hold, leading to failures in methods like CoTracker. In such cases, our
optimization-based method proves to be more reliable. In other words, we believe
an efficient optimization-based approach remains valuable for the community to
build more robust systems when the inference runs out of distribution. We also
would like to highlight that once trained, inference of the track of any pixel at
any time with our method reaches near-instantaneous speed.

E Optimization Based on CoTracker

We utilizes the output of CoTracker as part of our training supervision for each
scene. The optimization result on DAVIS dataset is shown in Tab. 7.

Table 7: Result of optimization on DAVIS with CoTracker output.

Method DAVIS [26]

AJ" �xavg " OA" TC #

CoTracker [14] 65.1 79.0 89.4 0.93
Ours 62.2 80.0 86.8 0.69
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