
Shedding More Light on Robust Classifiers
under the lens of Energy-based Models

— Supplementary material —

Mujtaba Hussain Mirza1, Maria Rosaria Briglia1, Senad Beadini2, and Iacopo Masi1

1 OmnAI Lab, CS Department, Sapienza University of Rome, Italy
2 Eustema S.p.A. Italy

{mirza,briglia,masi}@di.uniroma1.it
s.beadini@eustema.it

A Appendix

A.1 Energy in function of PGD Steps
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Fig.A: Eθ(x) w.r.t. to PGD
on CIFAR 100. For each point
we report the robust accuracy.

Similar to Fig. 1(a) in the paper, Fig. A shows
the dependency using three different architectures
with diverse depths for CIFAR 100. In partic-
ular, Fig. A reveals that increasing the number
of classes by an order of magnitude—from 10 to
100—reduces the gap of the energies across differ-
ent model depths. In Fig. A the energies are all
collapsing to −50 while in Fig. 1(a) in the paper
there are more variations.

In Fig. B, utilizing the WideResnet-28-10 [4],
we observed the same intriguing trend where the
energy Eθ(x) associated with adversarial inputs
reduces as the intensity of the attack amplifies.
Notice that we quantify the attack’s intensity by
the discrete count of steps undertaken in a PGD
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Fig. B: Dependency of Eθ(x) and Eθ(x, y) w.r.t. number of steps of PGD. We
show classic PGD using CE loss and TRADES using KL divergence on a non-robust
WideResnet-28-10 [4]. Each point of the plot also reports the robust accuracy and the
standard deviation of the energy values. Note how TRADES has higher std. dev. for
Eθ(x, y) given that the distribution is bimodal.
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attack. In this plot, in addition to what we show in the paper, we have also
added the trend for Eθ(x, y) that goes up. Notably, while PGD and TRADES3

have the same trends in terms of average energies, their spread is very different
with TRADES having a much larger standard deviation than PGD, given that
TRADES show a bimodal Eθ(x, y) distribution—see Fig. 2(b) in the paper.

In Fig. C, we present a high-resolution version of the Fig. 2 in the paper,
where we show the conditional and marginal energy distribution for a diverse
set of state-of-the-art adversarial attacks. All the attacks except for CW are
produced with a deformation of input given by ℓ∞ ≤ ϵ = 8/255 and a step size
of 2/255. The CW attack operates under an ℓ2 perturbation constraint. For PGD,
APGD, TRADES, and FAB we operate with 20 steps, while for Square and CW
we used 1000 queries and 200 steps, respectively. All these observations, when
reevaluated through the Energy-Based Model perspective, lead to an insightful
deduction. Moving beyond the traditional notion that adversarial attacks merely
cross the decision boundary, our research suggests that DNNs are predisposed
to consider adversarial examples as extremely probable according to the hidden
generative model.

A.2 Energy Dynamics during Adversarial Training

We explored the dynamics of energy values throughout the adversarial training
process when employing SAT [9]. While training, we track both marginal en-
ergy Eθ(x) and joint energies Eθ(x, y) associated with the ground truth label
for both original samples and adversarial points — shown in Figs. D and E.
These figures extend Fig. 1 in the paper. More precisely in Fig. D, we show
a similar plot that we have in the paper but without the vector fields, thereby
showing original points and adversarial points separately. In addition, to better
show Eθ(x) decreasing, in this plot, we fixed the axis to have the same numerical
range that we attain at the end of the training, to notice how Eθ(x) elongates
along the diagonal component. Fig. E instead is the same Fig. 1 in the paper but
with higher resolution, in addition, we offer also the same plot but color-coded
with class labels rather than the drift intensity. Initially, as training commences,
energy values for all data points typically initialize around zero. However, as
the model progresses through successive training epochs and refines its under-
standing of the data, the energy values start to decline. Moreover, we observe a
convergence between the values of marginal Eθ(x) and joint energies Eθ(x, y),
where y is the ground truth label, indicating that the model has successfully
fitted these points. This means that for points around the black dashed line the
CE loss is almost zero, i.e. the model pushed p(y|x) ≈ 1 or in terms of energy
Eθ(x, y) ≈ Eθ(x). However, an interesting observation is that even as the model
fits certain points, their energy values continue to decrease. These trends persist

3 We refer to PGD attack maximizing Cross-Entropy loss introduced by [9] as simply
PGD, while the PGD attack maximizing the KL divergence between the conditional
probability distributions given original sample x and adversarial sample x⋆, denoted
as p(y|x) and p(y|x⋆) respectively, employed by [17] as TRADES.
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Fig. C: Top two rows (1-8). Marginal Energy distribution Eθ(x). (1) PGD energy
moves on the left, notice how the distributions are almost separated, the robust ac-
curacy is 0% (2) TRADES performs similarly though robust accuracy is 30%; (3)
APGD is more subtle; a tiny fraction of test points share similar values than natural
data. (4-5) Targeted attacks such as APGD-T move energy on the right (6) FAB (Fast
Adaptive Boundary) behaves similarly to a targeted attack. (7-8) Square and CW are
very difficult attack since the energies overlap more, it is even visible how CW attack
logic in finding the minimal deformation to flip the classification is visible in the highest
overlap between energies. Bottom two rows (9-16) Conditional Energy distribution
Eθ(x, y). (9) PGD drastically increases the Eθ(x, y) of the ground-truth class, thereby
reducing the GT logit; (10) TRADES does the same but shows 2 modes, the mode
on the left corresponds to points that are not attacked (11-12-13) APGD series of
attacks move too Eθ(x, y) on the right yet making an effort to create overlap with nat-
ural distribution (14-15-16) FAB, Square and CW share a similar distribution that
overlaps the natural ones making these attacks harder to detect. We show our analysis
for a diverse set of state-of-the-art adversarial perturbations for both untargeted and
targeted (-T) attacks on CIFAR-10 test set, using a non-robust model with 94.78%
clean accuracy. All the attacks except for CW are produced with a deformation of in-
put given by ℓ∞ ≤ ϵ = 8/255 and a step size of 2/255. The CW attack operates under
an ℓ2 perturbation constraint. indicates adversarial while natural data.
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Fig.D: Scatter plots of Eθ(x, y) and Eθ(x) with axis in the same range, on the CIFAR-
10 dataset at various stages during training the model. Top row (1,2,3) natural
images (1) illustrates the plots at the early stage of training and as expected, for
most of the samples Eθ(x, y) > Eθ(x), indicating high loss. (2) showcases the plot
after 50 training epochs where we can notice both Eθ(x, y) and Eθ(x) have started to
decrease. Finally, (3) shows at the 100th epoch of training, for most of the samples the
Eθ(x, y) and Eθ(x) have same values, indicating lower loss. From the plots, we also
observe that the values for Eθ(x, y) and Eθ(x) keep decreasing as we move into the
later stages of the training process. Bottom row (4,5,6) adversarial images The
trend of adversarial points is similar to what depicted in the top row yet adversarial
points tend to bend the energy more and incur higher loss values.
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Fig. E: We scatter plot Eθ(x, y) in function of Eθ(x) for a sub sample of training data
of the CIFAR-10 dataset at various stages during standard AT with PGD 5 iterations
at epoch 1, 50, 100. Note that the axes across figures are not in the same range for
clarity. Each arrow represents the “drift” induces in the energy by the attacks: the base
of the arrow is the natural data while the tip is after the attack. The dashed black,
the identity line, corresponds to cross-entropy loss zero when Eθ(x, y) = Eθ(x). The
plot can takes values only above that line. Top row: each arrow is color-coded w/ class
labels: airplane automobile bird cat deer dog frog horse ship truck
Bottom row: color-coded by intensity of the drift less more intense.
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across both original and adversarial points. However, with adversarial points, we
notice that the model struggles to fit a significant portion of them, and all of
them being high-energy samples, located in the upper right part of the plot.

A.3 Implementation Details for Experimental Section

We train on the entire training set and select the model with the best robust
accuracy under PGD on validation set, created by sampling from the synthesized
images [15]. CIFAR-10/100 and Tiny-ImageNet are trained for 100 epochs while
SVHN is trained for 30 epochs. We used SGD optimizer with momentum and
weight decay set to 0.9 and 5× 10−4 respectively, cyclic learning rate [11] with
a maximum learning rate of 0.1. We use the ℓ∞ threat model with ϵ = 8/255,
with step size α set to 2/255 for CIFAR, Tiny-ImageNet and 1/255 for SVHN as
per standard practices. With WEATADV, β is 6 for CIFAR-10 and SVHN, and
7 for CIFAR-100. Whereas, WEATNAT has β = 6, matching TRADES [17] for
fair comparison. For MAIL-TRADES [8] using PMadv, β = 5 and burn-in period
is 75 epochs. In image generation, we preserve 99% of data variance, effectively
guaranteeing a certain amount of starting information while minimizing high-
frequency noise. Parameters such as number of SGLD steps (N), friction ζ, noise
variance γ, and step size η are set to 150, 0.8, 0.001, and 0.05 respectively, with
an exception of SAT [10] with N = 20 and ζ = 0.5. With these choices, energy
descent stays smooth over the generation steps, where images are projected to
the range [0, 1] at each iteration.

A.4 Additional Details on Experiment in Fig. 5(a)

As discussed in Section 3.2, in “AT in function of High vs Low Energy
Samples” , we conducted a proof-of-concept experiment to better investigate
the finding of MART [13], suggesting that the natural samples that are incor-
rectly classified contribute significantly to final robustness. Our findings revealed
instead that are the high-energy samples that significantly contribute to robust-
ness. In this section, we provide additional details on this experiment. Notably,
most misclassified samples also fall into the category of high-energy samples as
shown in Fig. F1. To start, we trained a robust model using SAT [9] which we
used to identify correct and incorrect classifications among our training samples.
We isolated 3317 (6.6% of the total samples) incorrectly classified samples and
randomly sampled an equivalent number of correctly classified ones, creating two
distinct datasets without these subsets, which we denote as I and C, respectively.

Subsequently, we created two additional subsets, L and H, this time utilizing
energy values. Given that energy values are unnormalized, we found it more
convenient to sort the samples based on these values and remove the 6500 samples
(13% of the total samples) with the lowest energy values from the original dataset
to create L. Similarly, an equal number of samples with the highest energy values,
with the condition that all samples are correctly classified, were removed from
the original dataset to create H. The thresholds for defining high and low energy
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Dataset # Correct
Classified

# Incorrect
Classified

High Energy Samples — Eθ(x) > −3.8744 6500 2724
Low Energy Samples — Eθ(x) ≤ −11.4755 6500 0
Samples — Eθ(x) < −3.8744 ∪ Eθ(x) > −11.4755 33683 593

Table A: It is important to clarify that the thresholds used here to classify samples as
either high or low energy were automatically determined based on sizes of the selected
subsets. Any sample with an energy value above -3.8744 was categorized as high energy,
while those with an energy value below -11.4755 were classified as low energy.

samples were automatically determined based on the selected subset sizes. The
statistics related to the original dataset with these thresholds can be seen in
Tab. A. This process allowed us to generate two more datasets based on energy
values. For a visual representation of how these datasets were created, please
refer to Fig. F2. With four distinct datasets (C, I, L, and H) at our disposal,
we trained four different models using each of these datasets. This approach
facilitated a systematic examination of the influence of various sample subsets
on the model’s performance and robustness. The statistics of the four datasets
are shown in Tab. B.

Dataset # Correct Classified # Incorrect Classified

I (w/o Incorrect) 46683 0
C (w/o Correct) 43366 3317
H (w/o High En. & Correct ) 40183 3317
L (w/o Low Energy) 40183 3317

Table B: Summary of Datasets (C, I, L, and H) displaying the number of correctly
and incorrectly classified samples within each dataset.

As shown in Fig. F3 and Fig. F4, we observe that removing incorrect sam-
ples has a significant effect on both robust and clean accuracy. They decrease
robust accuracy and increase clean accuracy, whereas removing correct samples
does not have much effect on either accuracy, consistent with prior knowledge.
Surprisingly, we find that similar effects on accuracy can be achieved by remov-
ing just the correct samples, provided they are all high energy. Additionally, we
notice that removing low energy samples has a lesser impact on both clean and
robust accuracy, similar to when we randomly remove correct samples from the
dataset. From this, we can deduce that the influence on accuracy is not solely
determined by whether the samples are classified correctly or incorrectly, but
rather by their energy levels—high energy and low energy.
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Fig. F: (1) Boxplots illustrating energy value distributions for all samples in the
dataset, correctly classified samples, and misclassified samples. (2) A visual representa-
tion showing the removed subsets of data from the entire dataset. (3) Plots illustrating
the error rates of the robust models on the adversarial (4) and original test samples.
These models were trained on derived datasets C, I, L, and H.

A.5 Interpreting TRADES as Energy-based Model

Going beyond prior work [2, 7, 12, 18], we reinterpret TRADES objective [17]
as an EBM. TRADES stands for “TRadeoff-inspired Adversarial DEfense via
Surrogate-loss minimization”. Given an input image x and ∆ a feasible set of in
the ℓp ball round x that is ∀ x⋆ : x+ δ,

∥∥δ∥∥
p
< ϵ, a classification problem with

K classes, TRADES loss is as follows:

min
θ

[
LCE

(
θ(x), y

)
+ βmax

δ∈∆
KL

(
p(y|x)

∣∣∣∣∣∣p(y|x⋆)
)]

, (1)

where KL(·, ·) is the KL divergence between the conditional probability over
classes p(y|x) that acts as reference distribution and probability over classes for
generated points p(y|x⋆), the loss L is CE loss and p(y|x) is given by the softmax
applied to the logits θ(x).

Proposition 1. The KL divergence between two discrete distributions p(y|x)
and p(y|x⋆) can be interpreted as EBM as:

Ek∼p(y|x)

[
Eθ(x

⋆, k)− Eθ(x, k)
]

︸ ︷︷ ︸
conditional term weighted by classifier prob.

+Eθ(x)− Eθ(x
⋆)︸ ︷︷ ︸

marginal term

(2)

Proof. KL divergence is defined as:

KL(P ||Q) =
∑
k∈K

p(k|x) log
(

p(k|x)
p(k|x⋆)

)
=

=
∑
k∈K

p(k|x) log
(
p(k|x)

)
−

∑
k∈K

p(k|x) log
(
p(k|x⋆)

)
. (3)
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Now recalling that the log
(
p(k|x)

)
can be written in terms of energies as

log
(
p(k|x)

)
= −Eθ(x, k) + Eθ(x), noting that

∑
k∈K p(k|x) is one and Eθ(x)

does not depend on k, then we have that:

∑
k∈K

p(k|x) log
(
p(k|x)

)
=

∑
k∈K

p(k|x)
[
− Eθ(x, k) + Eθ(x)

]
=

= Eθ(x) +
∑
k∈K

p(k|x)
[
− Eθ(x, k)

]
.

Thus Eq. (3) can be written shortly as:

KL
(
p(y|x)

∣∣∣∣∣∣p(y|x⋆)
)

.
= Eθ(x)− Eθ(x

⋆) +
∑
k∈K

p(k|x)
[
Eθ(x

⋆, k)− Eθ(x, k)
]
.

So the KL loss minimizes two terms:

Ek∼p(y|x)

[
Eθ(x

⋆, k)− Eθ(x, k)
]

︸ ︷︷ ︸
conditional term weighted by classifier prob.

+Eθ(x)− Eθ(x
⋆)︸ ︷︷ ︸

marginal term

□ (4)

Corollary 1. TRADES object can be written as EBM as:

Eθ(x, y) + (β − 1)Eθ(x)− β
{
Eθ(x

⋆) + Ep(y|x)

[
Eθ(x, k)− Eθ(x

⋆, k)
]}

. (5)

Proof. It follows from combining Proposition 1 and CE loss applied to natu-
ral data but written as EBM. It follows from just rearranging the terms and
combining the Eθ(x) part from KL divergence w.r.t. to the CE loss.

LCE
(
θ(x), y

)
+ βKL

(
p(y|x)

∣∣∣∣∣∣p(y|x⋆)
)
,

Eθ(x, y)− Eθ(x) + β
{
Eθ(x)− Eθ(x

⋆) + Ep(y|x)

[
Eθ(x

⋆, k)− Eθ(x, k)
]}

,

Eθ(x, y) + (β − 1)Eθ(x)− β
{
Eθ(x

⋆) + Ep(y|x)

[
Eθ(x, k)− Eθ(x

⋆, k)
]}

□.

Our formulation can also better explain why the samples that the model fit
well, referred to low-loss data lead to robust overfitting [16]. Usually β = {1, 6},
following Eq. (5), when β = 1, then we have:

Eθ(x, y)− Eθ(x
⋆)− Ep(y|x)

[
Eθ(x, k)− Eθ(x

⋆, k)
]

which means we do not consider the marginal energy of the natural data. More-
over, in the later phase of training, TRADES resembles more SAT, assuming k
is the index of most likely class with high confidence and k matches the ground-
truth label y, then Eq. (4) approximately becomes:

����Eθ(x, y)− Eθ(x
⋆)−

[
����Eθ(x, y)− Eθ(x

⋆, y)
]
, (6)
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given that when the model is well trained the expectation acts more like a one-
hot encoding thereby selecting the ground-truth class. By rearranging the terms,
Eq. (6) becomes:

Eθ(x
⋆, y)− Eθ(x

⋆) = LCE(x
⋆, y;θ).

and hence with β = 1 and under the assumptions stated before, towards the end
of the training, TRADES, e.g. Eq. (5), precisely resembles the outer minimization
objective of SAT [9] which has been seen to exhibit severe overfitting.

A.6 Weighted Energy Adversarial Training (WEAT) algorithm

Based on our several observations from Section 3.2, “How Adversarial Train-
ing Impacts the Energy of Samples” , we propose a novel weighting scheme,
Weighted Energy Adversarial Training (WEAT). The core of the WEAT lies
in its weighting function, which assigns higher weights to samples with higher
energy and lower weights to the samples with low energy.
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Since energy is unnormalized, finding an appropriate
weighting function can be challenging. Throughout
our preliminary experimentation, it became evident
that the marginal energy values for all samples pre-
dominantly reside in the negative range, with the high-
est values observed not surpassing zero. Therefore, we
found that a function shown here on the right yielded
the most favorable results: it assigns higher weights
to samples around zero and non-linearly decreases the
weights as it moves away from zero. Our weighting
function w(x) is defined as:

w(x) =
1

log
(
1 + exp(|Eθ(x)|)

) . (7)

Finally, we present the WEAT method in Algorithm 1.

A.7 Additional Details on the Generative Capabilities

Hyperparameters Choice. In the section outlining our approaches, we presented
two distinct models, both of which emerged as our best performers, employing
the same inference method but built on different architectures. The first model
is rooted in SAT [10], while the second one is constructed based on the principles
outlined in Better DM [15]. Better DM uses TRADES for training and employs
millions of synthetic images generated by diffusion models. Despite utilizing the
same inference method, the primary distinction lies in the choice of hyperpa-
rameters, which are determined based on their respective capabilities in terms
of generation intensity.

As asserted in the section discussing model’s generation capabilities, we ob-
served that SAT’s generative intensity is more pronounced. In the process of
generating images, each iteration contributes with a significantly informative
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Algorithm 1: Weighted Energy Adversarial Training (WEAT)

Input and parameters: Dataset D = {(xi, yi)}Ni=1, Batch size m, Number of
epochs T , Number of steps for perturbation method s, Learning rate η,
perturbation function P [17], KL-Divergence function KL.

Output: Adversarially Robust Network θ
Initialize model parameters θ
for t = 1 to T do

for each mini-batch (xb, yb) in D do
Generate perturbed examples: x⋆

b = P (xb, s, θ)
Compute Energy: Eθ(xb), and detach it from computational graph
Compute weights vector as Eq. (7): w(xb) = 1/log(1 + exp(|Eθ(xb)|))
Note that the w(xb) is computed on original points.
if WEATadv then
LCE = 1

m

∑m
i=1 LCE(θ(x

⋆
b), yb)⊙ w(xb)

end
else if WEATnat then
LCE = 1

m

∑m
i=1 LCE(θ(xb), yb)⊙ w(xb)

end
LKL = 1

m

∑m
i=1(KL(θ(xb),θ(x

⋆
b))⊙ w(xb))

Compute total loss: Ltotal : LCE + β · LKL

Update model parameters: θ ← θ − η∇θLtotal
end

end

content, reducing the necessity for multiple iterations. However, the robust model
incorporates image components distinguished by sharply defined contours and
vibrant colors. If these features are added for too many iterations, they can lead
to the generation of unrealistic images that deviate from the underlying manifold
and amplifies significant traits of the class. For this reason, the number of SGLD
iterations is well calibrated as well as the momentum friction—see Tab. C—which
is set to a smaller constant to prevent excessive speed in the SGLD dynamics,
avoiding the generation of excessively bright, sharp and unrealistic images. An
example of generations from the model is given in Fig. G.

Parameter Better
DM [15] SAT [10]

SGLD steps (N) 150 20
Friction (ζ) 0.8 0.5
Step size (η) 0.05 0.05
Noise variance (γ) 0.001 0.001

Table C: Parameters for SAT’s and Better DM’s Model Generation
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Fig.G: (Left) Generated images using SAT [10] and with parameters chosen for Bet-
terDM [15]: images have saturated colors and class features are exaggerated. (Right)
Inference from SAT [10] with parameters tuning: the colors and subject contours better
match the distribution of natural images.

On the contrary, the intensity of the generation of other models trained with
TRADES, e.g. Better DM [15], is less pronounced. These models do have gen-
erative capabilities but the generation is less intense and more “smooth”. Their
contributions at each step are more subdued and less sharp, both in terms of
color and shape. Consequently, the generation procedure for these models was
calibrated differently, employing more steps and introducing more friction in the
momentum. The inference configuration of hyperparameters for our best, Better
DM [15], is reported in Tab. C. In particular, we display synthesized samples for
our best performing model in the following sections, giving an extensive quali-
tative evaluation of its generation capability considering it is only a classifier.
Additional Generated Samples. In Fig. H and Fig. I, we present 100 generated
samples for each class from the top-performing model [15]. This section provides
an expanded set of images for a more in-depth qualitative analysis.

We additionally employ the Structural Similarity Index [14] to assess the com-
parison between the generated images and samples extracted from the CIFAR-10
test set. This comparison involves evaluating the similarity between the synthe-
sized images and the in-distribution samples, which are real images not included
in the training set, for a better qualitative evaluation. The results of this com-
parison are depicted in Fig. J.
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Fig.H: Generated class-conditional samples of CIFAR-10. Each subfigure corresponds
to samples belonging to a specific class.
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Fig. I: Generated class-conditional samples of CIFAR-10. Each subfigure corresponds
to samples belonging to a specific class.
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Generated Real images from CIFAR-10 ranked by SSIM scores

Fig. J: In this plot we show a qualitative comparison between some generated samples,
shown in the left column, and fifteen images belonging to CIFAR-10 test set that showed
the fifteen greatest SSIM scores.
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