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Table 1: The overview of the proposed methods. They differ in the variance in the
covariance matrix, and with or without the distance-based camera selection.

Method Variance Cam Selection
E-OT σ2

1 = σ2
2 = 1 without

MV-OT σ2
1 = 1, σ2

2 = 1.2 without
ED-OT σ2

1 = σ2
2 = 1/ exp(α ∗MinMaxNorm(dcam)) without

M-OT σ2
1 = 1, σ2

2 = exp(α ∗MinMaxNorm(dcam)) without
E-MVOT σ2

1 = σ2
2 = 1 with

MV-MVOT σ2
1 = 1, σ2

2 = 1.2 with
ED-MVOT σ2

1 = σ2
2 = 1/ exp(α ∗MinMaxNorm(dcam)) with

M-MVOT σ2
1 = 1, σ2

2 = exp(α ∗MinMaxNorm(dcam)) with

1 Overview of the proposed methods

In order for better understanding, we give an overview of the proposed methods
(E-OT, MV-OT, ED-OT, M-OT, E-MVOT, MV-MVOT, ED-MVOT and M-
MVOT) in Table 1. They differ in the variance defined in the covariance matrix
when computing the transport cost matrix and with or without the distance-
based camera selection for the fusion of multi-cameras. σ2

1 is the variance along
the camera view ray. σ2

2 is the variance perpendicular to the camera view ray.

2 More Experiments

We conducted a series of extra experiments to analyze the performance of the
proposed Mahalanobis distance-based multi-view optimal transport method.
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Table 2: The ablation study on σ2
1 : σ2

2 of MV-MVOT loss on the MultiviewX dataset.
The best results of fixed ratios are achieved by σ2

1 : σ2
2 = 1:1.2, but it is still lower than

M-MVOT’s performance.

σ2
1 : σ2

2 MODA MODP Precision Recall F1_score
1:1 96.3 85.2 98.1 98.1 98.1
1.2:1 96.5 84.6 98.3 98.2 98.2
1.5:1 96.2 85.2 98.2 98.0 98.1
2:1 96.3 86.1 98.5 97.8 98.1
1:1.2 96.5 85.6 98.3 98.2 98.2
1:1.5 96.5 85.2 98.5 97.9 98.2
1:2 96.3 85.5 98.4 97.9 98.1
M-MVOT 96.7 86.1 98.8 97.9 98.3

Table 3: The ablation study on different strategies to fuse M-MVOT loss on the
MultiviewX dataset. The best results are achieved by Dist-based Selection.

Strategy MODA MODP Precision Recall F1_score
Average 96.5 85.2 98.7 97.8 98.2
Soft 96.5 86.0 98.7 97.8 98.2
Dist-based Selection 96.7 86.1 98.8 97.9 98.3

2.1 Ablation study on the fixed ratios of σ2
1 and σ2

2

We conducted more experiments on MV-MVOT in Table 2 with various fixed
ratios of σ2

1 and σ2
2 on the MultiviewX dataset. When σ2

1 = σ2
2 = 1, it is equal

to E-MVOT.
When σ2

1 > σ2
2 (1.2:1, 1.5:1, and 2:1), it means we encourage the prediction

points to appear along the view-ray direction, which is the opposite of MV-
MVOT. 1.2:1 achieves the best performance with MODA=96.5, MODP=84.6,
which is lower than the best performance of using σ2

1 < σ2
2 (1:1.2), with MODA=96.5,

MODP=85.6. The reason is the prediction points already appear along the view-
ray direction with a higher probability but with an offset to the ground-truth
locations due to projection distortions.

So we enforce more punishments along the view-ray direction to obtain more
accurate predicted points, namely σ2

1 should be smaller than σ2
2 (1:1.2, 1:1.5, and

1:2). From Table 2, we can see that the best performance on fixed ratio is achieved
at σ2

1 : σ2
2 = 1:1.2. When the ratio continues to increase, the performance starts

to decrease.
Overall, the best performance on fixed ratios is still worse than the proposed

M-MVOT. Because M-MVOT considers the object-to-camera distance in the
cost calculation and can adjust the cost adaptively and according to the distance
to the camera.

2.2 Ablation study on the multi-view fusion strategy

We conduct extra experiments on the multi-view fusion strategy with a very
basic form on M-MVOT, that is, Average. We sum the OT losses under all
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Table 4: The ablation study on the backbone of M-MVOT loss on the MultiviewX
dataset. The best results are achieved by MVDeTr.

Backbone Method MODA MODP Precision Recall F1_score

SHOT [4] MSE 88.3 82.0 96.6 91.5 94.0
M-MVOT 89.2 85.6 96.4 92.7 94.5

MVDeTr [1] MSE 93.9 90.3 98.0 95.9 96.9
M-MVOT 96.7 86.1 98.8 97.9 98.3

Table 5: Ablation study on M-MVOT loss with view confidence attentions.

Method MODA MODP Precision Recall F1_score
MVOT-conf 96.0 85.8 98.3 97.7 98.0

M-MVOT(Ours) 96.7 86.1 98.8 97.9 98.3

cameras together and then averaging them. And Soft is to replace the binary
choice strategy with soft weights learned from camera distance for fusing multi-
cameras (as mentioned in the manuscript). The experiment in Table 3 shows
that the distance-based selection strategy achieves better results than Average
or Soft fusion of multi-cameras, a simple but effective strategy for selecting the
most reliable camera. While the average strategy considers all cameras equally
without any preference, which is not flexible for multi-view fusion.

2.3 Ablation study on backbones

We conducted experiments on our proposed M-MVOT with two different back-
bones on the MutiviewX dataset: SHOT [4] and MVDetr [1]. In the MVDeTr
backbone, we also add a multi-height selection module proposed by SHOT to
reduce the impact of projection errors. The experiment in Table 4 shows that the
MVDeTr backbone performs better than the SHOT backbone. More importantly,
no matter if it is implemented on which backbone, the proposed M-MVOT al-
ways achieves better performance than the density-map-based MSE loss, which
indicates the advantage of the proposed M-MVOT loss.

2.4 Ablation study on M-MVOT loss with view confidence
attentions

We conduct an extra experiment on M-MVOT loss with extra view confidence at-
tentions in Table 5. Specifically, extra self-confidence attentions for each camera
are added in the multi-view OT loss for dealing with the occlusions (denoted as
MVOT-conf) on the MultiviewX dataset. The experiments show the M-MVOT
is still better than MVOT-conf. The multi-view crowd localization model already
can fuse multi-view features for handling occlusions.

2.5 Ablation study on different distance thresholds

In addition to using 0.5m as the distance threshold, we also evaluate and compare
the results on different distance thresholds in Table 6. 0.5m is a suitable thresh-
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Table 6: Ablation study on different distance thresholds.

Threshold Method MODA MODP Precision Recall F1_score

0.4m
SHOT [4] 89.0 78.0 97.1 91.7 94.3

MVDeTr [1] 93.4 89.4 99.4 93.9 96.4
M-MVOT (Ours) 96.5 82.7 98.6 97.8 98.2

0.5m
SHOT [4] 88.3 82.0 96.6 91.5 94.0

MVDeTr [1] 93.7 91.3 99.5 94.2 97.8
M-MVOT (Ours) 96.7 86.1 98.8 97.9 98.3

0.6m
SHOT [4] 89.5 85.1 97.4 92.0 94.6

MVDeTr [1] 93.6 92.9 99.6 94.0 96.7
M-MVOT (Ours) 96.7 88.4 98.8 97.9 98.3

Table 7: Loss computation cost comparison.

Loss Memory(GB) FLOPs(G) Train(s) Test(s)
Focal 10.205 923.702 0.416 0.29
E-MVOT 11.159 923.702 0.484 0.29
M-MVOT 11.251 923.702 0.531 0.29

old considering human sizes, and all SOTAs [1–4] evaluate using this threshold.
We also tested with {0.4m, 0.6m} thresholds on MultiviewX in Table 6, and our
MODA & F1_score are still better than MVDeTr [1] and SHOT [4], demon-
strating the advantage of the proposed M-MVOT loss.

2.6 Ablation study on the computational cost of different losses.

We compare the computational cost of different losses in Table 7. The GPU
memory usage is M-MVOT > E-MVOT > Focal, and the single-batch training
speed rank is the opposite. Our OT losses’ training computation is higher than
Focal loss, but the test speed and FLOPs are the same since the loss computation
is removed at test time.

3 More Implementation and Training Details

On the CVCS dataset, the proposed methods are implemented on MVDet [2]
backbone. We first pretrain the 2D encoder and decoder with MSE loss to give
a better initialization for 2D feature extraction. After that, we enable the multi-
view decoder into the training state with the proposed loss function for 300
epochs. In each epoch, 10 frames are randomly chosen from a total of 100 frames
of each scene with 5 times sampling.

On MultiviewX and Wildtrack, the proposed methods are implemented based
on the MVDetr backbone with an extra muti-height selection module proposed
by SHOT. We use the same loss function proposed by MVDetr but replace the
ground plane focal loss with the proposed M-MVOT loss. After pretraining the
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MVDeTrGT MVDet SHOT 3DROM
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View1 View4 View5View3View2

Fig. 1: Visualization results on CVCS.

feature extraction, the 2D encoder and multi-view decoder are trained simultane-
ously for 120 epochs with the OneCycle scheduler. The maximum and minimum
learning rates are 1e-4 and 1e-5 respectively.

4 More Visualization Results

We provide more visualization results for each dataset. figure 1 and 2, figure 3
and 4, figure 5 and 6 give visualizations results on CVCS dataset, MutiviewX
dataset and Wildtrack dataset respectively. It is worth noting our methods E-
MVOT and M-MVOT get a better visual effect than other methods, especially
in areas with dense crowds or closed to the border because they reduce the
projection artifacts in these areas.

References

1. Hou, Y., Zheng, L.: Multiview detection with shadow transformer (and view-
coherent data augmentation). In: Proceedings of the 29th ACM International Con-
ference on Multimedia. pp. 1673–1682 (2021)

2. Hou, Y., Zheng, L., Gould, S.: Multiview detection with feature perspective trans-
formation. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part VII 16. pp. 1–18. Springer (2020)

3. Qiu, R., Xu, M., Yan, Y., Smith, J.S., Yang, X.: 3d random occlusion and multi-
layer projection for deep multi-camera pedestrian localization. In: Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part X. pp. 695–710. Springer (2022)

4. Song, L., Wu, J., Yang, M., Zhang, Q., Li, Y., Yuan, J.: Stacked homography trans-
formations for multi-view pedestrian detection. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 6049–6057 (2021)



6 Q. Zhang, K. Zhang, et al.

View1

MVDeTrGT MVDet SHOT 3DROM

E-MVOT M-MVOT

View4 View5View3View2

Fig. 2: Visualization results on CVCS.
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Fig. 3: Visualization results on MutiviewX.
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Fig. 4: Visualization results on MutiviewX.
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Fig. 5: Visualization results on Wildtrack.
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Fig. 6: Visualization results on Wildtrack.
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