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Abstract. Recent advancements in few-shot segmentation (FSS) have
exploited pixel-by-pixel matching between query and support features,
typically based on cross attention, which selectively activate query fore-
ground (FQG) features that correspond to the same-class support FG fea-
tures. However, due to the large receptive fields in deep layers of the back-
bone, the extracted query and support FG features are inevitably min-
gled with background (BG) features, impeding the FG-FG matching in
cross attention. Hence, the query FG features are fused with less support
FG features, i.e., the support information is not well utilized. This paper
presents a novel plug-in termed ambiguity elimination network (AENet),
which can be plugged into any existing cross attention-based FSS meth-
ods. The main idea is to mine discriminative query FG regions to rectify
the ambiguous FG features, increasing the proportion of FG information,
S0 as to suppress the negative impacts of the doped BG features. In this
way, the FG-FG matching is naturally enhanced. We plug AENet into
three baselines CyCTR, SCCAN and HDMNet for evaluation, and their
scores are improved by large margins, e.g., the 1-shot performance of SC-
CAN can be improved by 3.0%+ on both PASCAL-5* and COCO-20°.
The code is available at https://github.com/Sam1224/AENet.

Keywords: Discriminative prior mask - Discriminative query regions -
Feature refinement

1 Introduction

Semantic segmentation is a fundamental task within computer vision, entail-
ing the dense assignment of each pixel in an image to an appropriate class la-
bel [5l)6}17]. This process is crucial for understanding the detailed composition of
visual scenes. The advent and subsequent evolution of deep learning approaches
have led to significant advancements in semantic segmentation |2}[23}[2951}[52].
However, most approaches relied heavily on precise pixel-level annotation of
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Fig. 1: Illustrations of (a) existing methods, and (b) the rationale of our plug-in. In
(a), due to the large receptive fields during feature extraction, foreground (FG) pixels’
features are inevitably fused with background (BG) features (e.g., the bird pixels also
contain dissimilar BGs: fence and human), which hinders FG-FG matching in cross
attention. In (b), we propose a plug-in to mine discriminative query FG regions, which
exclude those regions that are similar to both support FG and BG features, for refining
the ambiguous query and support FG features. As a result, the FG parts in the mingled
FG features are increased, thus the FG-FG matching is naturally enhanced.
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training datasets. Moreover, these models typically exhibit limitations in ex-
tending their recognition capabilities to novel, previously unseen classes.

To address these challenges, few-shot segmentation (FSS) has been intro-
duced to segment query images containing arbitrary classes, with the help of a
few support (image, mask) pairs sharing the same class. During training, FSS
models would learn the class-agnostic pattern on some base classes, enabling it
to identify query features resembling support FG features and classify them as
query FG. Then, such pattern is directly applied to segment novel classes.

The effectiveness of FSS heavily relies on the skillful utilization of support
samples, based on which the existing methods can be categorized into prototype-
based and cross attention-based methods
50]. Prototype-based methods typically entail the extraction of support proto-
types from support FG features, which are subsequently leveraged to segment the
query image through feature comparison [40] or concatenation . Nevertheless,
the compression of features into prototypes would lead to potential information
loss, as well as the disruption of the spatial structure of objects . To address
these issues, recent advancements in FSS have embraced cross attention to
fuse query features with the uncompressed support FG features.

Despite their success, existing cross attention-based methods overlook the in-
effective FG-FG matching issue raised by feature ambiguity. In particular, it is a
common practice to forward query and support images to a pretrained
backbone (e.g., ResNet50 [8]) to extract their features. However, as illustrated in
Fig. a), deep convolution layers essentially have large receptive fields, so the ex-
tracted FG/BG pixels’ features are inevitably fused with other BG/FG features,
especially for those pixels locating at the boundary area between FG and BG
objects. Some evidences are provided in Fig. b) in the form of prior masks .
Specifically, cosine similarity is measured between each query feature and sup-
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port FG features to obtain the FG prior, with each value showing the probability
of being a FG pixel. BG prior is obtained in the same way. It can be observed:
(1) There are many wrongly activated query BG regions (in orange rectangle)
in FG prior, because they have aggregated nearby FG features, thereby showing
high similarity to the support FG; (2) In BG prior, support BG features can also
match with query FG features, because the BG pixels on the border have also
been integrated with support FG information. Take Fig. (a) as an example,
where a query FG pixel contains FG (bird) and BG (fence) features, and sup-
port FG features include FG (bird) and BG (human). As query and support FG
features are doped with different-class BG features, the similarity-based cross
attention scores would be relatively smaller, which hinders query FG features
from fusing more support FG features, thereby leading to ineffective FSS.

In this paper, we aim to design a plug-in to address the aforementioned issues.
The key idea is to suppress those ambiguous query regions that are similar to
both support FG and BG features (doped with some FG information). In this
way, the remaining FG regions refer to the most discriminative query FG regions,
receiving the least side-effects from the mingled BG features. Based on this
idea, we propose a plug-in named ambiguity elimination network (AENet),
which includes: (1) Prior generator (PG): We incorporate the idea into the
learning-agnostic prior mask, and generate a pair of prior masks to figure out the
approximate scope of query FG, while highlighting the most discriminative query
FG regions, facilitating fast convergence [35]. The visualizations (in Fig. [I[b)
and Fig. [fb)) can directly show the effectiveness of the idea; (2) Ambiguity
eliminator (AE): The idea is further employed to rectify the query and support
FG features, so as to naturally improve the FG-FG matching in cross attention,
i.e., to better utilize the support information. As shown in Fig. b), the features
of the discriminative query FG regions are fused with the query and support
features for refinement. For a query FG pixel, its features would consequently
contain more FG information, so the side-effects of the mingled BG features can
be suppressed. In this paper, we validate the effectiveness of AENet on three cross
attention-based FSS baselines, CyCTR [50], SCCAN [45] and HDMNet [28].

To our knowledge, we are the first to identify the negative impacts of fea-
ture ambiguity on FSS. We propose a simple yet effective idea to obtain the
discriminative query FG regions. Then, we propose the plug-in network AENet
to enhance the FG-FG matching for existing cross attention-based FSS meth-
ods. Extensive experiments are conducted on two public benchmarks PASCAL-5°
and COCO-20° to validate the effectiveness of AENet. Notably, AENet is plugged
into CyCTR, SCCAN and HDMNet, and can improve their performance by large
margins, e.g., the 1-shot performance of SCCAN can be boosted from 66.8% to
69.8%, and 46.3% to 49.4% on PASCAL-5° and COCO-20¢, respectively.

2 Related Work

Few-shot segmentation. Different from semantic segmentation models that
are trained and tested on the same set of classes, FSS is designed to segment
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arbitrary classes with the help of a few labelled samples. FSS methods in recent
literature can be broadly categorized into several groups.

Prototype-based methods [4}/161/18./22,/26/31}35]/38-40,47] represent a promi-
nent category within the realm of FSS, wherein support FG information is com-
pressed into single or multiple prototypes, facilitating the segmentation of query
images. These methodologies typically leverage techniques such as cosine similar-
ity or feature concatenation to perform segmentation. In particular, OSLSM [31]
makes pioneering contributions to the field by introducing the concept of FSS,
laying the groundwork for subsequent research endeavors. PFENet [35| firstly
derives a learning-agnostic query prior mask from the high-level query and sup-
port features to help coarsely locate the query FG objects and improve the con-
vergence speed. Each value in the prior mask represents the feature similarity
between the current query pixel to the support FG pixels. However, the existing
method is heavily affected by noises |45|, and there are many wrong responses on
query BG areas. In this paper, we propose a prior generator (PG) to highlight
the most discriminative query regions that can accurately locate query FG.

To prevent from the information loss and the structure disruption raised by
prototypes, attention-based methods [10,/12,37,43}45,48,/50] build pixel-pixel
matching between query and support features, and expect to learn similarity-
based cross attentions to activate query FG features with the same-class sup-
port FG features. PGNet [48] builds up two graphs on the query and support
features, then incorporate the attention mechanism with multi-scale graph rea-
soning to perform segmentation. Besides, CyCTR [50] devises a cycle-consistent
attention to suppress the side-effects of harmful support features. Recently, SC-
CAN |45] indicates the mismatch problem of query BG features to the sup-
port FG features when conducting cross attention, and propose a self-calibrated
cross attention block to align query BG features with appropriate BG features
for effective segmentation. Another lane of methods [9,20,27,[32,|44] regard the
problem as semantic correspondence and use memory-expensive 4D attentions
for the matching. Unfortunately, it would be ineffective for these methods to
perform query-support FG-FG matching (via cross attention), because the ex-
tracted query and support FG features are likely to be mingled with dissimilar
BG features, impeding the effective utilization of support information. To ad-
dress it, we propose an ambiguity eliminator (AE) to purify the FG features and
make the FG-FG matching effective.

Moreover, many methods extend the standard setting by using base class
predictions [11}14}/28,134,54], mining knowledge from unlabelled data [1] or
more advanced pretrained backbone [13], or introducing extra textual informa-
tion [46l53]. To have better comparisons with recent advances, we have conducted
experiments under both standard and BAM’s [14] settings in Sec.

3 Problem Definition

Let Dirain and Diest represent the training and testing sets, respectively, in the
context of F'SS. Dy..in encompasses a collection of base classes Cpage, While Dyt



Eliminating Feature Ambiguity for Few-Shot Segmentation 5

Generator

B

Disc FG
Mpyior Mpyior

g
T

1
1
I
1
-ttt 1
1
1
1

AY
1
1
1
1
1
1
Iy B :
Shared: >< :___________________________________________/ !
S
! { Fq Attn .B|Of:k 2
© 1 »(C él_mbllgu:ty i'
‘ iminator >
e | g;,_ 1 5 :
a3 g — : Fs Expand =,
. 3 | !
1 Ps y
I Mg 1
! »(C 1l > 1
@ Feature Concatenation \ N4 ’I ‘\ //

Fig. 2: Overview of ambiguity elimination network (AENet), which is designed for ex-
isting cross attention-based methods such as SCCAN [45]. Specifically, AENet includes
prior generator (PG) and ambiguity eliminator (AE). (1) Learning-agnostic PG helps
to accurately locate the query FG regions; (2) AE mines the most discriminative query
FG regions, and then rectifies the query and support FG features to improve the FG-
FG matching in cross attention.

encompasses another distinct set of novel classes Cyovel. F'SS addresses a scenario
where the sets of classes Cpase and Cpovel are disjoint, formally denoted as Cpage N
Crovel = 0. Both Diain and Dies; are composed of numerous episodes, which
serve as the fundamental units of episodic training. In the context of a k-shot
setting, each episode comprises a support set S = {Ig, Mg}fl:l and a query set
Q = {Ig, Mg} specific to a particular class c. Here, Ig and MY denote the n-th
support image and its corresponding annotated binary mask, while I and Mg
represent the query image and its associated mask. During the training phase,
the model learns to segment the query image I with guidance from the support
set S, focusing on classes from Cpase. Subsequently, this learned segmentation
pattern is applied to Cpovel during the testing phase.

4 Methodology

The standard FSS pipeline is described as follows: The query image I and
the support image Is are forwarded to a frozen ImageNet-pretrained [30]| back-
bone (e.g., VGG16 [33] or ResNet50 [8]) for extracting their mid-level features
{Fq, Fs} (from blocks 2 and 3) and high-level features {Fg, F!} (from block 4).
As explained in existing methods [35/49], FSS models would witness severe over-
fitting phenomena if segmentation is carried out with the high-level features. In
spite of this, PFENet [35] demonstrates that learning-agnostic prior masks can
be derived from high-level features to coarsely locate the query FG objects and
improve the convergence speed. Therefore, almost all recent advances |14128]/45]
follow the same guideline to take the mid-level features for segmentation, and
use the high-level features for generating prior masks. Then, support FG fea-
tures are obtained with Fs and support mask Mg, which are fused with query
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Fig. 3: Details of the learning-agnostic prior generator (PG) module. The discrimina-
tive prior mask can suppress those ambiguous query regions that are similar to both
support FG and BG features.

features, either in a prototypical way or a cross attention manner, to activate
those query FG features that share the same class. Finally, the enhanced query
features are processed by a decoder to obtain the predicted query mask MQ.
To mitigate the ineffective FG-FG matching issue and feature ambiguity is-
sue (as described in Sec. , we present the overview of our plug-in ambiguity
elimination network (AENet) in Fig. [2 whose main components consist of the
prior generator (PG) module (Sec. and the ambiguity eliminator (AE) mod-
ule (Sec. . AENet can be plugged into any existing cross attention-based FSS
baselines such as CyCTR [50], SCCAN [45] and HDMNet [28|. Take SCCAN as
an example, its pseudo mask aggregation (PMA) module is replaced with our
proposed PG, and we insert one AE before each of its self-calibrated cross at-
tention (SCCA) block, with other parts remaining untouched. Particularly, the
learning-agnostic PG can not only approximately locate the query FG, but also
extract the discriminative query FG regions. In this way, the FSS model can ob-
tain some hints with no additional learnable parameters, and its converge speed
is well improved. Besides, the AE module aims at using the rectified discrimi-
native query FG regions to refine the query FG and support FG features, so as
to suppress the negative impacts of their doped BG features. As a result, the
FG-FG matching in cross attention is enhanced, leading to more effective FSS.

4.1 Prior Generator (PG)

Since PFENet [35|, learning-agnostic prior masks are widely adopted in FSS
models [28}|45,|50], to coarsely locate the query FG objects and improve the
convergence speed. For each query pixel, most of the existing methods [21}24]
35,50 take its high-level features, calculate its cosine similarity scores with each
support FG feature, and take the normalized maximum score to show how likely
this query pixel belongs to FG class. Later, SCCAN [45] indicates the operation
of taking a single maximum score is heavily affected by noises, and they propose
to utilize all pairwise similarities for generating more robust prior masks.
Nevertheless, they overlook the fact that the high-level FG and BG features
are inevitably fused with BG and FG features (i.e., feature ambiguity), which
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means query-support FG-FG may not consistently have large similarity scores,
while query-support BG-FG can also mistakenly have high similarity. Hence, the
generated prior masks would be less effective. We support our claim by providing
some examples in Fig. [3) where MES —and MBS~ are the query prior masks
calculated with support FG and BG features, respectively. We could observe that
(1) there are many BG regions wrongly activated in M5 | and (2) support BG
can also have high responses on query FG in MES .

To tackle the aforementioned issue, we propose to rectify and extract the
most discriminative query FG regions via a simple subtraction operation between
MESG —and MBS . whose essence is removing those ambiguous query regions
that show high similarity to both support FG and BG features. As shown in
Fig. |3} the discriminative prior mask ME%¢ can remove the unexpected areas,
suppressing the side-effects of the doped FG information in support BG features.

The details of PG are presented in Fig. [3] and we formally describe it as

follows. Following existing methods, we take the high-level query features F(S and

support features F g, as well as the downsampled support mask Mg as inputs.
First of all, the support FG and BG prototypes P& & and PB @ are obtained via:

PEY = GAP(F!, Mg), PBY = GAP(F%,1 — Ms) (1)

where GAP(-) denotes the global average pooling (GAP) operation. Then, two
cosine similarity scores Simf'¢ € [~1,1] and SimP% € [~1,1] are calculated be-
tween the flattened query features and the support prototypes. They are normal-
ized and reshaped to obtain the prior masks MES € [0,1] and MESG, . € [0,1],
showing the query regions that are similar to support FG and BG features, re-
spectively. Notably, our memory cost is HW x 1 for each calculation, while that
of existing methods [35,45] is HW x HW.

Sim™* = C’osine(Fg,Pg) (2)
M;’rim‘ = Norm(Szm*) (3)

where superscript * € {FG, BG}, Cosine(-) means cosine similarity, Norm(-)
is the min-max scaler to normalize the values into [0,1]. Next, we perform a

clipped subtraction to rectify and obtain the discriminative prior mask M I?Tifgr.

Di FG BG

MP;;OCT = ReLU(MPrior - MPrior) (4)
where ReLU () is an operator to set the negative values as zeros. The negative
values correspond to those query regions that are similar to support BG features,
which are not helpful in FSS. Finally, we concatenate M5~ and ME¢ as the
final prior masks, providing both the coarse location of query FG objects and

the most discriminative query FG regions.

4.2 Ambiguity Eliminator (AE)

To tackle the ineffective FG-FG matching raised by feature ambiguity, we further
design the AE module for existing cross attention-based FSS methods [28,|45]
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Fig. 4: Details of ambiguity eliminator (AE) module. AE mines discriminative query
FG features to rectify the query and support features.

50]. As verified in Fig. [3] discriminative query FG regions can be easily and
consistently extracted, whose features are the most discriminative ones that are
less affected by feature ambiguity. Therefore, we use them to rectify the query and
support FG features, so the proportion of pure FG information in a FG pixel’s
mingled features can be naturally increased. Therefore, the FG-FG matching
between query and support FG features is enhanced, and the query FG pixels
can aggregate more support FG information.

As illustrated in Fig. E|, the mid-level query features Fy and support features
Fg are taken as the inputs. Fiy is processed by two linear layers to obtain the
projections K and V', while Fg is projected to (). Then, the @) and K are
forwarded to the PG module to obtain the support FG prototype P & and the
discriminative prior mask MP%*¢ which is supervised by an auxiliary binary
cross entropy (BCE) loss L4,:- The procedure can be written as:

Q = Linear(Fs), K = Linear(Fg),V = Linear(Fg) (5)
PgY, MP = PG(Q, K) (6)
Lauz = BCE(MP"°, Mg) (7)

where PG(-) includes Eq. to Eq. , Loue s utilized during training, Mg is
the labelled query mask. Then, a matrix multiplication is performed to extract
and aggregate the discriminative query features into a prototype Pg G, Next, the

cosine similarity a between Pg & and Pg @ is measured, and re-scaled to [0, 1]. «

is utilized to weighted fuse the prototypes to obtain P¥“, containing the support
FG features and the most discriminative query FG features. After that, PF< is
expanded and concatenated with the input query and support features Fiyp and
Fs, and processed by a linear layer for feature refinement.

PQFG = Softmaz(MP"*%) @ V
a = (Cosine(PL{°, PgG) +1)/2
PFY =a.-PES+(1-a) - P59 (10
F, = Linear(F,||PF%) (11
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where ® is the matrix multiplication operation, subscript * € {@, S}, || denotes
feature concatenation. Finally, we wrap AE with a Transformer block [36], and
the refined query and support features are forwarded to existing cross attention
blocks for feature matching and enhancement.

4.3 Overall Loss

The loss function consists of a main loss and an auxiliary loss. The former refers
to the loss functions employed in the original baseline, while the auxiliary loss
corresponds to Eq. . Take SCCAN as an example, its loss function is:

L= Emain + A Laur (12)

N
N 1 Z ;
i=1

where Dice(-) represents dice loss, MQ is the final prediction, A is a hyperpa-
rameter, N is the number of attention blocks (e.g., SCCAN has 8 SCCA blocks),
MPis¢ is the i-th discriminative mask obtained from the i-th AE module.

5 Experiments

5.1 Experiment Setup

Datasets. We assess the performance of our methodology on two widely used
benchmark datasets, including PASCAL-5" [31] and COCO-20" |25]. PASCAL-
5! comprises 20 distinct classes and is derived from PASCAL VOC 2012 |[3],
augmented with additional annotations from [7]. Conversely, COCO-20¢ is con-
structed from MSCOCO [19], presenting a more rigorous challenge with its 80
classes. Both PASCAL-5? and COCO-20¢ are partitioned into four folds for cross-
validation purposes, with each fold containing either 5 (for PASCAL-5%) or 20
(for COCO-207) classes. Within each fold, the training set encompasses the union
of the other three folds, while the fold itself is reserved for testing. Furthermore,
during testing, we randomly sample 1,000 episodes from PASCAL-5' and 4,000
episodes from COCO-207, ensuring a comprehensive evaluation of our method’s
efficacy across diverse scenarios.

Evaluation metrics. It is a common practice to use mean Intersection over
Union (mloU) and foreground-background IoU (FB-IoU) as the evaluation met-
rics |28])351/45]. Specifically, mIoU computes the average IoU scores across all FG
classes within a fold, providing a consolidated measure of segmentation accuracy.
Instead, FB-IoU treats all FG classes as a single FG class for measurement.
Implementation details. To validate the effectiveness of AENet, we plug it
into three cross attention-based baselines: CyCTR |50], SCCAN [45] and HDM-
Net [28]. In detail, their prior mask generation modules are replaced by PG
(Sec. [4.1)), and we insert an AE module (Sec. before each of their cross at-
tention blocks. All experiments are conducted with 4 NVIDIA V100 GPUs with



10 Q. Xu et al.

Table 1: Performance comparisons on PASCAL-5¢ in terms of mIoU and FB-IoU. “5%"
shows the mIoU scores of 5 novel classes in fold i, “Mean” is the averaged mloU score
from all folds. The best results are highlighted in bold.

1-shot 5-shot
50 51 52 5° Mean FB-IoU| 5° 5' 52 5% Mean FB-IoU

PFENet (TPAMI'20) [35]|56.9 68.2 54.4 52.5 58.0 72.0 |59.0 69.1 54.8 52.9 59.0 72.3
DACM (ECCV’22) |44 |61.8 67.8 61.4 56.3 61.8 75.5 |66.1 70.6 65.8 60.2 65.7 77.8
FECANet (TMM’23) |20]/66.5 68.9 63.6 58.3 64.3 76.2 |68.6 70.8 66.7 60.7 66.7 77.6
BAM (CVPR22) [14] 63.2 70.8 66.1 57.5 64.4 77.3 |67.4 73.1 70.6 64.0 68.8 81.1

Backbone Method

VGG16
HDMNet (CVPR23) |28|]64.8 71.4 67.7 56.4  65.1 - 68.1 73.1 71.8 64.0 69.3 -
HDMNet + AENet 64.7 73.2 66.4 60.1 66.13.01+ 78.1 [69.1 74.8 69.4 65.1 69.60.31 82.0
SCCAN (ICCV’23) |45| |63.3 70.8 66.6 58.2  64.7 772 |67.2 72.3 70.5 63.8 68.4 79.1
SCCAN + AENet 66.3 73.3 68.5 58.4 66.61.9r 79.0 |70.8 75.1 72.2 64.2 70.62.2+ 81.8

PFENet (TPAMI'20)  [61.7 69.5 55.4 56.3 60.8  73.3 |63.1 70.7 55.8 57.9 61.9  73.9
DACM (ECCV’22) [44] [66.5 72.6 622 61.3 657  77.8 |72.4 73.7 69.1 684 709 813
ABCNet (CVPR23) 1] [68.8 73.4 623 59.5 66.0  76.0 |71.7 74.2 65.4 67.0 69.6  80.0
RiFeNet (AAAT'24) [1] [68.4 73.5 67.1 59.4 67.1 - |70.0 747 69.4 642 69.6 -
FECANet (TMM’23) [20]/69.2 72.3 62.4 65.7 67.4  78.7 |72.9 74.0 65.2 67.8 70.0  80.7
BAM (CVPR'22) {14] ~ |69.0 73.6 67.6 61.1 67.8  79.7 |70.6 75.1 70.8 67.2 70.9  82.2
ResNet50 MIANet (CVPR'23) [46] |68.5 75.8 67.5 63.2 68.7  79.5 [70.2 77.4 70.0 68.8 71.6  82.2

CyCTR (NIPS’21) |50, [67.8 72.8 58.0 58.0 64.2 - 71.1 73.2 60.5 57.5 65.6 -
CyCTR + AENet 70.4 74.4 69.4 61.6 69.048+ 80.2 |73.0 76.2 74.1 67.0 72.67.0r 83.0

SCCAN (ICCV’23) |45| |68.3 72.5 66.8 59.8 66.8 777 1723 74.1 69.1 65.6 70.3 81.8
SCCAN + AENet 72.2 75.5 68.5 63.1 69.83.0r 80.8 [74.2 76.5 74.8 70.6 T4.13.8+ 84.5
HDMNet (CVPR23) |28]]71.0 75.4 68.9 62.1 69.4 - 71.3 76.2 71.3 68.5 718 -

HDMNet + AENet 71.3 75.9 68.6 65.4 70.30.9¢+ 81.2 |73.9 77.8 73.3 72.0 74.224; 84.5

16GB onboard memory. For both datasets, we adopt the same augmentation
strategy as |14,[35], and we follow the selected baselines to set their hyperpa-
rameters. In this paper, we perform evaluation under both standard [35] and
BAM’s [14] settings. For the former, we adopt VGG16 [33] and ResNet50 3]
pretrained on ImageNet [30] as backbones, while for the latter, they are further
fine-tuned for segmenting Cp,se, Wwhich is more appropriate for FSS. Besides, we
follow the best hyperparameter settings as the baselines (e.g., number of atten-
tion blocks), while for AENet-related parameters, the weight A (Eq. ) is set
to 1, and is further studied in Sec.

5.2 Quantitative Comparisons with State of the Arts

To well validate the effectiveness of AENet, we plug it into CyCTR [50], SC-
CAN [45] and HDMNet [28], and conduct experiments under both 1-shot and
5-shot settings, with VGG16 [33] and ResNet50 [8] as pretrained backbones.

PASCAL-5'. The quantitative results on PASCAL-5" are shown in Tab. [1} we
could observe that our AENet plug-in consistently helps to improve the selected
baselines by large margins. For example, by taking ResNet50 as the pretrained
backbone, the mean mIoU score of SCCAN can be boosted from 66.8% to 69.8%
on PASCAL-5' under 1-shot setting, and the improvement can be increased to
3.8% when 5 support pairs are provided. Similarly, FB-IoU can be improved by
2.3% and 2.7%, respectively. Notably, the 1-shot performance gain on CyCTR
can be as high as 4.8%, showing the superiority of AENet. Moreover, SCCAN
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Table 2: Performance comparisons on COCO-20° in terms of mIoU and FB-IoU. “20%"
shows the mlIoU scores of 20 novel classes in fold i, “Mean” is the averaged mloU score
from all folds. * means the reproduced results. The best results are highlighted in bold.

1-shot 5-shot
50 5! 52 5% Mean FB-IoU| 5° 5' 5% 5% Mean FB-IoU

PFENet (TPAMI'20) [35] |35.4 38.1 36.8 34.7 36.3  63.3 [38.2 42.5 41.8 38.9 404  65.0
FECANet (TMM'23) [20] |34.1 37.5 35.8 34.1 354 655 [39.7 43.6 42.9 39.7 415  67.7

Backbone Method

BAM (CVPR'22) fl4] — |30.0 47.0 46.4 41.6 435 711 |47.0 52.6 48.6 49.1 493 733
VGGI6 HpMNet (CVPR'23) [28]|42.6 49.6 46.7 44.7 459 714 [48.0 55.8 547 50.5 522  74.8
HDMNet + AENet 41.9 49.5 49.2 45.0 46.405; 7T1.8 |48.3 56.7 53.4 50.0 52.104, 75.8
SCCAN (ICOV'23) [45] |38.3 46.5 43.0 41.5 423  66.9 |43.4 52.5 54.5 47.3 494 718
SCCAN | AENet 40.3 50.4 47.9 44.9 45.956: 712 |45.8 56.3 55.8 53.4 52.85.41 743
PFENet (TPAMI'20)  |36.5 38.6 35.0 33.8 358 - [36.5 43.3 380 384 30.0

DACM (ECCV’22) |44 37.5 44.3 40.6 40.1 40.6 68.9 [44.6 52.0 49.2 46.4 48.1 71.6
ABCNet (CVPR23) |41| [42.3 46.2 46.0 42.0 44.1 69.9 |45.5 51.7 52.6 46.4 49.1 72.7
FECANet (TMM’23) |20] |38.5 44.6 42.6 40.7 41.6 69.6 |44.6 51.5 48.4 45.8 47.6 71.1
RiFeNet (AAAT24) |1] 39.1 47.2 446 454 441 - 44.3 52.4 49.3 484 48.6 -
BAM (CVPR’22) |14] 43.4 50.6 47.5 43.4 46.2 - 49.3 54.2 51.6 49.6 51.2 -
ResNet50 MIANet (CVPR23) |46] |42.5 53.0 47.8 47.4  47.7 71.5 |45.8 58.2 51.3 51.9 51.7 73.1

CyCTR (NIPS’21) |50] 38.9 43.0 39.6 39.8 40.3 - 41.1 48.9 45.2 47.0 45.6 -
CyCTR + AENet 42.2 53.1 47.4 45.3 47.06.7¢+ 71.8 [49.0 59.0 50.6 51.1 52.4¢.81+ 75.0

SCCAN (ICCV’23) |45] 40.4 49.7 49.6 45.6 46.3 69.9 147.2 57.2 59.2 52.1 53.9 74.2
SCCAN + AENet 43.1 56.0 50.3 48.4 49.43.1+ 73.6 |51.7 61.9 57.9 55.3 56.72.8+ 76.5
HDMNet* (CVPR’23) [28][44.8 54.9 50.0 48.7 49.6 72.1 |50.9 60.2 55.0 55.3 55.3 74.9
HDMNet + AENet 45.4 57.1 52.6 50.0 51.3; 7+ 7T4.4 |52.7 62.6 56.8 56.1 57.1;8+ 78.5

does not behave as well as the best baseline HDMNet, but the incorporation of
AENet can help it to outperform HDMNet by considerable margins, e.g., 66.6%
vs. 65.1% (VGGI16, 1-shot) and 74.1% vs. 71.8% (ResNet50, 5-shot). Besides,
HDMNet can be improved by 2.4% (ResNet50, 5-shot) with AENet.
COCO-20!. COCO-20" appears to be a more challenging dataset, as the images
usually contain small objects, multiple objects, and their BG are quite complex.
Unfortunately, such characteristics would make the aforementioned issues much
more severe, e.g., with the same receptive field, small FG objects are more likely
to be mingled with more BG information, compared with large FG objects.
The results are displayed in Tab. [2] and note that the results of HDMNet are
reproduced by us, because their validation data, lists of COCO-20¢ are different
from the uniformly deployed ones in other baselines. Similar to PASCAL-5¢, our
AENet can well boost the performance of CyCTR, SCCAN and HDMNet. In
particular, AENet can help to improve the baseline better on COCO-20? than
on PASCAL-5¢, e.g., 3.6% vs. 1.9% with SCCAN (VGG16, 1-shot), and 6.7% vs.
4.8% with CyCTR (Res50, 1-shot). We contribute it to the fact that the FG-FG
matching in baselines become less effective in COCO-20%, while the proposed
AENet can effectively mitigate this issue.

5.3 Ablation Study

In this section, extensive ablation studies are conducted to validate the effec-
tiveness of AENet. Unless explicitly specified, the experiments are conducted on
PASCAL-5" with ResNet50 as the pretrained backbone, under 1-shot setting.
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(a) Qualitative Results (b) Comparisons of Prior Masks

.:ﬁﬁ

Support Query SCCAN PFENet's SCCAN's PG (MfS,,) PG (MRis<,)
Fig. 5: Illustration of (a) qualitative results and (b) different training-agnostic prior
masks. In (b), the proposed PG is compared with the existing prior masks from
PFENet and SCCAN . We use some rectangles (in orange) to highlight some
challenging areas, where existing prior masks wrongly activate them as FG and lead

to wrong predictions, but our PG (ME5¢ ) can suppress them well.

Qualitative results and prior masks comparisons. To have a clearer un-
derstanding of the proposed modules to the final predictions, we jointly depict
some qualitative results, as well as the visual comparisons among different prior
masks in Fig. 5} Specifically, the proposed PG is compared with two existing
prior mask generation methods from PFENet and SCCAN . Although
they can roughly locate the query FG, they merely measure the similarities be-
tween each query pixel and all the support FG pixels to determine if the current
query pixel is more likely to be FG or BG, regardless of the fact that the FG/BG
features are mingled with BG/FG features (as explained in Sec. [1). In this way,
some query BG pixels also contain query FG features, so there exist some simi-
larities and they get wrongly activated. Instead, our PG not only measures the
similarities with support FG (MES, ), but also with support BG (MBS ), then

Prior Prior

perform a subtraction operation to obtain the discriminative prior mask ME#¢ .
As shown in Fig. [5|(b), M5, suffer from the same problem as PFENet and SC-
CAN, but ME¢ can suppress the wrongly activated areas well. As a result,
our plug-in AENet helps to make more accurate predictions.

Component-wise ablation study. BAM is a controversial baseline that
extends the standard FSS setting by: (1) They wrap the pretrained backbone
with PSPNet , and fine-tune it for segmenting the base classes, which is
more appropriate for FSS; (2) Then, the base class predictions are obtained and

suppressed as BG regions during testing, which improves the accuracy. Despite of
the controversy, most of the latest baselines follow BAM’s setting.
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Table 3: Component-wise ablation Table 4: Detailed ablation study on PG

study with SCCAN. and AE.
PG AEBAM 5° 5' 52 5% Mean .
Disc.PG FG AE, 50 58 52 5% Mean
68.3 72.5 66.8 59.8 66.8 Mpyior Mprior|Eq.
v 69.7 73.1 66.9 61.5 67.81.01 | |68.3 72.5 66.8 59.8 66.8
v 69.3 72.8 67.4 62.1 67.91 11
Vv 70.1 73.4 66.9 63.1 68.315¢ v 70.773.2 65.7 60.4 67.5
v v 69.7 73.1 66.9 61.5 67.8
v v T14 75.1 68.0 62.4 69.23.47 —
v v 707 749 67.7 62.9 69.123+ MD 69.0 72.2 66.5 59.8 66.9
v v v 72.275.568.563.169.850; MPi¢|69.3 72.8 67.4 62.1 67.9

Hence, we experiment with both settings for better comparisons. It could be
observed from Tab. [3| that the mean mIoU of SCCAN starts with 66.8%, and
the score can be boosted to 67.8% and 67.9% after integrating PG and AE
module, respectively. Then, when both PG and AE are utilized, the score is
further increased to 68.3% (+1.5%), showing the effectiveness of the proposed
AENet plug-in. With BAM’s ensemble, the final score can be as high as 69.8%.

Further discussion on PG. As described in Sec. we generate three prior
masks, including MES ~ (measured with support FG features), MES — (mea-

sured with support BG features), and ME%¢ (clipped subtraction). Among

Prior
them, M ESOT is visually similar to the existing prior masks, while M }?Tif(fr ap-
pears to have better quality (as displayed in Fig. (b)) It can be observed from
Tab. {4} when we replace SCCAN’s prior mask with ME*¢  the mean mloU
score can be boosted by 0.7%. If we further use MES . the final improvement
can be 1.0%. We contribute the improvement to the different functions of these
masks, e.g., (1) MECY is responsible for roughly locating the query FG regions.
Although the generated prior masks also have high responses on BG regions, in
most cases, the complete FG objects have already been included; and (2) for
MPEisc it only activates the most discriminative query FG regions that are dis-
similar to the support BG features. Therefore, when they are both utilized, the
model would firstly be aware of the regions it should focus on, then it can take
the discriminative regions as anchor, and find other similar parts in the query

image where there would be no intra-class differences [4}[26].

Detailed ablation on AE. We further conduct experiments to prove that the
“subtraction” operation is critically important. As illustrated in the last two
rows of Tab. 4l we use MP#¢ and MFC to distinguish the cases where there is
a subtraction operation (Eq. ) or not. According to the table, we can observe
that merely taking support FG information into consideration can hardly make
any improvement (66.8% vs. 66.9%). Instead, if MP%¢ is alternatively utilized,
the improvement can be as high as 1.1%. Then, we explain this phenomenon
as follows: (1) The query FG pixels’ features are doped with base class-specific
BG features, because different classes tend to have their own sets of BG classes.
Therefore, when the auxiliary loss (Eq. @) is applied for regularization, the
model would be likely to learn base class-specific operations to detach the min-
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(a) Parameter Study on 4 (b) Impacts of AE
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Fig. 6: Illustration of (a) parameter study on weight A, and (b) the impacts of AE. In
(b), * represent FG pixels, the values are measured by cosine similarity.

gled BG features from query FG features. Thus, the model gets biased, and the
learned pattern cannot be safely applied to the novel classes; (2) Instead, the
subtraction operation (Eq. ) can provide the model with some class-agnostic
guidance, so the learned pattern can be relatively uniform for all the classes.
Parameter study on loss weight A\. We set the loss weight A (in Eq. )
as {0, 0.5, 1, 1.5} to explore their effects, and show the results in Fig. @(a). It
could be observed: (1) Even if we do not apply additional supervision signals
on the generated discriminative mask in AE, the mean mloU score can already
reach 69%-+, showing the effectiveness of the discriminative mask; (2) When
A = 1, the best performance is achieved; (3) When A > 1, the performance
starts decreasing. Therefore, we set A = 1 by default in the paper.

Impacts of AE. AFE is designed to mitigate the feature ambiguity issue, so as to
improve the FG-FG matching. To show the impacts of AE, we draw two exam-
ples in Fig. |§|(b)7 where the features before and after the AE module are taken to
measure the query-support similarity. As shown in the figure, AE module con-
sistently helps to improve the FG-FG similarity between query and support FG
pixels. In this way, query FG pixels can fuse more FG features from the support
samples, i.e., the support information is well utilized for more effective FSS.

6 Conclusion

In this paper, we identify the negative impacts of feature ambiguity to the cross
attention modules in FSS. To alleviate the issue, we design a plug-in ambigu-
ity elimination network (AENet) which includes a prior generator (PG) and
an ambiguity eliminator (AE) module. Learning-agnostic PG is responsible for
roughly locating the query FG objects, and highlighting the most discriminative
query FG regions. AE utilizes the discriminative query FG features to rectify
the features, so as to enhance the cross attentions. We plug AENet to three
FSS baselines, and can improve their performance by large margins. Extensive
experiments have been conducted to validate the effectiveness of AENet.
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