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Fig. 1: Our method generates high-resolution 3D Gaussians in 5 seconds from
single-view images or texts.

Abstract. 3D content creation has achieved significant progress in terms
of both quality and speed. Although current feed-forward models can
produce 3D objects in seconds, their resolution is constrained by the
intensive computation required during training. In this paper, we intro-
duce Large Multi-View Gaussian Model (LGM), a novel frame-
work designed to generate high-resolution 3D models from text prompts
or single-view images. Our key insights are two-fold: 1) 3D Represen-
tation: We propose multi-view Gaussian features as an efficient yet pow-
erful representation, which can then be fused together for differentiable
rendering. 2) 3D Backbone: We present an asymmetric U-Net as a
high-throughput backbone operating on multi-view images, which can be
produced from text or single-view image input by leveraging multi-view
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diffusion models. Extensive experiments demonstrate the high fidelity
and efficiency of our approach. Notably, we maintain the fast speed to
generate 3D objects within 5 seconds while boosting the training reso-
lution to 512, thereby achieving high-resolution 3D content generation.
Our project page is available at https://me.kiui.moe/lgm/.

Keywords: 3D Generation · Gaussian Splatting · High Resolution

1 Introduction

Automatic 3D content creation has great potential in numerous fields such as
digital games, virtual reality, and films. The fundamental techniques, like image-
to-3D and text-to-3D, provide significant benefits by remarkably decreasing the
requirement for manual labor among professional 3D artists, enabling those with-
out expertise to participate in 3D asset creation.

Previous research on 3D generation has predominantly focused on score dis-
tillation sampling (SDS) [22,24,36,48] to lift 2D diffusion priors into 3D. These
optimization-based methods can create highly detailed 3D objects from text or
single-view image inputs, but they often face issues such as slow generation speed
and limited diversity. Recent advancements have significantly decreased the time
required to generate 3D objects using large reconstruction models from single-
view or few-shot images [15,19,53,56,58]. These methods utilize transformers to
directly regress triplane-based [2] neural radiance fields (NeRF) [32]. However,
these methods cannot produce detailed textures and complicated geometry due
to the low-resolution training. We argue that their bottlenecks are 1) inefficient
3D representation, and 2) heavily parameterized 3D backbone. For instance,
given a fixed compute budget, the triplane representation of LRM [15] is limited
to the resolution of 32, while the resolution of the rendered image is capped at
128 due to the online volume rendering. Despite this, these methods suffer from
the computationally intensive transformer-based backbone, which also leads to
a limited training resolution.

To address these challenges, we present a novel method to train a few-shot
3D reconstruction model without relying on triplane-based volume rendering
or transformers [15]. Instead, our approach employs 3D Gaussian splatting [17]
of which features are predicted by an asymmetric U-Net as a high-throughput
backbone [41,47]. The motivation of this design is to achieve high-resolution 3D
generation, which necessitates an expressive 3D representation and the ability to
train at high resolutions. Gaussian splatting stands out for 1) the expressiveness
of compactly representing a scene compared with a single triplane, and 2) ren-
dering efficiency compared with heavy volume rendering, which facilitates high-
resolution training. However, it requires a sufficient number of 3D Gaussians to
accurately represent detailed 3D information. Inspired by splatter image [47], we
found that U-Net is effective in generating a sufficient number of Gaussians from
multiview pixels, which maintains the capacity for high-resolution training at the
same time. Note that, compared to previous methods [15,63], our default model
is capable of generating 3D models with up to 65, 536 Gaussians and can be
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trained at a resolution of 512, while still maintaining the rapid generation speed
of feed-forward regression models. As shown in Figure 1, our model supports
both image-to-3D and text-to-3D tasks, capable of producing high-resolution,
richly detailed 3D Gaussians in approximately 5 seconds.

Our method adopts a multi-view reconstruction setting similar to Instant3D [19].
In this process, the image and camera embedding from each input view are
transformed into a feature map, which can be decoded and fused as a set of
Gaussians. Differentiable rendering is applied to render novel views from the
fused 3D Gaussians, allowing end-to-end image-level supervision in high resolu-
tion. To enhance information sharing across all input views, attention blocks are
integrated into the deeper layers of the U-Net. This enables us to train our net-
work on multi-view image datasets [12] using only regressing objectives. During
inference, our method leverages existing image or text to multi-view diffusion
models [27, 44, 45, 52] to produce multi-view images as inputs for our Gaussian
fusion network. To overcome the domain gap between multi-view images ren-
dered from actual 3D objects and synthesized using diffusion models, we further
propose two proper data augmentations for robust training. Finally, considering
the preference for polygonal meshes in downstream tasks, we design a general
algorithm to convert generated 3D Gaussians to smooth and textured meshes.

In summary, our contributions are:

1. We propose a novel framework to generate high-resolution 3D Gaussians by
fusing information from multi-view images, which can be generated from
text prompts or single-view images.

2. We design an asymmetric U-Net based architecture for efficient end-to-end
training with significantly higher resolution, investigate data augmentation
techniques for robust training, and propose a general mesh extraction ap-
proach from 3D Gaussians.

3. Extensive experiments demonstrate the superior quality, resolution, and ef-
ficiency of our method in both text-to-3D and image-to-3D tasks.

2 Related Work

High-Resolution 3D Generation. Current approaches for generating high-
fidelity 3D models mostly rely on SDS-based optimization techniques. It re-
quires both an expressive 3D representation and high-resolution supervision to
effectively distill detailed information from 2D diffusion models into 3D. Due
to the significant memory consumption associated with high-resolution render-
ing of NeRF, Magic3D [22] first converts NeRF to DMTet [43] and subsequently
trains a second stage for finer resolution refinement. The hybrid representation of
DMTet geometry and hash grid [34] textures enables the capture of high-quality
3D information, which can be efficiently rendered using differentiable rasteri-
zation [18]. Fantasia3D [6] explores to directly train DMTet with disentangled
geometry and appearance generation. Subsequent studies [8,20,21,37,48,50,55]
also employ a similar mesh-based stage, enabling high-resolution supervision for
enhanced detail. Another promising 3D representation is Gaussian splatting [17]
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for its expressiveness and efficient rendering capabilities. Nonetheless, achieving
rich details with this method necessitates appropriate initialization and careful
densification during optimization [10, 60]. In contrast, our work investigates a
feed-forward approach to directly generate a sufficient number of 3D Gaussians.
Efficient 3D Generation. In contrast to SDS-based optimization methods,
feed-forward 3D native methods are able to generate 3D assets within seconds
after training on large-scale 3D datasets [11, 12]. Some works attempt to train
text-conditioned diffusion models on 3D representations such as point clouds
and volumes [1, 5, 9, 16, 26, 33, 35, 54, 59, 62]. However, these methods either can-
not generalize well to large datasets or only produce low-quality 3D assets with
simple textures. Recently, LRM [15] first shows that a regression model can be
trained to robustly predict NeRF from a single-view image in just 5 seconds,
which can be further exported to meshes. Instant3D [19] trains a text to multi-
view images diffusion model and a multi-view LRM to perform fast and diverse
text-to-3D generation. The following works extend LRM to predict poses given
multi-view images [53], combine with diffusion [58], and specialize on human
data [56]. These feed-forward models can be trained with simple regression ob-
jectives and significantly accelerate the speed of 3D object generation. However,
their triplane NeRF-based representation is restricted to a relatively low resolu-
tion and limits the final generation fidelity. Our model instead seeks to train a
high-fidelity feed-forward model using Gaussian splatting and U-Net.
Gaussian Splatting for Generation. We specifically discuss recent methods
in generation tasks using Gaussian splatting [4,7,23,39,57]. DreamGaussian [48]
first combines 3D Gaussians with SDS-based optimization approaches to de-
crease generation time. GSGen [10] and GaussianDreamer [60] explore various
densification and initialization strategies for text to 3D Gaussians generation.
Despite the acceleration achieved, generating high-fidelity 3D Gaussians using
these optimization-based methods still requires several minutes. TriplaneGaus-
sian [63] introduces Gaussian splatting into the framework of LRM. This method
starts by predicting Gaussian centers as point clouds and then projects them
onto a triplane for other features. Nonetheless, the number of Gaussians and the
resolution of the triplane are still limited, affecting the quality of the generated
Gaussians. Splatter image [47] proposes to predict 3D Gaussians as pixels on the
output feature map using U-Net from single-view images. This approach mainly
focuses on single-view or two-view scenarios, limiting its generalization to large-
scale datasets. Similarly, PixelSplat [3] predicts Gaussian parameters for each
pixel of two posed images from scene datasets. We design a 4-view reconstruc-
tion model combined with existing multi-view diffusion models for general text
or image to high-fidelity 3D object generation.

3 Large Multi-View Gaussian Model

We first provide the background information on Gaussian splatting and multi-
view diffusion models (Section 3.1). Then we introduce our high-resolution 3D
content generation framework (Section 3.2), where the core part is an asymmet-
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Fig. 2: Pipeline. Our model is trained to reconstruct 3D Gaussians from multi-view
images, which can be synthesized by off-the-shelf models [45,52] at inference time from
only text, or only image, or both input. Polygonal meshes can be extracted optionally.

ric U-Net backbone to predict and fuse 3D Gaussians from multi-view images
(Section 3.3). We design careful data augmentation and training pipeline to en-
hance robustness and stability (Section 3.4). Finally, we describe an effective
method for smooth textured mesh extraction from the generated 3D Gaussians
(Section 3.5).

3.1 Preliminaries

Gaussian Splatting. As introduced in [17], Gaussian splatting employs a col-
lection of 3D Gaussians to represent 3D data. Specifically, each Gaussian is
defined by a center x ∈ R3, a scaling factor s ∈ R3, and a rotation quater-
nion q ∈ R4. Additionally, an opacity value α ∈ R and a color feature c ∈ RC

are maintained for rendering, where spherical harmonics can be used to model
view-dependent effects. These parameters can be collectively denoted by Θ, with
Θi = {xi, si,qi, αi, ci} representing the parameters for the i-th Gaussian. Ren-
dering of the 3D Gaussians involves projecting them onto the image plane as
2D Gaussians and performing alpha composition for each pixel in front-to-back
depth order, thereby determining the final color and alpha.

Multi-View Diffusion Models. Original 2D diffusion models [40,42] primar-
ily focus on generating single-view images and do not support 3D viewpoint
manipulation. Recently, several methods [20, 27, 44, 45, 52] propose to fine-tune
multi-view diffusion models on 3D datasets to incorporate camera poses as an
additional input. These approaches enable the creation of multi-view images of
the same object, either from a text prompt or a single-view image. However, due
to the absence of an actual 3D model, inconsistencies may still occur across the
generated views.

3.2 Overall Framework

As illustrated in Figure 2, we adopt a two-step 3D generation pipeline at infer-
ence. Firstly, we take advantage of off-the-shelf text or image to multi-view diffu-
sion models to generate multi-view images. Specifically, we adopt MVDream [45]
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Fig. 3: Architecture of LGM. Our network adopts an asymmetric U-Net with cross-
view self-attentions. We take four images with camera ray embeddings as the input,
and output four feature maps of 14 channels (visualized using the RGB and opacity
channels) which are interpreted as 3D Gaussians. The fused Gaussians are then ren-
dered at novel views and supervised with ground truth images.

for text input and ImageDream [52] for image (and optionally text) input. Both
models are designed to generate multi-view images at four orthogonal azimuths
and a fixed elevation. In the second step, we use a U-Net based model to predict
3D Gaussians from these sparse view images. Specifically, our model is trained to
take four images with camera pose embeddings as input and predict four sets of
Gaussians, which are fused to form the final 3D Gaussians. The generated Gaus-
sians can be optionally converted to polygonal meshes using an extra conversion
step, which is more suitable for downstream tasks.

3.3 Asymmetric U-Net for 3D Gaussians

At the core of our framework is an asymmetric U-Net to predict and fuse Gaus-
sians from multi-view images. The network architecture is shown in Figure 3. We
take four images and corresponding camera poses as the input. Following previ-
ous works [58], we use the Plücker ray embedding to densely encode the camera
poses. The RGB value and ray embedding are concatenated into a 9-channel
feature map as the input to the first layer:

fi = {ci,oi × di,di} (1)

where fi is the input feature for pixel i, ci is the RGB value, di is the ray
direction, and oi is the ray origin.

The U-Net is built with residual layers [13] and self-attention layers [51] sim-
ilar to previous works [14, 31, 47]. We only add self-attention at deeper layers
where the feature map resolution is down-sampled to save memory. To propa-
gate information across multiple views, we flatten the four image features and
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concatenate them before applying self-attention, similar to previous multi-view
diffusion models [45,52].

Each pixel of the output feature map is treated as a 3D Gaussian inspired
by splatter image [47]. Differently, our U-Net is designed to be asymmetric with
a smaller output resolution compared to input, which allows us to use higher
resolution input images and limit the number of output Gaussians. We discard
the depth prediction required by explicit ray-wise camera projection in [47]. The
output feature map contains 14 channels corresponding to the original attributes
of each Gaussian Θi. To stabilize the training, we choose some different activa-
tion functions compared to the original Gaussian Splatting [17]. We clamp the
predicted positions xi into [−1, 1]3, and multiply the softplus-activated scales si
with 0.1, such that the generated Gaussians at the beginning of training is close
to the scene center. For each input view, the output feature map is transformed
into a set of Gaussians. We simply concatenate these Gaussians from all four
views as the final 3D Gaussians, which are used to render images at novel views
for supervision.

3.4 Robust Training

Data Augmentation. We use multi-view images rendered from the Obja-
verse [12] dataset for training. However, at inference, we use synthesized multi-
view images by diffusion models [45,52]. To mitigate the domain gap, we design
two types of data augmentation for more robust training.
Grid Distortion. Synthesizing 3D consistent multi-view images using 2D diffusion
models has been explored by many works [25,44,45,52]. However, since there is no
underlying 3D representation, the generated multi-view images often suffer from
subtle inconsistency across different views. We try to simulate such inconsistency
using grid distortion. Except for the first input view, the other three input views
are randomly distorted with a random grid during training. This makes the
model more robust to inconsistent multi-view input images.
Orbital Camera Jitter. Another problem is that the synthesized multi-view im-
ages may not accurately follow the given camera poses. Following [15], we always
normalized the camera poses at each training step such that the first view’s cam-
era pose is fixed. We therefore apply camera jitter to the last three input views
during training.

Loss Function. To supervise the concatenated Gaussians, we use the differen-
tiable renderer implementation from [17] to render them. At each training step,
we render the RGB image and alpha image of eight views, including four input
views and four novel views. Following [15], we apply mean square error loss and
VGG-based LPIPS loss [61] to the RGB image:

Lrgb = LMSE(Irgb, I
GT
rgb ) + LLPIPS(Irgb, I

GT
rgb ) (2)

We further apply mean square error loss on the alpha image for faster conver-
gence of the shape:

Lα = LMSE(Iα, I
GT
α ) (3)
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Fig. 4: Mesh Extraction Pipeline. We implement an efficient pipeline to convert
the 3D Gaussians into smooth and textured meshes.

3.5 Mesh Extraction

Since polygonal meshes are still the most widely used 3D representation in down-
stream tasks, we hope to further extract meshes from our generated Gaussians.
Previous works [48] have tried to directly convert the opacity value of 3D Gaus-
sians into an occupancy field for mesh extraction. However, we find this method
dependent on aggressive densification during the optimization of 3D Gaussians
to produce smooth occupancy field. On the contrary, the generated Gaussians
in our method are usually sparse and cannot produce a suitable occupancy field,
leading to an unsatisfactory surface with visible holes.

Instead, we propose a more general mesh extraction pipeline from 3D Gaus-
sians as illustrated in Figure 4. We first train an efficient NeRF [34] using the
rendered images from 3D Gaussians on-the-fly, and then convert the NeRF to
polygonal meshes [49]. Marching Cubes [28] is applied to extract a coarse mesh,
which is then iteratively refined together with the appearance hash grid using
differentiable rendering. Finally, we bake the appearance field onto the refined
mesh to extract texture images. For more details, please refer to the supplemen-
tary materials and NeRF2Mesh [49]. With adequately optimized implementa-
tion, it takes only about 1 minute to perform this Gaussians to NeRF to mesh
conversion.

4 Experiments

4.1 Implementation Details

Datasets. We use a filtered subset of the Objaverse [12] dataset to train our
model. Since there are many low-quality 3D models (e.g., partial scans, missing
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textures) in the original Objaverse dataset, we filter the dataset by two empirical
rules: (1) We examine the captions from Cap3D [30], and curate a list of words
that usually appears in bad models (e.g., ‘resembling’, ‘debris’, ‘frame’), which
is used to filter all models whose caption includes any of these words. (2) We
discard models with mostly white color after rendering, which usually indicates
missing texture. These lead to a final set of around 80K 3D objects. We render
the RGBA image from 100 camera views at the resolution of 512 × 512 for
training and validation.

Network Architecture. Our asymmetric U-Net model consists of 6 down
blocks, 1 middle block, and 5 up blocks, with the input image at 256 × 256
and output Gaussian feature map at 128 × 128. We use 4 input views, so the
number of output Gaussians is 128× 128× 4 = 65, 536. The feature channels for
all blocks are [64, 128, 256, 512, 1024, 1024], [1024] and [1024, 1024, 512, 256, 128]
respectively. Each block contains a series of residual layers and an optional down-
sample or up-sample layer. For the last 3 of down blocks, the middle block, and
the first 3 up blocks, we also insert cross-view self-attention layers after the
residual layers. The final feature maps are processed by a 1×1 convolution layer
to 14-channel pixel-wise Gaussian features. Following previous works [40,47], we
adopt Silu activation and group normalization for the U-Net.

Training. We train our model on 32 NVIDIA A100 (80G) GPUs for about 4
days. A batch size of 8 for each GPU is used, leading to an effective batch size of
256. For each batch, we randomly sample 8 camera views, with the first 4 views
as the input, and all 8 views as the output for supervision. Similar to LRM [15],
we transform the cameras of each batch such that the first input view is always
the front view with an identity rotation matrix and fixed translation. The input
images are assumed to have a white background. The output 3D Gaussians
are rendered at 512 × 512 resolution for mean square error loss. We resize the
images to 256× 256 for LPIPS loss to save memory. The AdamW [29] optimizer
is adopted with the learning rate of 4× 10−4, weight decay of 0.05, and betas of
(0.9, 0.95). The learning rate is cosine annealed to 0 during the training. We clip
the gradient with a maximum norm of 1.0. The probability for grid distortion
and camera jitter is set to 50%.

Inference. Our whole pipeline, including two multi-view diffusion models, takes
only about 10 GB of GPU memory for inference, which is friendly for deploy-
ment. For the multi-view diffusion models, we use a guidance scale of 5 for
ImageDream [52] and 7.5 for MVDream [45] following the original paper. The
number of diffusion steps is set to 30 using the DDIM [46] scheduler. The cam-
era elevation is fixed to 0, and azimuths to [0, 90, 180, 270] degree for the four
generated views. For ImageDream [52], the text prompt is always left empty so
the only input is a single-view image. Since the images generated by MVDream
may contain various backgrounds, we apply background removal [38] and use
white background.
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Input          TriplaneGaussian DreamGaussian Ours

Fig. 5: Comparisons of generated 3D Gaussians for image-to-3D. Our method
generates Gaussian splatting with better visual quality on various challenging images.
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Input          LRM                                                                                Ours

Fig. 6: Comparisons with LRM for image-to-3D. We compare our method with
available results from LRM [15].

4.2 Qualitative Comparisons

Image-to-3D. We first compare against recent methods [48,63] that are capable
of generating 3D Gaussians. Figure 5 shows images rendered from the generated
3D Gaussians for comparison. The 3D Gaussians produced by our method have
better visual quality and effectively preserve the content from the input view. Our
high-resolution 3D Gaussians can be transformed into smooth textured meshes
with minimal loss of quality in most cases. We also compare our results against
LRM [15] using the available videos from their website in Figure 6. Specifically,
our multi-view setting successfully mitigates the issue of blurry back views and
flat geometry, resulting in enhanced detail even in unseen views.

Text-to-3D. We then compare with recent methods [16,48] on text-to-3D tasks.
We observe an enhanced quality and efficiency in our method, generating more
realistic 3D objects, as illustrated in Figure 7. Due to the multi-view diffusion
models, our model is also free from multi-face problems.

Diversity. Notably, our pipeline exhibits high diversity in 3D generation, owing
to the capability of multi-view diffusion model [45, 52]. As shown in Figure 8,
with different random seeds, we can generate a variety of feasible objects from
the same ambiguous text prompt or single-view image.
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Fig. 7: Comparisons of generated 3D models for text-to-3D. Our method
achieves better text alignment and visual quality.

“teddy bear”

“parrot”

Fig. 8: Diversity of our 3D generation. We can generate diverse 3D models given
an ambiguous text description or single-view image.

4.3 Quantitative Comparisons

We majorly conduct a user study to quantitatively evaluate our image-to-3D
Gaussians generation performance. For a collection of 30 images, we render 360-
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Image Consistency ↑ Overall Quality ↑
DreamGaussian [48] 2.30 1.98
TriplaneGaussian [63] 3.02 2.67
LGM (Ours) 4.18 3.95

Table 1: User Study on the quality of generated 3D Gaussians for image-to-3D tasks.
The rating is of scale 1-5, the higher the better.
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Fig. 9: Ablation Study. We carry out ablation study on designs of our method.

degree rotating videos of the 3D Gaussians generated from DreamGaussain [48]
(only the first stage), TriplaneGaussian [63], and ours. There are in total 90
videos for evaluation in our user study. Each volunteer is shown 30 samples from
mixed random methods, and asked to rate in two aspects: image consistency and
overall model quality. We collect results from 20 volunteers and get 600 valid
scores in total. As shown in Table 1, our method is preferred as it aligns with
the original image content and shows better overall quality.

4.4 Ablation Study

Number of Views. We train an image-to-3D model with only one input views
similar to splatter image [47], i.e., without the multi-view generation step. The U-
Net takes the single input view as input with self-attention, and outputs Gaussian
features as in our multi-view model. To compensate the number of Gaussians,
we predict two Gaussians for each pixel of the output feature maps, leading to
128×128×2 = 32, 768 Gaussians. As illustrated in the top-left part of Figure 9,
the single-view model can reconstruct faithful front-view, but fails to distinguish
the back view and results in blurriness. This is as expected since the regressive
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U-Net is more suitable for reconstruction tasks, and it’s hard to generalize to
large datasets in our experiments.

Data Augmentation. We train a smaller model with or without applying data
augmentation to validate its effectiveness. Although we observe a lower training
loss for the model without data augmentation, the domain gap during inference
leads to more floaters and worse geometry as shown in the bottom-left part of
Figure 9. The model with data augmentation strategy can better correct the 3D
inconsistency and inaccurate camera poses in the generated multi-view images,
leading to fewer floaters.

Training Resolution. Lastly, we train a model with a fewer number of Gaus-
sians and smaller rendering resolution as in the right part of Figure 9. We re-
move the last up block of the U-Net so the number of output Gaussians is
64× 64× 4 = 16, 384, and we render it at 256× 256 for supervision. The model
can still converge and successfully reconstruct 3D Gaussians, but the details are
worse compared to the 256×256 input multi-view images. In contrast, our large
resolution model at 512×512 can capture better details and generate Gaussians
with higher resolution.

4.5 Limitations

Since our model is essentially a multi-view reconstruction model, the 3D genera-
tion quality highly depends on the quality of four input views. However, current
multi-view diffusion models [45, 52] are far from perfect: (1) There can be 3D
inconsistency which misleads the reconstruction model to generate floaters. (2)
The resolution of synthesized multi-view images is restricted to 256 × 256. (3)
ImageDream [52] also fails to handle input image with a large elevation angle.
We expect these limitations can be mitigated with better multi-view diffusion
models such as Zero-1-to-3++ [44] in future works.

5 Conclusion

In this work, we present a large multi-view Gaussian model for high-resolution
3D content generation. Our model, distinct from previous methods reliant on
NeRF and transformers, employs Gaussian splatting and U-Net to address the
challenges of high memory requirements and low-resolution training. Addition-
ally, we explore data augmentation for better robustness, and introduce a mesh
extraction algorithm for the generated 3D Gaussians. Our approach achieves
both high-resolution and high-efficiency for 3D objects generation, proving its
versatility and applicability in various contexts.
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