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A More Implementation Details

Datasets. The full list of words for filtering the Objaverse dataset is: ‘flying,
mountain, trash, featuring, a set of, a small, numerous, square, collection, bro-
ken, group, ceiling, wall, various, elements, splatter, resembling, landscape, stair,
silhouette, garbage, debris, room, preview, floor, grass, house, beam, white, back-
ground, building, cube, box, frame, roof, structure’. The 100 camera views we use
form a spiral path on the sphere surface. The camera radius is fixed to 1.5, and
the field-of-view angle is fixed to 49.1 degree.

Mesh Extraction. The mesh extraction process contains three stages. 1) Gaus-
sians to NeRF: we train an efficient NeRF similar to Instant-NGP [4] for 512
iterations using the rendered Gaussians as ground truth images. We supervise
both RGB and alpha channels at the rendering resolution of 128 × 128 using
MSE loss. The learning rate is set to 0.01 for the grids and 0.001 for MLPs.
nerfacc [2] is adopted for efficient training. The training camera views are ran-
domly sampled with azimuth from [−180, 180] degree, elevation from [−45, 45]
degree, and radius from [1.5, 3.0]. 2) NeRF to Mesh: we first extract the mesh
using Marching Cubes [3] with a grid resolution of 256 and density threshold
of 10. We then train the vertex deformation and the appearance grid for 2048
iterations at the rendering resolution of 512 × 512. The learning rate for defor-
mation is set to 10−4. Following NeRF2Mesh [9], we apply normal consistency
loss and perform remeshing every 512 iterations to make the final mesh smooth.
3) Texture optimization: finally, we unwrap the UV coordinates using the mesh
and bake the appearance grid to a 2D texture image of resolution 1024× 1024.
This texture image is further optimized using a learning rate of 0.001 for another
512 iterations at the rendering resolution of 512× 512.
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Fig. 1: Visualization of reconstruction results. We show our model’s reconstruc-
tion results on the test dataset. The left four columns are also used as the input, and
the right four columns are novel views.
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Fig. 2: Comparisons between different meshing method from Gaussians. We
compare our meshing method with DreamGaussian [8].
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Fig. 3: Visualization of Gaussian feature maps. We visualize the opacity, RGB
color, 3D position, and scales of each pixel-aligned Gaussian in our four 128 × 128
output images.

B More Results

Reconstruction Quality. In Figure 1, we visualize the reconstruction results
of our method. The left four views are used as the input to our method, and the
right four views are predicted by the model. Our model can reconstruct accurate
geometry and faithful details from the input views.

⋆ Work done while visiting S-Lab, Nanyang Technological University.
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Fig. 4: Mesh Extraction for hard examples.
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Fig. 5: Visualization of our limitations. We show three major reasons for failure
cases of our method.

CLIP Similarity. To quantitatively evaluate the generation quality of our
method, we calculate the CLIP similarity [5] between the generated 3D models
and the input images. Specifically, for each method, we render the generated
3D models from zero elevation and 60 evenly distributed azimuths, and average
the cosine similarities between the CLIP features of each rendered image and
the input image. We use three CLIP backbones [1, 6] with different sizes for a
thorough evaluation. Our model performs best consistently compared to other
recent methods on 3D Gaussians generation.
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DreamGaussian [8] TriplaneGaussian [11] LGM (Ours)
CLIP-ViT-base 81.75 84.65 88.47
CLIP-ViT-large 70.08 76.55 83.21
CLIP-ViT-bigG 65.59 73.03 80.16

Table 1: Comparisons on CLIP-Similarity for Image-to-3D. We calculate the
CLIP-similarity between the input image and generated 3D model with different CLIP
backbones.

Different Meshing Method. Figure 2 presents a comparison between our
meshing algorithm and the technique introduced in DreamGaussian [8]. Our
algorithm generates a smoother surface, which is advantageous for subsequent
tasks such as relighting. Moreover, our method operates independently of the
underlying 3D Gaussians, as it relies solely on the rendered images.

Feature Map Visualization. In Figure 3, we visualize the Gaussian features
of the four output images from our U-Net model. It can be observed that each
image contains some extra occupied positions similar to [7], which is important
to complete the unseen or occluded part of the 3D model (e.g., the top and
bottom views).

Further analysis on mesh extraction. Mesh extraction from 3D Gaussians
presents a challenging problem, and our method employs NeRF as an interme-
diate representation to tackle this issue. Additional mesh extraction results are
provided in Figure 4. Even for challenging examples such as plant leaves and
thin structures, our method is capable of generating plausible meshes.

C Limitations

We visualize failure cases of our method in Figure 5 to gain a deeper understand-
ing of its weaknesses. As previously mentioned in the main paper, the primary
causes of these failures stem from the flawed multi-view images produced in the
initial step. The resolution of these multi-view images is limited to 256 × 256,
which can diminish the quality of the input image. Despite implementing data
augmentation during training to emulate 3D inconsistencies and attempting to
bridge the domain gap, this approach still results in inaccuracies for slender
structures, such as chairs. Additionally, ImageDream [10] struggles with images
that have significant elevation angle, occasionally producing images with a dark
appearance.
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