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Abstract. By reinterpreting a robust discriminative classifier as Energy-
based Model (EBM), we offer a new take on the dynamics of adversar-
ial training (AT). Our analysis of the energy landscape during AT re-
veals that untargeted attacks generate adversarial images much more in-
distribution (lower energy) than the original data from the point of view
of the model. Conversely, we observe the opposite for targeted attacks.
On the ground of our thorough analysis, we present new theoretical and
practical results that show how interpreting AT energy dynamics unlocks
a better understanding: (1) AT dynamic is governed by three phases and
robust overfitting occurs in the third phase with a drastic divergence
between natural and adversarial energies (2) by rewriting TRADES loss
in terms of energies, we show that TRADES implicitly alleviates over-
fitting by means of aligning the natural energy with the adversarial one
(3) we empirically show that all recent state-of-the-art robust classifiers
are smoothing the energy landscape and we reconcile a variety of studies
about understanding AT and weighting the loss function under the um-
brella of EBMs. Motivated by rigorous evidence, we propose Weighted
Energy Adversarial Training (WEAT), a novel sample weighting scheme
that yields robust accuracy matching the state-of-the-art on multiple
benchmarks such as CIFAR-10 and SVHN and going beyond in CIFAR-
100 and Tiny-ImageNet. We further show that robust classifiers vary
in the intensity and quality of their generative capabilities, and offer
a simple method to push this capability, reaching a remarkable Incep-
tion Score (IS) and FID using a robust classifier without training for
generative modeling. The code to reproduce our results is available at
github.com/OmnAI-Lab/Robust-Classifiers-under-the-lens-of-EBM.
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1 Introduction

Ten years ago the seminal paper by Szegedy et al . [50] was released arguing about
“intriguing properties of neural networks”. Those properties revealed that deep
nets exhibit unconventional traits concerning their abrupt transitions w.r.t. to
small perturbations of the input, i.e. adversarial attacks. During the last decade,
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Fig. 1: (a) PGD untargeted attacks create points that heavily bias the energy land-
scape. Plot shows Eθ(x) in function of PGD steps, across non-robust networks of vari-
ous depths on CIFAR-10. CIFAR-100 is available in supp. material. (b, c, d) Eθ(x, y)
in function of Eθ(x) for a subset of CIFAR-10 training data at various stages during
SAT with PGD 5 iterations. Note that the axes across figures are not in the same range
for clarity. Each arrow represents the “drift” induced in the energy by the attacks: the
base of the arrow is the natural data, while the tip is after the attack. The dashed black
line corresponds to zero cross-entropy when Eθ(x, y) = Eθ(x). The plot can only take
values above that line. Color-coded by intensity of the drift less more intense.

a plethora of algorithms have been proposed to enforce robustness in a classi-
fier, mainly relying on adversarial training (AT) [20, 36, 52, 62] or to certify a
prediction [32, 33] using randomized smoothing [8]. Improvements of AT have
been reported on multiple axes: less training time [45]; more data improves ro-
bustness either from a real data distribution [5] or generated via a denoising
diffusion process [22, 53]; variations such as TRADES [62] and MART [52] and
in some cases solutions that are less robust than the baseline, GAIRAT [64]. The
training process has also been studied from the point of view of overfitting [39].
Standard benchmarks have been proposed [9] such as RobustBench. Despite all
these efforts, except a few rare cases [54], no notable algorithmic improvement
has been reported in these years, with AT hitting a plateau in performance [21]:
thus, it is not a surprise that top performing methods attain robustness simply
pouring more data [5,53] or designing better architectures [38]. Regardless of per-
formance, very little attention has been placed to understanding the role of AT
and to demystifying some unexpected capabilities of robust classifiers, such as
generative capability and better calibration abilities. The only work that adven-
tures connecting robust model with generative is [66] setting the foundation to
interpret AT as an Energy-based Model (EBM) [23]. Despite adversarial attacks
have been recognized as input points that cross the decision boundary—thus im-
pacting pθ(y|x)—following [2], we illustrate a surprising yet strong correlation
with pθ(x) for untargeted PGD attacks [36]. Going beyond [2], we extend the
analysis to a vast pool of attacks such as untargeted PGD [36], targeted attacks,
CW [4], TRADES (KL divergence) [62] AutoAttack [11] and show that different
attacks induce difference shifts in the energy landscape. We go beyond the study
of [51, 66] by offering a novel interpretation of TRADES [62] as an EBM. This
interpretation sheds light on how TRADES outperforms SAT [36] by mitigating
robust overfitting, and provides a more fine-grained analysis on the generative
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capabilities of robust classifiers. We finally bring our insights about the energy
landscape into the training dynamics discovering a new property that it is not
explicitly enforced by AT: the more a classifier is robust, the smoother is its
energy landscape; the model attains this implicitly by reconciling the range of
energies of natural data with those of adversarial data. To show how untargeted
Projected Gradient Descent (PGD) bends the energy landscape, following [2],
we attacked non-robust residual classifiers with PGD and recorded the average
energy of the adversarial points in functions of the PGD steps. Fig. 1a shows also
a strong dependency between the number of iterations taken and the marginal
energy tending to be negative. Note that although there is a steep decrease in
the energy, the attack is still norm-bounded in the input by ϵ. We also note how
attacks to deeper models bend way less the energy. The dynamic on how AT
compensates for the perturbations shown in Fig. 1a can be grasped in Figs. 1b
to 1d. The figure offers a visualization of the dynamics of the changes in joint en-
ergy Eθ(x, y) and marginal Eθ(x) during standard adversarial training3 (SAT)
with PGD with 5 iterations. Fig. 1 shows that not only the model has to correct
its prediction about a class yet has also to compensate for abrupt changes in the
energy values. This figure offers important insights such as in the beginning of
the training—Fig. 1b—for most of the samples holds Eθ(x, y) > Eθ(x), indicat-
ing high loss; note also how the more we approach zero loss, the easier it is to
bend the energy. Then in the middle of AT—Fig. 1c—most of the vectors are at
zero loss and the intensity of the attack on the energy decreases. Finally, the end
of the training—Fig. 1d: attacks are successful when Eθ(x) is high (top-right)
yet even though a lot of samples have loss close to zero, i.e. Eθ(x, y) ≈ Eθ(x)
the attack manages still to distort the energy significantly. Leveraging on the
limits of the prior art, we make the following contributions:

⋄ We empirically show a curious effect: all top performing models in RobustBench
share the same property of having a smooth marginal energy landscape. An
increase in the model’s robustness is correlated with a decrease of Eθ(x) −
Eθ(x

⋆), which conveys energy landscape smoothness in the neighborhood of
real data samples. We also explain overfitting as a drastic divergence between
natural and adversarial energies.

⋄ We further offer experiments that demystify the role of misclassification [34,52]
and reconnect AT with energy and give a better explanation for the transfer-
ability of AT w.r.t. to the training samples [35]. We theoretically show how
rewriting TRADES as EBM can better explain its capabilities.

⋄ Guided by our analysis and theoretical results, we propose Weighted Energy
Adversarial Training (WEAT) that yields robust accuracy matching the SOTA
on CIFAR-10, and SVHN going beyond in CIFAR-100 and Tiny-ImageNet. We
further show how we can push the generative capabilities of robust classifiers
reaching a remarkable Inception Score (IS) and FID just using a single robust
classifier, without training for generative modeling.

3 We refer to adversarial training (AT) as a generic procedure that regards all methods
for robust classifiers (SAT, TRADES, MART) while SAT indicates Standard AT [36].
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2 Prior Work

Adversarial Robustness. The robustness of neural networks is a crucial topic
in deep learning. Despite intensive efforts, AT [36], which incorporates adversar-
ial examples into training, remains the most effective empirical strategy. This
method has attracted considerable interest and several modifications. [62] pro-
posed TRADES, leveraging the Kullback-Leibler (KL) divergence to balance the
trade-off between standard and robust accuracy. Additionally, there are studies
dedicated to exploring how DNN architecture impacts robustness [38].
Robust Classifiers and EBM. A recent connection between robust and genera-
tive models is presented in [23]. The Joint Energy-based Model (JEM) [23] refor-
mulates the traditional softmax classifier into an EBM for hybrid discriminative-
generative modeling. In [57], JEM++ was introduced to enhance training stabil-
ity and speed. Subsequently, [66] established an initial link between adversarial
training and energy-based models, illustrating how they manipulate the energy
function differently yet share a comparable contrastive approach. Generative ca-
pabilities of robust classifiers have been studied in other works [17,51,58,59] and
even employed in inverse problems [40] or controlled image synthesis [41].
Mitigation of Robust Overfitting and Additional Data. [44] first investigated
robust overfitting, arguing for the need for large datasets for robust generaliza-
tion. Subsequent studies have shown that larger datasets are crucial for robust
models, providing empirical evidence that supports this finding: [22] illustrated
that training with synthesized images from generative models leads to an im-
provement in robustness. [53] demonstrated that using synthesized images from
more advanced generative models, such as diffusion models [26], leads to su-
perior adversarial robustness, setting a new state-of-the-art in robust accuracy.
Recently, [16] hypothesizes overfitting is due to difficult samples (hard to fit)
that are closer to the decision boundary, and the network ends up memorizing
instead of learning. [37] explains overfitting using their optimization objective
(Self-COnsistent Robust Error (SCORE). Other works like AWP [54] adversar-
ially perturb both inputs and model weights. [27] optimizes the trajectories of
adversarial training considering its dynamics, while others [6,7,16,46,49,54] link
it to the flatness of the loss function. Orthogonal to all aforementioned works,
we show that overfitting is actually linked to the model, drastically increasing
the discrepancy between natural and adversarial energies. Our work is connected
to [60] which ascribes overfitting to data with low loss values. Nevertheless, with
our formulation, we can actually show that low loss values correspond to attacks
that bend the energy even more than higher values, see Figs. 1c and 1d.
Weighting the Samples in Adversarial Training. MART [52] started a line of
research that shows improvement by weighting the samples in AT. GAIRAT [64]
follows the trend, though was proved to be non-robust [25]. Several fixes to [64]
have been proposed, such as continuous probabilistic margin (PM) [34] or weight-
ing with entropy [28]. Unlike previous methods, we offer a new way to weight
the samples using the marginal energy, which is a quantity not related to the
labels and more connected with the hidden generative model inside classifiers.
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3 Method

We will give an overview of the settings for adversarial attacks in a white-box
scenario. Moving on, we are going to explore the modeling of data density and
standard discriminative classifiers using Energy-based Models (EBMs).
Preliminaries and Objective. Consider a set of labeled images X = {(x, y)|x ∈
Rd and y ∈ {1, ..,K}}, assuming that each (x, y) is generated from an underlying
distribution D; let be θ : Rd → RK a classifier implemented with a DNN.
The problem of learning a robust classifier can be modeled AT [36] by solving
minθ E(x,y)∼D

[
maxδ∈S L

(
θ(x + δ), y

)]
, where L is cross-entropy loss and S =

{δ ∈ Rd : ||δ||p ≤ ϵ} is a set of feasible ℓp perturbations. In this process, the
attacker optimizes an adversarial point, denoted as x⋆ .

= x+δ ∈ Rd in the input
space by either increasing the loss in the output space (untargeted attack) or
prompting a confident incorrect label (targeted attack). For ℓ∞, the perturbation
is usually built via PGD [36]:x⋆ = Pϵ

[
x⋆ + α sign

(
∇x⋆L(θ(x⋆), y)

)]
, where

Pϵ projects into the surface of x’s neighbor ϵ-ball while α is the step size.
Discriminative Models as EBM. Energy-based models (EBM) [31] are based
on the assumption that any probability density function p(x) can be defined
through a Boltzmann distribution as pθ(x) =

exp (−Eθ(x))
Z(θ) where Eθ(x) is known

as energy, that maps each input x to a scalar. Z(θ) =
∫
exp(−Eθ(x)) dx is the

normalizing constant, such that pθ(x) is a proper probability density function. In
the same manner, we can define the joint probability pθ(x, y) in terms of energy
and combining all together, we can write a traditional discriminative classifier
in terms of energy and normalizing constants like:

pθ(y|x) =
pθ(x, y)

pθ(x)
=

exp (−Eθ(x, y))Zθ

exp (−Eθ(x))Ẑθ

=
exp (θ(x)[y])∑K
k=1 expθ(x)[k]

, (1)

where Ẑθ is the normalizing constant of pθ(x, y), Zθ = Ẑθ [66] and θ[i] is ith

logit. Observing Eq. (1), we can deduce the definition of the energy functions as:

Eθ(x, y) = − log exp (θ(x)[y]) and Eθ(x) = − log

K∑
k=1

exp (θ(x)[k]) . (2)

This framework offers a versatile approach to consider a generative model within
any DNN by leveraging their logits [23].

3.1 Reconnecting Attacks with the Energy

Different Attacks Induce diverse Energy Landscapes. Following [66] and using
Eq. (2), we get that the cross-entropy (CE) loss LCE(x, y;θ) = − log

(
pθ(y|x)

)
=

−θ(x)[y] + log
∑K

k=1 exp (θ(x)[k]) and thus we can express it with energy as:

LCE(x, y;θ) = −θ(x)[y]︸ ︷︷ ︸
Eθ(x,y)

+ log

K∑
k=1

exp (θ(x)[k])︸ ︷︷ ︸
−Eθ(x)

= Eθ(x, y)− Eθ(x). (3)
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Note by definition Eq. (3) ≥ 0 and the loss is zero when Eθ(x, y) = Eθ(x). To see
how the loss used in adversarial attacks induces different changes in the energies,
we can consider the maximization of Eq. (3) performed during untargeted PGD.
At each step, PGD shifts the input by two terms ∇x⋆Eθ(x

⋆, y)−∇x⋆Eθ(x
⋆): a

positive direction of Eθ(x, y) and a negative direction Eθ(x). As found by [2],
untargeted PGD finds input points that fool the classifier—high joint energy—
yet are even more likely than natural data—very low marginal energy. Note that
by “more likely”, we mean from the perspective of the model, as ℓp attacks are
known to be out of distribution and orthogonal to data manifold pdata(x) [48].
To make a connection with recent denoising score-matching [47] and diffusion
models [14], we can see how PGD is heavily biased by the score function i.e.
∇x log pθ(x) since ∇x log pθ(x) = ∇x − Eθ(x)−∇x logZθ = −∇xEθ(x) where
the last identity follows since ∇x logZθ = 0. On the contrary, it is interesting to
reflect on how the dynamic is flipped for targeted attacks: assuming we target
yt, −∇x⋆Eθ(x

⋆, yt) + ∇x⋆Eθ(x
⋆), the optimization lowers the joint energy yet

produces new points in the opposite direction of the score—out of distribution.
To empirically prove it, in addition to Figs. 1b to 1d, we probe a state-of-the-
art (SOTA) non-robust model from RobustBench [9], namely WideResNet-28-10
and report in Fig. 2a the distribution of the marginal energies and in Fig. 2b the
distribution of conditional. We employ a diverse set of state-of-the-art untargeted
and targeted attacks, mainly from AutoAttack (AA) [11]. We can see how PGD
drastically shifts Eθ(x) to the left; notice also how the distributions Eθ(x, y) are
pushed to the right, coherent with the attack logic of decreasing p(y|x), indeed
the robust accuracy is 0%. TRADES instead performs similar for Eθ(x) yet the
robust accuracy is surprisingly 30%. We can notice how Eθ(x, y) is divided in
two modes: one mode on the right when the attack is successful; vice versa, the
one on the left is actually capturing ground-truth logits that increase after the
attack; in other words, for a small part of the data TRADES helps the classifica-
tion. APGD is more subtle, as a tiny fraction of test points share similar values
to natural data. The situation is flipped for targeted attacks: APGD-T moves
the Eθ(x) energy to the right so to push Eθ(x, y) to the target label, thereby
creates points that are more out-of-distribution compared to natural samples.
This behavior was already noted in [51] but not yet shown empirically for mul-
tiple SOTA attacks. FAB (Fast Adaptive Boundary) [10] behaves similarly to a
targeted attack. Square and Carlini Wagner (CW) [4] are very subtle since the
marginal energy completely overlaps the natural: this is visible for attacks like
CW and APG-DLR that uses DLR (Difference of Logits Ratio) thereby causing
less deformation in logit’s space by attacking the margin. Targeted Carlini Wag-
ner (CW-T) minimizes max

(
max[θ(x⋆)[i] : i ̸= t] − θ(x⋆)[t],−κ

)
for a target

class t, decreasing the competing logit (mostly likely the gt class y) or increas-
ing t logit. Our experiments show the former. Unlike Fig. 2b-CW, Eθ(x, y) now
has two modes: the small one is random target labels, hard to optimize, thus
overlapping with clean data. The bound on the perturbation limits the changes
in Eθ(x) because, unlike CE, there is no explicit term that pushes it to the left,
so Eθ(x) plot is similar to Fig. 2a-CW. Further details are in supp. material.
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Fig. 2: (a) Distributions of the Eθ(x) and (b) the Eθ(x, y) of adversarial and natural
inputs for several adversarial perturbations both untargeted and targeted (-T), on
CIFAR-10 test set, using a non-robust model. indicates adv. and natural data.

3.2 How Adversarial Training Impacts the Energy of Samples
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Connecting Robust Overfitting with Energy
Divergence. We find energy plays a key factor in
understanding the behavior of AT, especially in
the context of robust overfitting. To show this, we
conduct an experiment comparing the energies of
samples in the training set with their correspond-
ing adversarial counterparts at each epoch during
AT. Given an input image x and its corresponding
adversarial example x⋆, we measure the difference
between their marginal energies, Eθ(x)−Eθ(x

⋆),
denoted by ∆Eθ(x). When using SAT [36], we
find that the training is divided into three phases
where in first two phases, the energies of origi-
nal and adversarial samples exhibit comparable
values. However, in the third phase, the energies
Eθ(x) and Eθ(x

⋆) begin to diverge from each
other, implied by the steep decrease of ∆Eθ(x).
Concurrently, we observe a simultaneous increase
in test error for adv. data at this point as shown in
Fig. 3, indicating robust overfitting. Thus, to alleviate robust overfitting, it seems
imperative to maintain similarity in energies between original and adversarial
samples, thereby smoothing the energy landscape around each sample. Interest-
ingly, reinterpreting TRADES [62] as EBM reveals that TRADES is essentially
achieving the desired objective, towards a notable mitigation of overfitting.
Interpreting TRADES as Energy-based Model. Going beyond prior work [2,
23, 51, 66], we reinterpret TRADES objective [62] as an EBM. TRADES loss is
as follows:

min
θ

[
LCE

(
θ(x), y

)
+ βmax

δ∈∆
KL

(
p(y|x)

∣∣∣∣∣∣p(y|x⋆)
)]

, (4)
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where KL(·, ·) is the KL divergence between the conditional probability over
classes p(y|x) that acts as reference distribution and probability over classes for
generated points p(y|x⋆), the loss L is CE loss and p(y|x) is from Eq. (1).

Proposition 1. The KL divergence between two discrete distributions p(y|x)
and p(y|x⋆) can be interpreted using EBM as 4:

Ek∼p(y|x)

[
Eθ(x

⋆, k)− Eθ(x, k)
]

︸ ︷︷ ︸
conditional term weighted by classifier prob.

+Eθ(x)− Eθ(x
⋆)︸ ︷︷ ︸

marginal term

. (5)

Corollary 1. TRADES object can be written as EBM as:

Eθ(x, y) + (β − 1)Eθ(x)− β
{
Eθ(x

⋆) + Ep(y|x)

[
Eθ(x, k)− Eθ(x

⋆, k)
]}

. (6)

By writing the KL divergence as Eq. (5), we can better see analogies and differ-
ences with SAT. Similarly to SAT, TRADES has to push down Eθ(x

⋆) yet it does
so considering a reference fixed energy value which is given by the corresponding
natural data Eθ(x). At the same time, they both have to push up Eθ(x

⋆, k)
yet TRADES attack only increases the loss when Eθ(x

⋆, k) > Eθ(x, k) for k
classes. Furthermore, a big difference resides in the training dynamics: while AT
is agnostic to the dynamics, TRADES uses the classifier prediction as weighted
average: at the beginning of the training p(y|x) is uniform, being the conditional
part averaged across all classes, so the attack is not really affecting any class in
particular. Instead, at the end of the training when p(y|x) may distribute more
like a one-hot encoding, TRADES will consider the most likely class.
Better Robust Models Have Smoother Energy Landscapes. Smoothness is a
well-established concept in robustness, where a smooth loss landscape suggests
that for small perturbations δ, the difference in loss |Lθ(x) − Lθ(x + δ)| re-
mains small (< ϵ) wrt the input x. We show a link between Energy and Loss in
Eq. (3). PGD-like attacks drastically bend the energy surface–see Fig. 2–thereby
the model needs to reconcile the adv. energy with the natural. This reconcili-
ation yields the smoothness. The intuition is that classifiers may tend towards
the data distribution to some extent yet the attacks generate new points out of
manifold. The model has now to align these two distributions and it is forced to
smooth the two energies to keep classifying both correctly. Once Eθ(x) smooth-
ness does not hold, the model is incapable of performing the alignment. Eθ(x)
smoothness is also a desirable property of EBMs. Over the past few years, vari-
ous strategies have emerged to enhance robustness, some techniques weight the
training samples like MART [52], GAIR-RST [64] and some focus on smoothing
the weight loss landscape, AWP [54]. Furthermore, recent state-of-the-art [12,53]
leverage synthesized data to increase robustness even further. Upon analyzing
4 Proofs of Proposition 1 and Corollary 1 are in the supplementary material.
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the distributions of ∆Eθ(x) and ∆Eθ(x, y) for all test samples, we observed that
as the model’s robustness increases, the energy distribution tended to approach
zero, as depicted in Fig. 4. From the figure is also clear the smoothing effect of
TRADES compared to SAT also visible in Fig. 3.
AT in function of High vs Low Energy Samples. Several studies have high-
lighted the unequal impact of samples in AT: [15,52,63] focus on the importance
of samples in relation to their correct or incorrect classification, while [34, 64]
suggest that samples near the decision boundaries are regarded as more critical.
We can comprehensively explain such findings as well as others [35,60] using our
framework. We begin by investigating MART, which employs Misclassification-
Aware Regularization (MAR), focusing on the significance of samples categorized
by their correct or incorrect classification. We do a proof-of-concept experiment
closely resembling MART’s [52] where we initially start from a robust model
trained with SAT [36]. Unlike [52], we opted to make subsets based on their
energy values. We selected two subsets from the natural training dataset: one
comprising high-energy examples but excluding misclassifications; another with
low-energy samples of correctly classified examples. All the subsets are created
considering the initial values from the robust SAT classifier. We trained again the
same networks from scratch without these subsets5. Subsequently, we assessed
the robustness against PGD [36] on the test dataset. Our findings indicate that
removing high-energy correct samples has a similar impact to removing incor-
rectly classified samples, as shown in Fig. 5a. Additionally, we observed that most
incorrectly classified samples exhibit higher energies, suggesting that robustness
reduction is likely due to their high energy values and not to their incorrect
classification. On another axis, we reinterpret weighting schemes like MAIL [34]:
it uses Probabilistic Margins (PMs) to weight samples, with optimal results at-
tained when calculated on adversarial points. Interestingly, our analysis reveals
a good correlation between the PM and Eθ(x, y) while there is less correlation
with Eθ(x) showing that a weighting scheme based on energy is not the same

5 Additional details about statistics in the supplementary material.
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Fig. 5: (a)Not perturbing high-energy samples (correctly classified) increases robust
error akin to not perturbing incorrectly classified samples shown in [52]. (b) Probabilis-
tic Margins (PMs) in function of Eθ(x, y) (c) and of Eθ(x) (d) Relationship between
error rate, entropy and energy (e) Trend of Eθ(x, y) during the generative steps.

as PMs—Figs. 5b and 5c. Using our formulation, we can also explain recent re-
search [35] revealing that robustness can transfer to other classes never attacked
during AT. Findings from [35] indicate that classes that are harder to classify
show better transfer of robustness to other classes. Moreover, they found that
classes with high error rates happen to have high entropy. Our analysis shows
that the same classes with high error rates6 also display higher energy as shown
in Fig. 5d. Thus, we can infer that classes with higher energy levels better facil-
itate robustness transferability. Finally, [60], by investigating robust overfitting,
identifies that some small-loss data samples lead to overfitting. We can argue
that this finding can also be explained in terms of energy, where samples with
low loss correspond to high energy samples, as illustrated in Fig. 1. Building upon
our findings we propose a simple weighting scheme dubbed Weighted Energy Ad-
versarial Training (WEAT). Our exploration concludes with the realization that
low-energy samples tend to overfit, while high-energy samples contribute more
significantly to robustness. Thus, we advocate for weighting the loss based on the
energy metric Eθ(x), wherein high-energy samples are assigned greater weight
and low-energy samples are weighted less. Exploiting Eθ(x) instead of Eθ(x, y)
or PMs for weighting samples eliminates the need for a burn-in period required
by [34,64], as it operates independently of class labels. To implement WEAT, we
adopt TRADES [62] (WEATNAT), and a similar approach where we apply CE
loss to adversarial data (WEATADV). We utilize KL divergence as the inner loss
to generate adversarial samples, and unlike [34,52] we weight the entire outer loss
(both CE+KL) with a scalar function as log(1 + exp(|Eθ(x)|))−1 that weights
more the samples close to zero energy and decays very fast. More importantly,
while weighting the loss, Eθ(x) is detached from the computational graph so
that the weighting branch does not backpropagate, to avoid trivial solutions.
Impact of the Energy in the Generative Capabilities. Though generative ca-
pabilities have been the subject of previous investigations [23,51,66], we find that
the optimization for adversarial perturbations is crucial to develop the generative
model. A key factor is on how different losses bend the energy landscape—i.e.
CE vs KL divergence. Despite recent methods [18] report that robustness goes
“hand in hand” with perceptually aligned gradients (PAG), we find out the gen-
6 We report probabilistic error rate 1− p(y|x), contrary to hard error rates in [35].
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erative capabilities for all recent approaches [52, 62] are less “intense”, requiring
more iterations to produce meaningful images. We suspect this could be due
to usage of KL divergence instead of CE, aiming at better robustness. Surpris-
ingly, we find that even SOTA robust classifiers trained on millions of synthetic
images from diffusion models [53] using TRADES have less intense generative
performance than the “old” model by [43]. We propose a new simple inference
technique that pushes their generative capabilities, lifting generation to high
standard, despite no actual training towards generative modeling. We do so by
means of a proper initialization of the Stochastic Gradient Langevin Dynamics
(SGLD) MCMC, by starting the chain close to the class manifold instead of
random noise like JEM [23,66] or from multivariate Gaussian per class [43]. We
sample from principal components per class weighted by their singular values to
generate the main low-frequency content near the class manifold and let SGLD
add the high-frequency part without leaving the manifold. To do so, we take very
small steps yet we use the inertia of the chain to greatly speed up the descent:{

νn+1 = ζνn − 1
2η∇xEθ(x, y) with ν0 = 0

xn+1 = xn + νn+1 + ε with x0 = µy +
∑

i λiαiU
y
i

(7)

where the initialization stochasticity comes from α ∼ N (0;σ), then µy and Uy

are the mean and the principal components per class y and λi is the singular
value associated to each component. We add regular noise in the SGLD chain as
ε ∼ N (0, γI), η is the step size and ζ the friction coefficient. We use the same loss
as in [66] which is class dependent and allows us to samples from p(x|y). During
SGLD steps, shown in Fig. 5e, the energy Eθ(x, y) associated to the class we
want to generate decreases, while joint energies for other classes increase. Note
how the target energy converges to the average joint energy Ēθ(x, y), computed
all over CIFAR-10 training samples belonging to the desired class.

4 Experimental Evaluation

In this section, we pursue two distinct avenues of investigation. Firstly, we con-
duct an in-depth comparison of model robustness, demonstrating the effective-
ness of our method, WEAT. Concurrently, we evaluate the quality of images
generated by the existing state-of-the-art robust classifiers. We quantitatively
assess image quality and diversity using established metrics like IS [42], FID [24],
KID [3] and LPIPS [65], evaluated on 50, 000 images. Using those, we aim to
illustrate the importance of initialization in SGLD, the impact of different sam-
pling approaches and importance of momentum.
Datasets and Network Architecture. We train WEAT on four standard bench-
mark datasets: CIFAR-10, CIFAR-100 [30], SVHN [61] and Tiny-ImageNet [13]
using ResNet-18. When possible, we also trained the competitive methods under
the same settings for fairness. Additionally, we use CIFAR-10 to assess the gen-
erative capabilities of various SOTA robust classifiers from RobustBench. The
implementation details can be found in the supplementary material.
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Defence
method

CIFAR-10 CIFAR-100 SVHN

Natural PGD AA Natural PGD AA Natural PGD AA

sat [36] 82.43±.66 49.03±.46 45.37±.41 54.78±1.03 23.89±.18 20.99±.28 93.22±.20 50.54±.35 44.87±.30
trades [62] 82.91±.14 52.65±.16 49.46±.20 56.31±.28 28.53±.22 24.29±.16 89.09±.49 55.52±.29 48.13±1.10
mail-tr. [34] 81.63±.25 53.09±.22 49.42±.16 56.30±.14 28.79±.19 24.24 ±.07 89.65±.34 54.94±.47 47.48±1.73

weatnat 83.36±.15 52.43±.12 49.02±.21 59.07±.59 29.71±.22 24.88±.25 88.65±.77 55.31±.51 48.61±.49
weatadv 81.00±.17 53.35±.07 49.75±.04 56.57±.15 30.90±.18 25.63±.15 87.66±.62 56.40±.37 49.60±.29

(a)

Defence
method

Clean
Acc. PGD AA

SAT [36] ∗ 48.09 — 16.46
TRADES [62] 49.15 21.92 17.24
MART [52] ∗ 45.51 — 17.79
DyART [55] ∗ 49.71 — 18.02
MAIL-TRADES [34] 48.72 21.98 17.03

WEATNAT 52.73 23.42 17.35
WEATADV 49.54 24.39 18.45

(b)

Inner
loss Outer loss β

Weight
fun. w

Clean
Acc. PGD AA

CE BCE(x⋆) + β·w·KL 5 MART [52] 54.09 28.24 23.63
CE CE(x⋆) + β·w·KL 5 MART [52] 54.03 27.32 23.71
CE CE(x⋆) + β·KL 6 — 53.55 28.93 23.97
KL CE(x⋆) + β·KL 6 — 55.45 29.38 24.59

† KL CE(x) + β·KL 6 — 56.31 28.53 24.29
KL w·CE(x) + β·w·KL 5 PMadv [34] 56.45 27.74 23.26

† KL w·CE(x) + β·w·KL 6 weatNAT 59.07 29.71 24.88
† KL w·CE(x⋆) + β·w·KL 6 weatADV 57.31 30.64 25.43

(c)

Table 1: (a) Results on CIFAR-10, CIFAR-100, and SVHN. (b) Results on Tiny-
ImageNet, rows marked with ∗ are mean values from [55]. (c) Ablation study on
CIFAR-100 with loss and weighting scheme. w is the weighting method. Rows marked
with † show mean values from 5 trials, similar to Tab. 1a.

4.1 Quantitative Results

Ablation Study. In Tab. 1c we assessed the impact of different inner and outer
loss functions, starting with MART where we replaced boosted cross entropy
(BCE) with CE. Using BCE improved accuracy with PGD, but not with AA. If
we do not weight the samples, the KL divergence as inner loss outperformed CE,
showing improvements in both clean accuracy and AA. Similar to our approach,
we also explored weighting the entire loss with PMadv in MAIL-TRADES, but
observed a degradation in performance. With same β, WEATADV showed supe-
rior robustness, while WEATNAT excelled in clean accuracy, yet still has better
robustness than existing approaches. We then study the individual components
contributing to our generative framework’s performance and their respective im-
pacts in Tab. 2b. We analyze different initializations for the same model [53],
compare results of classifiers trained under different threat models using ℓ∞ and
ℓ2 norms and finally explore generative capabilities of a set of various robust
classifiers. Our method provides a better initialization compared to others in
ℓ2 norm setting, reaching impressive results in the generation considering that
samples are produced by a robust classifier, not trained optimizing its generation.
Comparison with the State-of-the-Art. WEAT’s results are summarized in
Tab. 1a for CIFAR-10/100 and SVHN, where for each method we report mean
and standard deviation from five models trained with different seeds. In Tab. 1b
for Tiny-ImageNet, due to computational limitations, we present results from
a single run. We report the accuracies on natural examples and adversarial ex-
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Method IS ↑ FID ↓ KID ↓ LPIPS ↓

Initialization with [53], ℓ∞

Random [23,60] 1.82 357.21 11.19 0.39
Gaussian [43,57] 7.18 64.98 2.02 0.18
PCA - Ours 7.66 97.38 2.15 0.20

Initialization with [53], ℓ2

Gaussian [43,57] 8.75 27.71 0.56 0.18
PCA - Ours 8.97 30.74 0.51 0.18

Classifier, Eq. (7), ℓ∞

SAT [43] 7.96 72.15 1.03 0.21
TRADES [62] 7.19 72.51 1.31 0.22
MART [52] 8.11 66.98 1.03 0.20
Better DM [53] 7.66 97.38 2.15 0.20

Classifier, Eq. (7), ℓ2

SAT [43] 8.58 45.19 0.49 0.19
Better DM [53] 8.97 30.74 0.51 0.18

(b)

Method FID ↓ IS ↑
Hybrid models

JEM [23] 38.4 8.76
DRL [19] 9.60 8.58
JEAT [66] 38.24 8.80
JEM ++ [57] 37.1 8.29
SADA-JEM [59] 9.41 8.77
M-EBM [58] 21.1 7.20

Robust classifiers

PreJEAT [66] 56.85 7.91
SAT [43] — 7.5

Ours, Eq. (7)

SAT [43] 45.19 8.58
Better DM [53] 30.74 8.97

(c)

Table 2: (a) While training our models on CIFAR-100, WEAT has lower ∆Eθ(x)
compared to other approaches suggesting lesser robust overfitting, see also Fig. 3 (b)
Ablation study for different components of our framework using only robust classifiers.
Adopting ℓ2 leads to major improvements in metrics. (c) Model [53] overcomes SOTA
generative abilities, topping IS and matching FID of even certain hybrid models.

amples obtained using PGD [36] with 20 steps (step size α = 2/255), and Auto
Attack (AA) [11] for robustness evaluation. WEAT outperforms existing similar
methods across all datasets, with WEATNAT showing superior clean accuracy and
comparable robust accuracy, while WEATADV achieves the highest robust accu-
racy overall but with a slight reduction in clean accuracy. With Tiny-ImageNet,
our results outperform [55] without any extra computational cost, unlike their
approach which incurs costs up to twice that of TRADES [62]. Our approach
exhibits lesser robust overfitting compared to other approaches as it weights low-
energy samples less, resulting in a lower ∆Eθ(x) as shown in Tab. 2a. Regarding
image generation, we conduct experiments in producing synthetic images, whose
results are shown in Tabs. 2b and 2c. Our findings demonstrate that integrating
momentum in the SGLD framework, along with the PCA initialization, improves
image quality beyond conventional SGLD. Our method reaches the highest IS
and is able to exceed FID performance of robust classifiers as well as the majority
of the listed SOTA hybrid models, trained explicitly for generation.

4.2 Qualitative Results

Ablation Study. Fig. 6 (bottom row) shows that starting the chain from Random
Noise [23, 60], leads to unrealistic images, with saturated colors and no object’s
shape, while beginning from a Gaussian per class, employed in [43,57], images are
coherently generated to the label yet with low fidelity due to the highly saturated
colors. With our method, images achieve higher quality and realism, being more
aligned with the data manifold. The improvement is even more visible when we
combine the momentum and small step size with our init, thereby using Eq. (7).
Our method allows generating realistic images, close to the natural distribution,
just using a robust classifier trained with AT.
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SAT [43]
49.25%

TRADES [62]
53.08%

MART [52]
56.29%

AWP [54]
56.17%

Better DM [53]
70.69%

Random Noise
JEM [23], JEAT [60]

Gaussian
per class [43,57]

PCA per class
Ours

Eq. (7)
Our Best

Fig. 6: (Top) Images generated from different robust classifiers with our proposed
PCA init, while comparing their robust accuracies with generative capability. (Bottom)
Different init in SGLD MCMC using the same model [53]. Random noise offers overly
noisy init. Our PCA-based init shines in variability and smooth images, allowing us to
match SOTA generative performance just using a discriminative robust classifier.

Comparison with the State-of-the-Art. As shown in Fig. 6 (top row), robust
classifiers differ in their generation abilities. Surprisingly, using our initialization,
the “old” model SAT [43] has more intense capabilities than recent models trained
with TRADES, despite its lower robust accuracy. Compared to TRADES, SAT
guides the SGLD chain to saturate more quickly, thereby converging faster to
oversaturated images where the class signal is over-dominant. Fig. 6 (bottom
row) compares different initialization methods, fixing the same classifier as [53],
e.g. Random Noise [21, 60] and Gaussian per class [57]. Our PCA initialization,
with a proper selection of parameters, robust classifiers can synthesize realistic
and smooth images, with no need for generative retraining.

5 Conclusions and Future Work

This work aims at enhancing the understanding of robust classifiers via EBMs.
We propose a sample weighting scheme, achieving SOTA results across popular
benchmark datasets. Future work aims to modify the energy weighting function
to account for the energy distribution of the data and applying the EBM frame-
work to explain score-based Unrestricted Adversarial Examples (UAE) [29,56].
Potential Negative Societal Impact. Although perceived as resistant to attacks,
robust models are often viewed as benign but could have a potential negative
effect if they are invariant to perturbation meant to protect privacy. Moreover,
the possibility of “inverting” a robust classifier so easily makes it more prone to
expose its training data, thereby possibly causing problem of privacy.
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