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Abstract. Large pre-trained vision language models (VLMs) have shown
impressive zero-shot ability on downstream tasks with manually designed
prompt. To further adapt VLMs to downstream tasks, soft prompt is
proposed to replace manually designed prompt, which undergoes fine-
tuning based on specific domain data. Prior prompt learning methods
primarily learn a fixed prompt or residuled prompt from training sam-
ples. However, the learned prompts lack diversity and ignore information
about unseen domains. In this paper, we reframe the prompt learning
framework from a generative perspective and propose a simple yet effi-
cient method for the Domain Generalization (DG) task, namely Soft
Prompt Generation (SPG). Specifically, SPG consists of a two-stage
training phase and an inference phase. During the training phase, we
introduce soft prompt label for each domain, aiming to incorporate the
generative model domain knowledge. During the inference phase, the
generator of the generative model is employed to obtain instance-specific
soft prompts for the unseen target domain. Extensive experiments on
five domain generalization benchmarks of three DG tasks demonstrate
that SPG achieves state-of-the-art performance. The code is available at
https://github.com /renytek13/Soft-Prompt-Generation-with-CGAN.
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Learning - Generative Models

1 Introduction

Large vision language models, such as CLIP [32] and ALIGN [16], have attracted
significant attention owing to their effective adaptation to downstream tasks with
manually designed prompts. However, manually designed prompts are not always
optimal for domain-specific tasks. Instead of manually designed prompts, the
soft prompt [19,/31,{40] can be optimized in a data-driven manner through back-
propagation. The soft prompt, serving as a learning vector, is refined through
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Fig. 1: The difference between previous work and our work. We reframe the prompt
learning framework from a generative perspective. We exclusively rely on a generative
model to directly produce soft prompts, ensuring their diversity. Essentially, we transfer
the prompt’s adaptability to the generative model by incorporating domain knowledge.

fine-tuning with domain-specific data to better adapt to downstream tasks, in-
cluding base-to-novel generalization and domain adaptation .
Despite the progress made in prompt learning, generalization performance tends
to decline significantly when facing distribution shifts.

Many efforts have been made to address the distribution shift problem by
domain generalization (DG) [25[38]. The objective of DG is to train a model
using data from one or multiple related but distinct source domains in a manner
that enables the model to generalize effectively to any out-of-distribution (OOD)
unseen target domain. Due to the extensive learning in various domains, vision
language models like CLIP exhibit a generalization performance that can even
rival state-of-the-art traditional supervised learning algorithms. Taking a step,
many works adopt prompt learning techniques @ to enhance the
generalization performance of CLIP. Niu et al. introduce domain bank to
incorporate textual domain knowledge into soft prompts. Both Zhou et al.
and Zhang et al. establish a lightweight neural network (i.e., multilayer
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perceptron) to generate soft prompts conditioned on images with a residual or
concatenation manner. However, these methods either lack diversity and visi-
bility into the information from the target domain or rely on simple models to
approximate the relationship between images and soft prompts. Consequently,
the learned prompts may still fall short of being transferable.

As shown in Figure[I] unlike the previous prompt learning methods, such as
unconditional prompt learning [1840] and conditional prompt learning [8}/36/39]
methods, which typically rely on fixed prompts obtained from the training set for
downstream tasks, or employ a straightforward multi-layer perceptron to learn a
residual vector to enhance the richness of the fixed prompts, our approach takes
a different direction. We reframe the prompt learning framework by adopting a
generative perspective, marking the first integration of generative models into
VLMs for prompt learning. We propose a new prompt learning paradigm Soft
Prompt Generation (SPG), which offers a straightforward yet effective solution
for Domain Generalization. SPG is designed to exclusively harness a genera-
tive model for prompt generation, leveraging the model’s inherent capability to
encode domain and content knowledge directly into the generated prompts.

Our Proposed SPG: SPG method consists of a two-stage training phase
and an inference phase. Specifically, in the initial training phase, we introduce
domain prompt labels, representing optimal prompts for each domain. Images
and corresponding domain prompt labels are then input into a simple yet effec-
tive generative model, Conditional Generative Adversarial Net (CGAN) [27], to
incorporate domain and content knowledge into the prompt generator model in
the second training phase. As a result, domain knowledge is stored not in soft
prompts but in the generative model. During inference, the generator of the gen-
erative model is employed to obtain domain-specific soft prompts for the target
domain data, enabling enhanced diversity and transferability for prompts.

Our main contributions are as follows:

— To the best of our knowledge, we are the first to introduce the generative
model into prompt learning in VLMs. Then, we propose a new paradigm of
prompt tuning, namely Soft Prompt Generation (SPG).

— We design a two-stage training phase to align the generative model with
domain prompt labels. It incorporates domain knowledge into the generated
prompts, enhancing the transferability across unseen domains.

— Extensive experiments on five datasets for three DG tasks demonstrate that
the proposed SPG achieves state-of-the-art performance.

2 Related Work

2.1 Domain Generalization

Domain Generalization (DG) aims to train a model using data from one or
multiple related yet different source domains, enabling the model to general-
ize effectively to any out-of-distribution (OOD) target domain. Existing works
mainly focus on learning domain-invariant features across one or multiple source
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domains. One line of research focuses on domain alignment methods, primar-
ily aiming to minimize moments [28], KL Divergence |23|, and Maximum Mean
Discrepancy [22| to learn domain-invariant features. Another line of work in-
volves leveraging data augmentation to enrich images or their features, thereby
contributing to the learning of invariant predictors [24,34]. Additional strategies
encompass adversarial learning [12], ensemble learning [26], meta-learning |20],
gradient operations [4], and more. Recently, large vision language models (VLMs)
such as CLIP [32| have been applied to various downstream tasks, demonstrat-
ing their potential for remarkable generalization performance. One of the most
efficient fine-tuning paradigms for VLMs is prompt learning. Building upon the
success of prompt learning, our work delves deeper into exploring this highly
efficient paradigm. We propose a novel prompt learning framework that departs
from the previous prompt learning methods of utilizing fixed prompts [40] or
residualed prompts [39] directly during inference. Instead, our framework lever-
ages a generative model to dynamically obtain soft prompts for the inference
process, introducing a new paradigm of prompt tuning.

2.2 Prompt Learning for Vision Language Models

Prompt learning for VLMs, also referred to as prompt tuning, aims to tune
the model on domain-specific downstream tasks by only training a small set
of parameters which might be a set of newly added parameters with the in-
put. CoOp [40] firstly introduces soft prompt in VLMs and demonstrates a
suitable prompt that can improve performance for the image recognition task.
CoCoOp [39] solves the overfitting problem of CoOp with conditioned prompt
learning, i.e., residualed prompt, ensuring the diversity of prompt. DAPL [13|
and PDA [2] introduce domain labels and domain alignment into prompt learn-
ing for domain adaptation, respectively. For DG problem, CAE [29] aims to
obtain domain-unified text representation with domain bank. DPL [36] gener-
ates prompts through MLP to add domain-specific features to the prompt tem-
plate. Different from previous prompt learning methods in VLMs, we reframe
the prompt learning framework from a generative perspective, i.e., exclusively
relying on a generative model to dynamically produce soft prompts. For the DG
setting, we further introduce a two-stage training paradigm and domain prompt
labels to effectively embed domain knowledge within the generative model.

3 Preliminaries

3.1 Problem Setup of Domain Generalization

In DG setting, there are M source domains D, = {D}, D% ..., DM} and N target
domains Dy = {D}, D?,..., DN}, all of which follow different distributions. For
each source domain, D} = {(z}, Z‘/;‘)}?% where n; denotes the size of samples in
D! and (ac;, y;) denotes the pair of input and target label for the jth sample in the
1th domain. Then we denote the input space as X and denote the label set as Y.



SPG for DG 5

Assuming that all domains share the same label space, previous methods mainly
focus on learning a domain-invariant model to map F : X — Y from images
to labels, with the aspiration that this mapping can generalize to unseen target
domains. With the advent of VLMs, prompt learning methods are proposed to
incorporate soft prompts V into the input, and the mapping is rephrased as
F:{X,V} —Y.In contrast to previous methods that involved fine-tuning the
model, prompt learning methods center on the fine-tuning of the prompt V.
Unlike these methods above, we introduce a new prompt learning paradigm that
solely relies on a generative model G to produce soft prompts directly. Thus, the
mapping is rephrased as F : {X,G(X)} = Y. Our goal is to learn a generative
model that can capture both domain-invariant and domain-specific features to
produce generalized prompts for unseen target domains dynamically.

3.2 Prompt Learning Methods in Generalization

Contrastive Language-Image Pre-Training (CLIP) |32] model is pre-trained on
400 million image-text pairs collected from the internet with contrastive learning.
It consists of an image encoder f and a text encoder g, which encodes images
and corresponding natural language descriptions, respectively.

Zero-shot CLIP directly incorporates a template text description as a prompt
into the text encoder, such as "a photo of a [CLASS|" where [CLASS] denotes
the class token. The image features and text features w of manually designed
prompts are extracted from the image encoder and text encoder, respectively.
The prediction of the class of the image is § = argmax (f(x), wy), where (-,-)

k

denotes the cosine similarity.

CoOp |40] introduces a set of continuous learnable context vectors v concate-
nated with the template prompt ¢, namely soft prompt, then the ith class of
text prompt #* can be defined as t* = [v,c']. Therefore the whole framework
can be updated through the frozen CLIP model via tuning these prompts with
cross-entropy loss Lc. = —E, [>°, yi log (9;] x;,t;)], where g; denotes ith element
of the model’s predicted probability distribution. However, CoOp learns a fixed
prompt from training samples, which may lead to overfitting to the training
distribution and degraded performance on test distribution.

CoCoOp [39] and DPL [36] attempt to overcome distribution shifts by learning
an instance-specific continuous prompt that is conditioned on the input image
with an MLP layer ¢. Both of them learn an image-conditional vector r =
#(f(x)), which is then either added for CoCoOp with the learnable context
vectors v or concatenated for DPL. Then the ith class of text prompt ¢’ can be
defined as t* = [v + 7, c'] or t* = [r,¢']. By tuning the prompts and MLP layer,
the loss is formulated as Lo = —E, [>, y; 1og (9:| xi, ti, ¢)].

4 Method

Different from previous prompt learning methods, we abandon the training
paradigm of the fixed prompt and residualed prompt. Instead, we introduce a
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Fig. 2: The design of the second stage of the training phase. The condition generative
adversarial net is the backbone of the generative model. The generator is guided by
images to produce prompts. Meanwhile, the discriminator evaluates the authenticity
of the prompt labels and the generated prompts with image data.

novel generative perspective to prompt learning, namely Soft Prompt Generation
(SPG). Specifically, our method includes a two-stage training phase to train a
generative model incorporated with domain information and an inference phase
to generate prompts directly. In our method, the generation of soft prompts is
exclusively handled by a generative model. Notably, the domain knowledge is
stored within the generative model, making it possible for each image to gener-
ate an instance-specific prompt. Our method ensures the diversity of prompts
and allows for the incorporation of domain-specific information. We introduce
our SPG method as follows.

Training Stage I: Domain Prompt Labels Learning. To better adapt our
SPG method to the DG problem, we introduce the concept of domain prompt
labels. Each domain corresponds to a domain prompt label v® where d; denotes
1th domain, derived from training on the data of each domain with cross-entropy:

di* _ : d; di d;
o = argmin g . [lonp (5 1) 0
where (x?", y;i) denotes images and labels of training samples in ith domain. The
prompt design follows Zhou et al. with text prompt tuning. These domain
prompt labels represent optimal prompts for each domain, which encapsulate
rich domain information.

Training Stage II: Generative Model Pre-training. We adopt a simple yet
efficient generative model, conditional generative adversarial net (CGAN) [27],
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to demonstrate the effectiveness of our method. CGAN, an extension of the con-
ventional generative adversarial network (GAN) framework, operates by condi-
tioning the generation process on additional information, usually presented in
the form of auxiliary input data or labels. The CGAN architecture includes a
generator G and a discriminator D. The generator G is guided by additional
information, ensuring that the generated outputs align with the specified condi-
tions. Meanwhile, the discriminator D evaluates the authenticity of the real data
and fake output, fostering a dynamic adversarial interplay that refines the over-
all generative capabilities of the model. In this work, the fake batch of images is
randomly sampled from the dataset.

As shown in Figure 2] we adapt the CGAN model to serve the DG task of
prompt generation, aligning the generated prompts with their corresponding im-
ages. Our objective is to learn the generator’s distribution p, over soft prompt v,
transferring the transferability from prompts to the generator. In the generator,
we define a prior on input noise variables z, and the joint hidden representa-
tion [z, f(x)] combines these noise variables with image embeddings f(x) with
concatenation operation. In the discriminator, domain prompt labels and the
generated prompt with image embeddings f(x) serve as inputs to a discrimina-
tive function. Therefore, the objective function V (G, D) of a two-player minimax
game can be formulated as:

mén max V(G,D) = Eyp,(vyllog D(v | f(x))]
+ Ezp, (o [log(1 — D(G(zf(x))))]-

The pre-trained CGAN aims to capture domain-invariant and domain-specific
features, ensuring consistency across diverse domains. Additionally, its generator
maintains prompt diversity, enhancing the model’s adaptability and generaliza-
tion capabilities to handle varied inputs.

(2)

Inference. The generator of CGAN is employed to produce a domain-specific
soft prompt for each image of the target domain. The probability of the image
belonging to the ith class can be formulated as:

exp((ws, f(x))/7)
S exp((wy, f(x))/7)

ply=i|x)= , (3)

s.t. wi = g([G(z | f(x)), ci]), (4)

where 7 denotes temperature parameter, K denotes the number of classes, g
denotes the text encoder, G(z | f(x)) denotes the domain-specific soft prompt, ¢;
denotes ith tokenized class token, and [-, -] denotes the concatenation operation.
In this way, exclusively relying on a generative model for soft prompt production
provides benefits in terms of adaptability and dynamic prompt generation. Our
method fosters diversity in prompt generation and enhances generalization across
various tasks and domains.
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5 Experiments

5.1 Experimental Setting

Datasets. Experiments are conducted on five popular benchmark datasets
of DG, namely PACS |21]|, VLCS [11], OfficeHome |[33|, Terralncognita (Ter-
ralnc.) |3] and DomainNet [30]. The dataset details can be seen in the appendix.

Baselines. We consider two types of methods for comparisons. For the tra-
ditional DG methods, we report the performance of ERM [14], SWAD |[4],
MIRO [5]. For CLIP-based methods, we compare SPG method with zero-shot
CLIP (ZS-CLIP) [32], linear probing of CLIP (Lin. Prob.) [32]|, CoOp [40], Co-
CoOp [39], VPT [17], VP |1], MaPLe [18], DPL |36].

Experimental Setup. ResNet50 (RN50) [15] and ViT-B/16 |10| are adopted
as our backbones. For our SPG method, in the first stage, we train the domain
prompt labels using the SGD optimizer with a batch size of 32 and the context
length of the prompt label is 4. In the second stage, we train the CGAN model
using the AdamW optimizer with weight decay le-4 and betas (0.9, 0.999), start-
ing with a learning rate of 2e-3 for PACS, VLCS and Terralncognita dataset,
and a learning rate of 2e-4 for OfficeHome and DomainNet dataset. To enhance
the stability of the CGAN, we incorporate a gradient clipping strategy to im-
pose conditional constraints on the learnable parameter. For other CLIP-based
methods, we set the learning rate initially to around 2e-3 and decay it using a
cosine annealing rule with 20 epochs. We also set the batch size to 32. Moreover,
the context tokens length is set to 2 for MaPLe, 10 for VPT and VP, and 16 for
CoOp and CoCoOp. We employ the training-domain validation set method for
model selection for all methods, selecting the model that achieves the highest
accuracy on the overall validation set.

5.2 Comparison with SOTA Methods

Multi-source Domain Generalization. We follow the leave-one-domain-out
evaluation protocol [14] for multi-source domain generalization. In this protocol,
the model excludes one domain from the training set in each evaluation round
and is then tested on the excluded domain. This iterative process continues until
each domain has been excluded once.

In Table [I} we report the mean leave-one-domain-out performance of PACS,
VLCS, Office-Home, Terralncognita, and DomainNet for both ResNet50 and
ViT-B/16 backbones. We can observe that SPG outperforms all other CLIP-
based methods on five datasets with two backbones. For instance, with ResNet50
as the backbone, SPG can surpass zero-shot CLIP and the state-of-the-art
(SOTA) CLIP-based method with a large margin of 13.7% and 3.4% for Ter-
ralncognita. SPG also achieves a large improvement of around 4.0% and 2.2%
compared with zero-shot CLIP and the SOTA method CoCoOp for VLCS. SPG
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Table 1: Comparisons with SOTA methods on five domain generalization benchmark
datasets for multi-source DG in terms of mean leave-one-domain-out performance with
ResNet50 and ViT-B/16 as the backbone (B.). The results marked by } are the reported
numbers from the original papers. Average accuracies and standard errors are reported
from three trials. Bold denotes the best score.

Method ‘ B. ‘ PACS VLCS OfficeHome  Terralnc. DomainNet Avg
ERMT |14] 3 85.7+0.5 77.4+0.3 67.5+0.5 47.240.4 41.240.2 63.8
MIRO 15] Z 85.440.4 79.0+0.0 70.5+0.4 50.4+1.1 44.340.2 65.9
SWAD' 4] | 88.1+0.1 79.1+0.1 70.6+0.2 50.0+0.3  46.5+0.1  66.9
ZS-CLIP |32 90.7+0.0 80.0+0.0 70.8+0.0 23.840.0 46.4+0.0 62.3
Lin. Prob. |32] R 90.6+0.3 79.8+0.4 65.5+0.2 33.0£1.2 27.1+0.2 59.2

CoOp |40 azi 91.3+0.3 81.4+0.2 73.540.2 33.2+3.4 49.7+0.2 65.9
CoCoOp |39] a 91.9+0.6 81.8+0.3 73.440.4 34.1+3.0 49.7+0.1 66.3
DPL [36] 3 91.8+0.7 80.8+0.8 73.6+0.4 34.4+1.0 49.6+0.2 66.0
VP |1 © 90.2+0.1 80.5+0.3 70.240.2 25.6+1.0 45.8+0.1 62.4
SPG (ours) 92.8+0.2  84.0+1.1 73.8+0.5 37.5+1.8  50.1+0.2  67.5
ZS-CLIP |32] 96.140.0 82.340.0 81.840.0 33.840.0 56.640.0 70.2
Lin. Prob. [32] © 94.9+1.4 77.5+0.7 79.3+0.2 44.6+2.1 48.240.2 68.9

CoOp [40] § 96.4+0.3 80.8+0.3 83.0+0.1 46.8+0.7 59.5+0.2 73.6
CoCoOp (39| e 96.7+0.2 80.3+0.3 83.4+0.2 45.3+2.4 59.4+0.2 73.2

DPL |36 = 96.4+0.3 80.9+0.5 83.0+0.3 46.6+0.8 59.5+0.3 73.6

VP (1] [ 95.840.1 82.240.0 81.240.2 34.9+0.2 56.540.0 70.1
VPT |17 5 96.9+0.2 82.0£0.2 83.240.1 46.7+0.6 58.540.2 73.6
MaPLe |18| 96.5+0.2 82.2+0.2 83.4+0.0 50.240.9 59.5+0.3 744
SPG (ours) 97.0+0.5  82.4+04  83.6+0.4 50.2+1.2  60.1+0.5  74.7

achieves a convincing improvement of approximately 1.5% on the averaged re-
sults of five benchmarks, establishing a new SOTA for the multi-source DG task.
The results underscore the potential of generative models for prompt learning.

Meanwhile, SPG with ResNet50 as the backbone outperforms the SOTA tra-
ditional DG methods by a large margin of 4.7%, 4.9%, 3.2%, and 3.6% for PACS,
VLCS, OfficeHome, and DomainNet datasets, respectively. We also observe that
traditional DG methods achieve the SOTA performance on the Terralncognita
dataset, surpassing both the zero-shot CLIP model and our method. This dis-
crepancy may arise from the fact that CLIP was not pre-trained on data similar
to Terralncognita, highlighting the need for further exploration of VLMs on
unseen domain data and other downstream tasks.

Single-source Domain Generalization. The leave-all-but-one-domain-out
evaluation protocol is adopted for single-source domain generalization. Under
this protocol, all domains except one are included in the training set, and the
model is then tested on the remaining domain.

Table [2] shows the experimental results of the leave-all-but-one-domain-out
performance of PACS, VLCS, Office-Home, Terralncognita and DomainNet for
ResNetb0 backbone. SPG outperforms other CLIP-based fine-tuning methods on
five datasets. We observe averaged improvements of 19.0% and 1.4% compared
with linear probing of CLIP and the SOTA method CoOp, respectively. This
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Table 2: Comparisons with CLIP-based fine-tuning methods on five domain general-
ization benchmark datasets for single-source DG in terms of leave-all-but-one-domain-
out performance with ResNet50 as the backbone. Bold denotes the best scores.

Method ‘ PACS VLCS OfficecHome Terralnc. DomainNet — Avg
Lin. Prob. [32] 77.3 65.5 46.4 23.3 6.3 43.8
CoOp |40 86.0 75.3 70.7 30.7 44.9 61.4
CoCoOp |39 88.1 68.2 70.6 25.6 45.5 59.6
DPL |36 86.8 75.2 70.8 28.4 43.8 61.0
SPG (ours) 88.8 76.5 70.9 32.3 45.6 62.8

Table 3: Comparisons with CLIP-based methods on four domain generalization bench-
mark datasets for cross-dataset generalization performance with ViT-B/16 as the back-
bone. Bold denotes the best scores.

Method ‘ PACS VLCS OfficeHome Terralnc. Avg
ZS-CLIP |32] 94.5 80.5 82.1 30.9 72.0
CoOp [40] 96.2 72.8 83.1 32.1 71.1
CoCoOp 39| 95.8 72.6 83.3 34.2 71.5
DPL |36 96.0 72.7 83.6 30.2 70.6
VPT |17 95.7 7.7 82.5 26.2 70.5
MaPLe [I8] 95.1 74.4 83.9 27.3 70.2
SPG (ours) 96.7 76.7 83.9 38.0 73.8

demonstrates that by leveraging the generative model for prompt generation,
SPG is able to produce more domain-relevant and adaptive prompts, leading
to improved performance across different domains. The domain-wise results for
both multi-source DG and single-source DG are provided in the appendix.

Cross-Dataset Generalization. We split the DomainNet subset into training
and validation datasets. With training-domain validation set model selection,
we train on training data of DomainNet and select the best model on validation
data of DomainNet. Then we test the best model on four downstream datasets,
i.e., PACS, VLCS, OfficeHome and Terralncognita.

As shown in Table [3] SPG outperforms all other CLIP-based methods, in-
dicating the effectiveness of our generative prompt learning method in tack-
ling distribution shifts. SPG achieves an average accuracy improvement of 1.8%
compared with the zero-shot CLIP. It is also noteworthy that there is a stable
improvement in the performance of baseline methods for the PACS and Office-
Home datasets, such as CoOp, CoCoOp, etc. We attribute this to the similarity
in the distribution between DomainNet and these downstream datasets. How-
ever, when encountering a significant distribution shift, such as observed with
the VLCS and Terralncognita, the performance of these methods may decline
due to the learned prompts not being able to generalize to the new distribution.
For Terralncognita dataset, our SPG method can mitigate this challenge to some
extent, the generative model is capable of dynamically generating prompts for
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Fig. 3: The t-sne visualization of the prompt embeddings for CoCoOp, DPL, and our
SPG method. Multi-source domain generalization models on 3 tasks of PACS dataset
are employed to obtain prompt embeddings. Different colors denote different classes.
All the domains including the target domain are highly clustered in SPG.

each image of unseen distribution, thus enabling more adaptable prompt gen-
eration. Nevertheless, it remains particularly challenging for the VLCS dataset,
which indicates a need for further exploration.

5.3 Visualization

The t-SNE visualization. In Figure [3| we qualitatively evaluate prompt em-
beddings synthesized by baseline methods and our SPG method for three multi-
source domain generalization tasks of PACS using t-SNE visualization |§|| We
alm to generate a domain-specific prompt for each image, which ensures that
prompt diversity and domain knowledge benefit the DG tasks. As illustrated in
Figure [3] the prompts generated by our SPG method demonstrate a higher de-
gree of clustering compared to prompts generated by alternative methods such as
CoCoOp and DPL. This improved clustering indicates a higher degree of discrim-
inative ability of the prompts, suggesting that our SPG method is more effective
at capturing domain knowledge during prompt learning. The clustered domain
prompts may also facilitate a better understanding of the semantic relationship
between images and text, allowing the model to focus more on comprehending
class concepts when aligning with the image encoder.
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SPG (Ours)
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Fig. 4: The image-prompt-image retrieval experiment is designed to demonstrate the
correlation between the prompts and the images. We present the top-2 results of image
retrieval conducted using CoOp, CoCoOp, DPL, and our SPG method. Images encased
in red rectangles indicate instances where the query image and the retrieval image
belong to the same domain.

Image retrieval. We designed an image-prompt-image retrieval experiment
to demonstrate the correlation between the generated prompt and the images
in each domain. Specifically, we first sampled N-way K-shot images from each
domain in the dataset and combined them into an image library, where N is 7
and K is 10 for PACS. Then, we randomly select one image as a query from the
remaining images. The generated prompt of each query image is concatenated
with the class token, which is passed through a text encoder to calculate the
probability distribution with the features of each image in the image library.
Subsequently, we select the probability value corresponding to the class of the
query image as the confidence score. These scores are then sorted in sequence,
and the top-2 images are obtained as the results of the image retrieval.

In Figure[d we can observe that the prompts generated by our SPG method
are capable of retrieving images that are more closely aligned with the query
image, implying that the prompts generated by our model for the query image
are more closely related to domain-specific information. It shows the effective-
ness of our SPG method in encoding domain-relevant information within the
prompts with a generative model. While previous methods have not emphasized
the importance of domain knowledge, our SPG method stands out by explicitly
integrating domain-specific information into the prompt generation process.

5.4 Ablation Study

Ablation on the different design of prompt. We have summarized four
characteristics of prompts: fixed, learnable, conditional, and generative. Based
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Table 4: Comparisons with different design of prompt on five domain generalization
benchmark datasets for multi-source DG performance with ResNet50 as the back-
bone. O.H. denotes OfficeHome, and Do.Net denotes DomainNet. Bold denotes the
best scores.

Prompt Type
Fixed Learnable Conditional Generative PACS VLCS O.H. Terralnc. Do.Net
Manual Prompt v 90.7 80.0 70.8 23.8 46.4

Method

Mix-domain-prompt v v 92.0 76.2 72.5 29.6 47.9
All-domain-prompt v v 91.3 81.4 73.2 33.2 49.7
CoCoOp [39] v v 91.9 81.8 734 34.1 49.7
DPL |36 v v 91.8 80.8 73.6 34.4 49.6

SPG (Ours) v v 92.8 84.0 73.8 375 50.1

Table 5: Ablation on the context length of prompt on PACS for multi-DG performance
with ResNet50 as the backbone.

Context Length Art Cartoon Photo Sketch Avg
2 91.5 94.4 99.1 74.6 89.9

4 92.8 93.8 99.5 85.1 92.8

4 (random) 93.0 93.4 99.5 82.9 92.2

8 83.1 91.7 99.2 79.2 88.3

16 84.7 93.6 98.3 82.0 89.7

on these characteristics, we selected five methods for comparison: (1) Manual
prompt: manually designed prompt as "a photo of a [CLS]", where [CLS] is the
class token. (2) Mix-domain-prompt: weighted sum of domain prompts obtained
from each source domain. We set equal weights for each domain. (3) All-domain-
prompt: prompt obtained from all source domain data. (4) CoCoOp. (5) DPL.

As shown in Table[d] in the multi-source DG setting, the manual prompt per-
forms the worst, highlighting the necessity of fine-tuning for downstream tasks.
For the learnable fixed prompt, the all-domain-prompt shows better performance
than mix-domain-prompt. However, if the weights for mix-domain-prompt are
more reasonable, there might be some improvement of performance, as some
works have already attempted to explore this aspect [37]. Additionally, the con-
ditional prompt methods outperform the fixed prompt methods, likely due to the
integration of image information and a more diverse prompt. Finally, our gener-
ative prompt method performs the best, demonstrating its potential in prompt
learning in VLMs.

Sensitivity of context length of prompt. As shown in Table[5| we evaluate
the effects of different context lengths of prompt for multi-source DG on PACS
using the ResNet50 backbone. We mainly initialize the soft prompt in two ways.
One is to initialize it with the embedding of the text "a photo of a", namely word
embeddings-based initialization. The other one is to sample from a zero-mean
Gaussian distribution with a standard deviation of 0.02 (marked as random). In
Table |bl we find that this initialization leads to slight improvement. Overall, we
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Table 6: Ablation on the training samples of the generative model (CGAN) on PACS
for multi-DG performance with ResNet50 as the backbone.

Training Samples Art Cartoon Photo Sketch Avg
20 30.1 34.9 23.4 34.5 30.7
40 51.2 55.3 34.3 65.5 51.6
60 73.8 76.7 56.8 81.1 72.1
80 89.2 93.5 84.8 86.4 88.5
full 92.8 93.8 99.5 85.1 92.8

observe that the prompt context length of 4 provides the optimal performance
for our SPG method.

Sensitivity to the number of training samples. We sample different pro-
portions of the training data for the generative model, including 20%, 40%, 60%,
80%, and all samples. Table |§| presents the results of our multi-source domain
generalization experiments on the PACS dataset, and we observe a consistent
increase in accuracy for all four tasks on the PACS as the amount of data for
training the generative model increases. The performance reached its optimum
when using all the data.

6 Conclusion

In this paper, we reframe the prompt learning framework from a generative
perspective, and are the first to introduce the generative model into prompt
learning in Vision Language Models (VLMs). We propose a simple yet efficient
Soft Prompt Generation (SPG) method for the Domain Generalization (DG).
SPG is a new paradigm of prompt tuning, which consists of a two-stage training
phase and an inference phase. In the training phase, we introduce the concept of
domain prompt labels, which are adopted to incorporate the generative model
with domain knowledge. During the inference phase, the generative model is
employed to obtain domain-specific soft prompts for target domain data. SPG
relies exclusively on a generative model to directly produce soft prompts. This
preserves the diversity of generated soft prompts, aiming to learn domain in-
formation with the generative model, including the target domain. Extensive
experiments on three DG tasks of five DG benchmark datasets confirm the effec-
tiveness of our proposed SPG method. Compared with traditional DG methods
and CLIP-based approaches, SPG achieves new state-of-the-art performance for
domain generalization. We hope this research inspires future exploration into
tapping the potential of generative models in prompt generation and learning.
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