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Abstract. Though diffusion-based video generation has witnessed rapid
progress, the inference results of existing models still exhibit unsatisfac-
tory temporal consistency and unnatural dynamics. In this paper, we
delve deep into the noise initialization of video diffusion models, and
discover an implicit training-inference gap that attributes to the unsat-
isfactory inference quality. Our key findings are: 1) the spatial-temporal
frequency distribution of the initial noise at inference is intrinsically dif-
ferent from that for training, and 2) the denoising process is signifi-
cantly influenced by the low-frequency components of the initial noise.
Motivated by these observations, we propose a concise yet effective in-
ference sampling strategy, FreeInit, which significantly improves tem-
poral consistency of videos generated by diffusion models. Through it-
eratively refining the spatial-temporal low-frequency components of the
initial latent during inference, FreeInit is able to compensate the initial-
ization gap between training and inference, thus effectively improving
the subject appearance and temporal consistency of generation results.
Extensive experiments demonstrate that FreeInit consistently enhances
the generation results of various text-to-video generation models without
additional training.
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1 Introduction

Recently, diffusion models have demonstrated impressive generative capabili-
ties in text-to-image generation [31, 32, 35]. These advancements have attracted
substantial attention, highlighting the potential of creating diverse and realistic
images based on textual descriptions. In light of these achievements, researchers
are now exploring the application of diffusion models in text-to-video (T2V)
generation [1,4,10,12,13,36,45,46,50,51], with the goal of synthesizing visually
appealing and contextually coherent videos from textual descriptions. Most of
these video diffusion models are built upon powerful pretrained image diffusion
models, e.g ., Stable Diffusion (SD) [32]. Through the incorporation of temporal
layers and large-scale training on extensive video datasets, these models are ca-
pable of generating video clips that align with the given text prompts. Despite
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Fig. 1: FreeInit for Video Generation. We propose FreeInit, a concise yet effective
method to significantly improve temporal consistency of videos generated by diffusion
models. FreeInit requires no additional training and introduces no learnable parameters,
and can be easily incorporated into arbitrary video diffusion models at inference time.

these advancements, the videos generated by these models often suffer from is-
sues related to temporal inconsistency and unnatural dynamics.

In this paper, we delve into the impact of noise initialization on video gener-
ation, identifying a significant disparity between the training and the inference
process. Specifically, we find that the diffusion process fails to fully corrupt the
clean latent into pure Gaussian noise, especially in the low-frequency band. To
illustrate this, Figure 2 shows the frames decoded from noisy latent during the
diffusion process, alongside a spatio-temporal frequency decomposition to as-
sess the extent of corruption across different frequency bands. Remarkably, the
corruption of low-frequency components occurs at a notably slower rate than
that of the high-frequency components. As a result, the noisy latent at the final
diffusion step (t=1000) will still contain considerable low-frequency information
from the input video. Since the real video frames are temporally correlated in
nature, this information leakage eventually leads to an implicit gap between
training and inference: at training, the initial noises corrupted from real videos
remain temporally correlated at low-frequency band, while during inference, the
i.i.d Gaussian initial noise is entirely uncorrelated. Furthermore, we discover
that these low-frequency components can substantially impact the quality of
the generated videos, as revealed in our observations in Figs. 5 and 6. Thus,
when applying the diffusion models trained with the correlated initial noises to
non-correlated Gaussian initial noise at inference, the performance deteriorates,
exhibiting unsatisfactory temporal consistency and unnatural motions.
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Fig. 2: Visualization of Decoded Noisy Latent from Different Spatio-
Temporal Frequency Bands at Training. (a) Video frames decoded from the entire
frequency band of the noisy latent zt in DDPM Forward Process. (b) Frames decoded
from the low-frequency components of zt. It is evident that the diffusion process has
difficulty in fully corrupting the semantics, leaving substantial spatio-temporal corre-
lations in the low-frequency components. (c) Frames decoded from the high-frequency
components of zt. Each frame degenerates rapidly with the diffusion process.

Motivated by these observations, we propose a novel inference-time sampling
method, denoted as FreeInit , to bridge the initialization gap between training
and inference without any additional training or fine-tuning. Specifically, during
the inference process, we first initialize an independent Gaussian noise, which
then undergoes the DDIM denoising process to generate a clean video latent.
Subsequently, we obtain a noisy version of the clean video latent through the
forward diffusion process. Since this noisy latent is obtained from the denoised
latent rather than pure noise, its low-frequency components have improved tem-
poral consistency. With this noisy latent, we proceed to reinitialize the noise by
combining its low-frequency components with the high-frequency components
from a random Gaussian noise using spatio-temporal frequency filter. Finally,
this reinitialized noise serves as the starting point for a new round of DDIM
sampling. By iterating this refinement process several times, the initial noise at
inference is gradually guided towards the training distribution, facilitating the
generation of frames with enhanced temporal consistency and visual appearance.

Extensive experiments across diverse evaluation prompt sets demonstrate the
steady enhancement brought about by FreeInit for various text-to-video genera-
tion models. As illustrated in Fig. 1, FreeInit plays a significant role in improv-
ing temporal consistency and the visual appearance of generated frames. This
method can be readily applied during inference without the need for parameter
tuning. Furthermore, to achieve superior generation quality, the frequency filter
can be conveniently adjusted for each customized base model. We summarize
our contributions as follows:

– We systematically investigate the noise initialization of video diffusion mod-
els, and identify an implicit training-inference gap that contributes to the
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inference quality drop. To our knowledge, we are the first to study the impact
of initial noise on video diffusion models from the frequency domain.

– We propose a concise yet effective sampling strategy, referred to as FreeInit,
which iteratively refines the initial noise without the need for additional
training or fine-tuning.

– Extensive quantitative and qualitative experiments demonstrate that FreeInit
can be effectively applied to various text-to-video models. It consistently im-
proves the inference quality of generated videos.

2 Related Work

Video Generative Models. There are mainly three types of video gener-
ation models, namely GAN-based [8], transformer-based [43], and diffusion-
based [14]. StyleGAN-V [37], MoCoGAN-HD [42], and [2] utilize the powerful
StyleGAN [19–21] to generate videos. Transformer-based models [16,18,44,47,48]
such as Phenaki [44], CogVideo [16], and NÜWA [48] encode videos as visual
tokens and train transformer models to auto-regressively generate the visual to-
kens. Recently, diffusion models [5, 14, 38, 40] have made remarkable progress
in text-to-image generation [26, 28, 32, 35], and have enabled a line of works
that extends these pre-trained diffusion models towards text-to-video genera-
tion [1, 7, 10–13,15,22, 25, 36, 45, 46, 50–52]. In this work, our method is built on
top of diffusion-based text-to-video methods. We propose to iteratively refine
the initial noise to improve temporal consistency of pre-trained video diffusion
models. We demonstrate the effectiveness of our method on various diffusion
models, including VideoCrafter, ModelScopeT2V (denoted as ModelScope), and
AnimateDiff. VideoCrafter [12] employs the pre-trained text-to-image model Sta-
ble Diffusion [32] and incorporates newly initialized temporal layers to enable
video generation. ModelScope [45] also initializes the spatial part from Stable
Diffusion and adds spatio-temporal block to learn temporal dependencies. An-
imateDiff [10] trains motion modeling modules and inserts them into person-
alized text-to-image diffusion models to achieve animated videos of customized
concepts, e.g ., characters, styles, etc.
Noise in Diffusion Models. Only a few previous works have mentioned the
limitations of the noise schedule of current diffusion models. In the image do-
main, [23] points out common diffusion noise schedules cannot fully corrupt
information in natural images, limiting the model to only generate images with
medium brightness. A rescaled training schedule is then proposed to alleviate
this problem through fine-tuning. Recently, [6] makes further discussions on the
signal leakage issue, and propose to explicitly model the signal leakage for better
inference noise distribution, which produces images with more diverse brightness
and colours. A resampling operation similar to our iterative refinement strat-
egy is proposed in [24] to harmonize the inpainted image across full inference
timesteps. Different from this, we tackle the initialization problem and explore
in frequency-domain to improve temporal consistency. In the video domain, PY-
oCo [7] carefully designs the progressive video noise prior to achieve a better
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video generation performance. Similar to [23], PYoCo also focuses on the noise
schedule at training stage and requires massive fine-tuning on video datasets. In
contrast, we focus on the initial noise at inference stage and proposes a concise
inference-time sampling strategy that bridges the training-inference discrepancy
with no fine-tuning required. Some recent works [9,29] also pay attention to the
inference initial noise, but aiming at generating long videos. We instead focus on
improving inference quality, and further design specific frequency-domain-based
operations to modulate different frequency components of the initial noise.

3 Preliminaries and Observations

3.1 Preliminaries

Similar to image diffusion models, training video diffusion models also involve
a diffusion process and a denoising process, and operate in the latent space of
an autoencoder. The diffusion process includes a sequence of T steps. At each
step t, Gaussian noise is incrementally added to the video latent z0, following a
predefined variance schedule β1, . . . , βT :

q(z1:T |z0) =
T∏

t=1

q(zt|zt−1), (1)

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI). (2)

Let αt = 1− βt, αt =
∏t

s=1 αs:

q(zt|z0) = N (zt;
√
αtz0, (1− αt)I). (3)

As a result, the noisy latent zt at each timestep t can be directly sampled as:

zt =
√
αtz0 +

√
1− αtϵ, (4)

where ϵ ∼ N (0, I) is a Gaussian white noise with the same shape as zt.
In the reverse process, the network learns to recover the clean latent z0 by

iterative denoising with U-Net [33], starting from the initial noise zT :

pθ(z0:T ) = p(zT )

T∏
t=1

pθ(zt−1|zt), (5)

pθ(zt−1|zt) = N (zt−1;µθ(zt, t), Σθ(zt, t)), (6)

where µθ and Σθ are predicted by the denoising U-Net ϵθ.
During inference, an initial latent ẑT is first initialized, typically as a Gaussian

noise sampled from normal distribution:

ẑT = ϵ′ ∼ N (0, I). (7)

Then the trained network ϵθ is used to iteratively denoise the noisy latent to a
clean latent ẑ0 through DDIM sampling [39], which is then decoded with decoder
D to obtain video frames x̂0.
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Fig. 3: Signal-to-Noise Ratio (SNR)
of different frequency bands at the
forward diffusion process. Each curve
corresponds to a spatio-temporal fre-
quency band of the latent code zt when
adding noise at training. The pattern in-
dicates a much slower corruption on low-
frequency components.

Fig. 4: Frequency Distribution of
the SNR in the initial noise. When
training with the typical Stable Diffusion
Noise Schedule, the SNR of the initial
noise is extremely high in low-frequency
components, even larger than 0 dB (red
circle). This indicates a severe informa-
tion leak at the low-frequency band.

3.2 The Initialization Gap

Information Leakage at Training. At training stage, the network learns
to denoise the corrupted latent obtained from the forward diffusion process.
However, we find the commonly used diffusion strategy has difficulty in fully
corrupting information from real videos, especially in their spatio-temporal low-
frequency band. To better demonstrate this phenomenon, we utilize Signal-to-
Noise Ratio (SNR) to measure the amount of preserved information at the for-
ward diffusion process. Fig. 3 shows the SNR measurements of the noisy latent
zt (as defined in Eq. (4)) corrupted from a random video clip using Stable Dif-
fusion noise schedule. The figure reveals an obvious pattern wherein the low-
frequency components (blue-green curve) exhibit a significantly slower corrup-
tion rate compared to the high-frequency components (red curve), which aligns
with our observation in Fig. 2. Furthermore, we analyze the average SNR dis-
tribution of the initial noises zT (T=1000) on UCF-101, and find that the SNR
in low-frequency band is even larger than 0 dB, indicating a severe leakage of
low-frequency information into the initial noise (Fig. 4).

These observations demonstrate the existence of an implicit gap between
the training and inference processes. Specifically, the noise introduced during
training is insufficient to completely corrupt video information, causing the low-
frequency components of the initial noise (i.e., latent at t=1000) persistently
contain spatio-temporal correlations. However, during the inference process, the
video generation model is tasked with generating coherent frames from non-
correlated Gaussian noise. This presents a considerable challenge for the denois-
ing network, as its initial noise lacks spatio-temporal correlations at inference.
For instance, as illustrated in Fig. 6, the “biking” video generated from Gaussian



FreeInit: Bridging Initialization Gap in Video Diffusion Models 7

High Frequency Removal

Full !! Remove 20% Remove 40% Remove 60% Remove 80% Remove 100%

Frame 0

Frame 2

Frame 4

Frame 0

Frame 2

Frame 4

Frame 0

Frame 2

Frame 4

Frame 0

Frame 2

Frame 4

Frame 0

Frame 2

Frame 4

Frame 0

Frame 2

Frame 4

Fig. 5: Role of Initial Low-Frequency Components. Each column shows three
frames generated from the mixed initial noise. We observe that even if the majority
(e.g ., 80%) of high frequencies are replaced, the generated results still remain largely
similar to the original “Full zT ” frames, indicating that the overall distribution of the
generated results is determined by the low-frequency components of the initial noise.

noise exhibits unsatisfactory temporal consistency. In contrast, when using the
corrupted latent obtained through the forward diffusion process from real videos
as initial noise, the generated frames showcase improved temporal consistency.
Influence of Initial Low-frequency Components. Considering the SNR
gaps of initial noise between training and inference, we further investigate the
influence of the low-frequency components of initial noise. A noisy latent zT is
first obtained from diffusing a real video. Then its high-frequency components
are gradually removed and replaced with that of a random Gaussian noise, only
keeping low-frequencies unchanged. Finally, the mixed latent is used as initial
noise for inference. As shown in Fig. 5, it is evident that variations in high-
frequency band have a negligible impact on the overall generation results. Re-
markably, the overall distribution of the generated outcomes remains stable,
even when employing only 20% of the original initial latent information from
the low-frequency band. When all information is removed, the denoising process
equates with pure Gaussian noise initialization, which leads to relatively poor
generation results. This observation highlights two key conclusions: 1) the low-
frequency components of the initial noise play a dominant role at inference, and
2) the quality of low-frequency components is crucial for the generation quality.
Our hypothesis is that this is due to the aforementioned information leak during
training, which biases the denoising towards the low-frequency components of
initial noise. These conclusions motivate us to propose a concise yet effective
strategy for enhancing the inference quality of video diffusion models.
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(a) Inference with Gaussian Noise

(b) Inference with Training Initial Noise
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Fig. 6: Initialization Gap. (a) With randomly initialized Gaussian noise for different
frames, the sampled video exhibits inconsistency among frames. (b) When we start from
noisy latent obtained from the diffusion process from real videos, the generated video
is temporally consistent. This is because the initial noise is aligned with training stage
and it contains correlated information among different frames in nature.

4 FreeInit

Motivated by the above analysis, we propose a method for relieving this gap
by progressively refining the low-frequency components of the initial noise using
the inherent power of the diffusion model. We refer to this method as FreeInit ,
which substantially improves the generation quality without additional training
or fine-tuning. The pipeline is illustrated in Fig. 7.
Denoise and Diffuse. During the inference process, an independent Gaussian
noise ϵ is first initialized, which then undergoes the DDIM sampling process to
yield a primary denoised latent z0. Subsequently, we obtain the noisy latent zT of
the generated latent z0 through the DDPM forward diffusion process, i.e., adding
noise to diffuse z0 to zT . Since zT still preserves structural information from the
denoised z0 due to the information leakage, its low-frequency components have a
better spatio-temporal correlation compared to ϵ. It is worth noting that, during
this forward diffusion process, we have observed adding randomly sampled Gaus-
sian noise could introduce significant uncertainty in the mid-frequency band,
compromising the spatio-temporal correlation. Consequently, we opt to utilize
the same original noise ϵ used in DDIM sampling when diffusing z0 to zT . The
mathematical representation of this process is as follows:

zT =
√
αT z0 +

√
1− αT ϵ (8)

=
√
αT (DDIMsample(ϵ)) +

√
1− αT ϵ,

where αT is aligned with the β schedule used at training, e.g ., Stable Diffusion
schedule.
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Fig. 7: Framework of FreeInit. FreeInit refines the low-frequency components of the
initial noise in an iterative manner. During inference, a Gaussian Noise is first initial-
ized and goes through the standard DDIM sampling process. The resulting denoised
latent z0 is then diffused using the original Gaussian Noise ϵ, through DDPM forward
process. With the obtained noisy latent zT which contains richer low-frequency infor-
mation, a noise reinitialization process is further performed: zT is firstly transformed
into frequency domain through 3D FFT, then its spatio-temporal low-frequency com-
ponents are fused with the high-frequency from a randomly sampled Gaussian noise η,
bringing flexibility for refinement in higher frequency band. After transforming back
to time domain, the refined z′T is used as the initial noise for the next iteration.

Noise Reinitialization. To maintain alignment with the SNR distribution at
training stage, we propose a noise reinitialization strategy, which is essential
for the improvement of temporal consistency. Specifically, we employ a spatio-
temporal frequency filter to combine the low-frequency components of the noise
latent zT with the high-frequency components of a random Gaussian noise η,
resulting in a reinitialized noisy latent z′T . This approach allows us to preserve
essential information contained in zT while introducing sufficient randomness
in high-frequency to enhance visual details, complementing its improved low-
frequency components. The mathematical operations are performed as follows:

FL
zT = FFT 3D(zT )⊙H, (9)

FH
η = FFT 3D(η)⊙ (1−H), (10)

z′T = IFFT 3D(FL
zT + FH

η ), (11)

where FFT 3D is the Fast Fourier Transformation operated on both spatial and
temporal dimensions, H is a spatial-temporal Low Pass Filter (LPF), IFFT 3D

is the Inverse Fast Fourier Transformation.
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Finally, this reinitialized noise z′T serves as the starting point for a new round
of DDIM sampling, facilitating the generation of frames with enhanced temporal
consistency and visual appearance.
Iterative Refinement of Initial Noise. It is important to note that the afore-
mentioned operations can be iteratively applied. At each iteration, the latent
code undergoes improvements in spatio-temporal consistency by refining and
preserving the low-frequency information from denoising. After that, it gains
flexibility in the high-frequency domain through reinitialization, resulting in an
improved initial noise for the subsequent iteration. In this iterative manner, the
quality of the initial noise is progressively refined, effectively bridging the dis-
tribution gap between training and inference. Ultimately, this iterative process
contributes to the overall enhancement of generation quality.

5 Experiments

5.1 Implementation Details

To evaluate the effectiveness and generalization of our proposed method, we
apply the FreeInit strategy to three publically available diffusion based text-
to-video models: AnimateDiff [10], ModelScope [45] and VideoCrafter [4]. Fol-
lowing [7, 36], we evaluate the inference performance with prompts from UCF-
101 [41] and MSR-VTT [49] dataset. For UCF-101, we use the same prompt
list as proposed in [7]. For MSR-VTT, we randomly sample 100 prompts from
the test set for evaluation. We also incorporate diverse prompts from [17] for
qualitative evaluations.

During inference, the parameters of frequency filter for each model are kept
the same for fair comparison. Specifically, we use a Gaussian Low Pass Filter
(GLPF) HG with a normalized spatio-temporal stop frequency of D0 = 0.25.
For each prompt, we first adopt the default inference settings of each model for
a single inference pass, then apply 4 extra FreeInit iterations and evaluate the
progress of generation quality. All FreeInit metrics in Quantitative Comparisons
are computed at the 4th iteration.

5.2 Evaluation Metrics

Temporal Consistency. To measure the temporal consistency of the gener-
ated video, we compute frame-wise similarity between the first frame and all
succeeding N − 1 frames. Noteworthily, one typical failure case in current video
diffusion models is semantically close but visually inconsistent generation result.
For example in Fig. 6 (a), all frames are semantically aligned (“biking”), but
the appearance of the subject and background exhibits unsatisfactory consis-
tency. Consequently, semantic-based features like CLIP [30] are not appropriate
for evaluating the visual temporal consistency in video generation. Following
previous studies [34], we utilize ViT-S/16 DINO [3, 27] to measure the visual
similarities, denoted as the DINO metric. The metric is averaged on all frames.
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Table 1: Quantitative Comparisons on Temporal Consistency. FreeInit signif-
icantly improves the temporal consistency of all baseline methods.

DINO ↑Method UCF-101 MSR-VTT
AnimateDiff [10] 85.24 83.24
AnimateDiff+FreeInit 92.01 91.86
ModelScope [45] 88.16 88.95
ModelScope+FreeInit 91.11 93.28
VideoCrafter [4] 85.62 84.68
VideoCrafter+FreeInit 89.27 88.72

Table 2: Quantitative Comparisons on Motion Quality. FreeInit also achieves
the best motion quality metrics in most cases.

Method FVD↓ MS(|∆UCF | ↓) DD(|∆UCF | ↓)
AnimateDiff [10] 1340.96 89.31 (7.33) 97.03 (20.2)
AnimateDiff+FreeInit 1032.47 96.60 (0.04) 75.30 (1.53)
ModelScope [45] 785.30 95.00 (1.64) 80.54 (3.71)
ModelScope+FreeInit 702.15 96.29 (0.35) 68.61 (8.22)
VideoCrafter [4] 730.04 90.50 (6.14) 92.62 (15.79)
VideoCrafter+FreeInit 675.39 93.45 (3.19) 83.27 (6.44)

Motion Quality. To compensate the possible bias of the temporal consistency
metric toward over-smoothed videos, we further provide metrics to evaluate the
motion quality of the generated videos: 1) Fréchet Video Distance (FVD).
We follow [7] to perform zero-shot text-to-video generation on UCF-101 and
sample 2,048 videos to compute the FVD between the generated distribution and
real distribution. Smaller FVD means the distribution is closer to real videos.
2) Motion Smoothness (MS) and Dynamic Degree (DD). Metrics from
VBench [17] are utilized for further evaluation. We use the generated samples
on UCF-101 prompts to compute the scores. The scores of real UCF videos
(MS=96.64, DD=76.83) are set as a reference to compute the absolute difference
|∆UCF |. Smaller |∆UCF | means the motion quality is more similar to real videos.

5.3 Quantitative Comparisons

The quantitative comparison results are reported in Tabs. 1 and 2. According
to Tab. 1, FreeInit significantly improves the temporal consistency of all base
models on both prompt sets, by a large margin from 2.92 to 8.62. As for motion
quality (shown in Tab. 2), the FVD metrics of all methods are also remarkably
improved by FreeInit, indicating a general enhancement in realism. All MS scores
are improved and become closer to realistic videos. Although the dynamic degree
is decreased, their differences with the ground truth UCF videos mostly become
smaller (e.g ., AnimateDiff from 20.2 to 1.53). This proves the generated videos
are not over-smoothed, but instead become closer to real video distributions.

We also conduct a User Study to evaluate the results through Temporal
Consistency, Text Alignment and Overall Quality, which can be refer to the
Supplementary File.
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Fig. 8: Qualitative Comparisons. We apply FreeInit to different base models and
inference with diverse text prompts. FreeInit significantly improves the temporal con-
sistency and the subject appearance of the generated videos.

5.4 Qualitative Comparisons

Qualitative comparisons are shown in Fig. 8. Our proposed FreeInit significantly
improves the temporal consistency as well as visual quality. For example, with
text prompt “a musician playing the flute”, performing FreeInit effectively fix the
temporally unstable artifacts exhibited in vanilla AnimateDiff. More qualitative
results are listed in the Supplementary File.

5.5 Ablation Study

In this section, we quantitatively evaluate the design choices and parameters of
FreeInit. Qualitative results can be referred to the Supplementary File.
Influence of Noise Reinitialization and Filter Selection. To evaluate the
importance of Noise Reinitialization in the frequency domain and the choice of
filter, we run two FreeInit variants on both datasets with all three base models.
Firstly, Noise Reinitialization is totally skipped, i.e., the noisy latent zT after
DDPM Forward Pass is directly used as initial noise for sampling. Secondly, the
frequency filter used for Noise Reinitialization is changed from GLPF to ILPF,
with the same stop frequency 0.25. The metrics in Tab. 3 clearly demonstrate
that Noise Reinitialization is crucial for improving temporal consistency. Also,
replacing the soft Gaussian filter GLPF with the hard Ideal filter ILPF leads to
a performance drop, which reveals the importance of also introducing moderate
randomness into mid-frequency and low-frequency components. More detailed
discussions are in the Supplementary File.
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Table 3: Ablation Study on Noise Reinitialization (NR). Removing NR or
changing Gaussian Low Pass Filter (GLPF) to Ideal Low Pass Filter (ILPF) leads to
non-optimal results. ModelName* refers to Model+FreeInit.

Method DINO ↑
UCF-101 MSR-VTT

AnimateDiff* w/o NR 86.77 85.18
AnimateDiff* w/ NR-ILPF 87.53 86.17
AnimateDiff* w/ NR-GLPF 92.01 91.86
ModelScope* w/o NR 88.20 90.90
ModelScope* w/ NR-ILPF 89.04 90.93
ModelScope* w/ NR-GLPF 91.11 93.28
VideoCrafter* w/o NR 86.09 87.11
VideoCrafter* w/ NR-ILPF 87.53 88.01
VideoCrafter* w/ NR-GLPF 89.27 89.33

(a) UCF-101 (b) MSR-VTT

Fig. 9: Ablation Study on Iteration Number. We report the DINO scores under
different FreeInit iteration numbers on (a) UCF-101 and (b) MSR-VTT. More iteration
steps mostly leads to better temporal consistency, and the most significant improvement
is observed at the 1st iteration.

Influence of Iteration Steps. We show the influence of FreeInit iteration step
number in Fig. 9. It can be observed that the temporal consistency consistently
increases with the iteration step, thanks to the gradually refined initial noise.
Notably, the largest temporal consistency improvement for each model comes
from the 1st iteration, where FreeInit is applied for the first time. This is because
at the 0-th iteration, the initial noise is non-correlated Gaussian noise, while at
the 1st iteration, low-frequency information is injected into the noise for the first
time, largely eliminating the gap between inference noise and training noise.

5.6 Further Discussion

Comparison with Same Inference Step without FreeInit. Since FreeInit
uses more than one DDIM sampling pass, it is natural to ask if the quality
improvement is due to the increased sampling steps. To answer this question, we
compare FreeInit with the typical DDIM sampling strategy using the same total
inference steps. As shown in Fig. 10, trivially increasing the DDIM sampling
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(a) AnimateDiff (n=25)
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(b) VideoCrafter (n=50)

Fig. 10: Comparison with Same Sampling Steps without FreeInit. We analyze
if increasing the DDIM sampling steps for baseline methods would help to improve the
temporal consistency on UCF-101. For all base models, the vanilla inference with 5n
steps is inferior to incorporating FreeInit with 2n steps. This indicates that FreeInit is
not equivalent to trivially increasing the DDIM sampling steps.

steps only brings little improvement in temporal consistency. Notably, with just
one extra FreeInit iteration (total 2n steps), the temporal consistency becomes
even better than using 5n vanilla DDIM sampling steps that require ×2.5 time
cost. This further proves the importance of refining initial noise at inference
time: a good beginning matters more than struggling with a bad initial state.
Limitations. As an iterative method, a natural drawback of FreeInit is the
increased sampling time. However, incorporating FreeInit leads to much higher
performance gain compared to spending more time using the common sampling
strategy (Fig. 10). Furthermore, this issue can be mitigated through a coarse-
to-fine sampling strategy. We explain more details and discuss more about the
limiations and potential negative societal impacts in the Supplementary File.
Broader Applications. Since the training-inference initialization gap is a com-
mon issue, FreeInit is applicable to not only video diffusion models, but also other
kinds of diffusion models, e.g ., text-to-image models like SDXL [28]. Results and
discussions are provided in the Supplementary File.

6 Conclusion

In this paper, we identify an implicit training-inference gap in the noise initial-
ization of video diffusion models that causes degenerated inference quality: 1) the
frequency distribution of the initial noise’s SNR is different between training and
inference; 2) the denoising process is significantly affected by the low-frequency
components of initial noise. Based on these observations, we propose FreeInit,
which improves temporal consistency through the iterative refinement of the
spatial-temporal low-frequency component of the initial noise during inference.
This narrows the initialization gap between training and inference. Extensive
quantitative and qualitative experiments on various text-to-video models and
text prompts demonstrate the effectiveness of our proposed FreeInit.
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