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A ISP revisited

Here we give a brief review of the digital camera image formation process, from
camera sensor RAW data to output sRGB, please refer to Fig. 1(a) for an illus-
trative diagram, the ISP steps mainly include:

(a). Pre-processing involves some pre-process operations such as BlackLevel
adjustment, WhiteLevel adjustment, and lens shading correction.

(b). Noise reduction eliminates noise and keeps the visual quality of image,
this step is closely related to exposure time and camera ISO settings [47,68].

(c). Demosaicing is used to reconstruct a 3-channel color image from a single-
channel RAW, executed through interpolation of the absent values in the Bayer
pattern, relying on neighboring values in the CFA.

(d). White Balance simulates the color constancy of human visual system
(HVS). An auto white balance (AWB) algorithm estimates the sensor’s response
to illumination of the scene and corrects RAW data.

(e). Color Space Transformation mainly includes two steps, first is mapping
white balanced pixel to un-render color space (i.e. CIEXYZ), and the second is
mapping un-render color space to the display-referred color space (i.e. sRGB),
typically each use a 3⇥3 matrix based on specific camera [16].

(f). Color and Tone Correction are often implemented using 3D and 1D
lookup tables (LUTs), while tone mapping also compresses pixel values.

(g). Sharpening enhances image details by unsharp masking or deconvolution.
We refer other detailed steps such as digital zoom and gamma correction to

previous works [16,35,56]. Meanwhile, in the ISP pipeline, many other operations
prioritize the quality of the generated image rather than its performance in
machine vision tasks. Therefore, for specific adapter designs, we selectively omit
certain steps and focus on including the steps mentioned above. We provide
detailed explanations in the Sec. 3.1 and Sec. C.

B Impact of Different Blocks

We conducted ablation experiments to assess the effectiveness of different stages
in RAW-Adapter. The experiments were designed on the PASCAL dataset with
RetinaNet [43] (ResNet-50 backbone), covering normal, dark, and over-exposed
conditions. The results are presented in Table. B5, we can find that the ker-
nel predictor PK exhibits significant improvements in dark scenarios (+2.4), at-
tributable to the gain ratio g and denoising processes, but it doesn’t seem to be
of much help in both overexposed and normal scenes (+0.0), this might be due
to the current kernel-based denoising methods being too simplistic and elimi-
nating some detail information. Meanwhile the implicit LUT L does not show
improvement under over-exposed and low-light conditions but proves effective in
normal light condition. Finally, the model-level adapters M and matrix predictor
PM yield performance improvements across all scenarios.
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Table B5: Ablation analyze on RAW-Adapter’s model structure.

blocks

base PK PM L M mAP (normal) mAP (over-exp) mAP (dark)
X 89.2 88.8 82.6
X X 89.2 (+0.0) 88.8 (+0.0) 85.0 (+2.4)
X X X 89.3 (+0.1) 89.0 (+0.2) 86.2 (+3.6)
X X X X 89.4 (+0.2) 89.0 (+0.2) 86.3 (+3.7)
X X X X X 89.6 (+0.4) 89.4 (+0.6) 86.6 (+4.0)

C Detailed Design of Input-level Adapters

In the main text of our paper, we outlined that the input level adapters of
RAW-Adapter comprise three components: the kernel predictor PK, the matrix
predictor PM, and the neural implicit 3D LUT L. In this section, we will provide a
detailed explanation of how to set the parameter ranges for input-level adapters,
along with conducting some results analysis.

The kernel predictor PK is responsible for predicting five ISP-related param-
eters, including the ¨ gain ratio g, the Gaussian kernel ≠ k’s major axis radius
r1, Æ k’s minor axis radius r2, and the Ø sharpness filter parameter �.

¨ The gain ratio g is used to adjust the overall intensity of the image I1. Here
g initialized to 1 under normal light and over-exposure conditions. In low-light
scenarios, g is initialized to 5.

≠ The major axis radius r1 is initialized as 3, and we predict the bias of the
variation of r1, then add it to r1.

Æ The minor axis radius r2 is initialized as 2, and we predict the bias of the
variation of r2, then add it to r2.

Ø The sharpness filter parameter � is constrained by a Sigmoid activation
function to ensure its range is within (0, 1).

The matrix predictor PM is responsible for predicting ∞ a white balance
related parameter ⇢ and ± white balance matrix Eccm (9 parameters). In total,
10 parameters need to be predicted.

∞ ⇢ is a hyperparameter of the Minkowski distance in SOG [20] white balance
algorithm. We set its minimum value to 1 and then use a ReLU activation
function followed by adding 1 to restrict its range to (1, +1).

± The matrix Eccm consists of the 9 parameters predicted by PM and forms
a 3x3 matrix. No activation function needs to be added, it would directly added
to the identity matrix E3 to form the final Eccm.

For the neural implicit 3D LUT (NILUT) [11] L, in the main text, we set
the MLP dimension of the neural implicit 3D LUT L to 32 to save FLOPs,
here we test the effects of different dims of L on the final results, as shown in
Table C6. Compared to the MLP dimension of 32 in the main text, we observed
that setting the MLP dimension of NILUT [11] to 16 leads to a decrease in
performance. Increasing the LUT dimension to 64 results in a slight improvement
in performance, but further increasing it to 128 does not lead to performance
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Table C6: Ablation analyze on neural implicit 3D LUT L’s dims, we shoe the efficiency
comparison (# Para and Flops), along with mAP comparison on ADE 20K RAW
dataset. Flops are calculated from a tensor of size (1, 3, 512, 512).

L # Para # Flops # mIOU (normal) mIOU (over-exp) mIOU (dark)
dim=16 0.93K 0.207G 47.97 (�0.41) 46.95 (�0.11) 41.02 (�0.80)
dim=32 1.97K 0.784G 48.38 (+0.00) 47.06 (+0.00) 41.82 (+0.00)
dim=64 12.9K 3.041G 48.44 (+0.06) 47.26 (+0.20) 41.82 (+0.00)
dim=128 50.4K 11.98G 48.40 (+0.02) 47.05 (�0.01) 41.75 (�0.05)

enhancement. Additionally, as the MLP dimension increases, both the parameter
number and FLOPs of L increase substantially. Therefore, in the experiments of
RAW-Adapter, choosing a dimension of 32 for L is a more reasonable option.

D Segmentation with Swin-Transformer

In the main text, we evaluated the segmentation performance using the Seg-
former [70]. Here, we extend the evaluation to include the Swin-Transformer [45]
backbone. In the default setting of mmsegmentation, the segmentation head
comprises UperNet with an auxiliary segmentation head FCN. We compare dif-
ferent sizes of the Swin-Transformer backbone, including Swin-tiny (Swin-T),
Swin-small (Swin-S), and Swin-normal (Swin-N). The training settings and com-
parison metrics remain the same as Table 4 in the main text. Additionally, we
include various ISP methods [6,34,35,71,79] and Dirty-Pixel [18] for comparison.

The comparison results are shown in Table. F7, we can find that RAW-
Adapter still achieves the best results on the Swin-Transformer [45] architecture.
Our segmentation performance remains optimal across all lighting conditions,
at the same time, our approach also holds advantages in terms of parameter
count and inference speed. Furthermore, it achieves superior performance even
on lighter weight Swin backbones compared to other methods on heavier weight
Swin backbones. This also demonstrates that RAW-Adapter can serve as a gen-
eral approach for extension across different network architectures.

E Segmentation on Real-World Dataset [40]

Additionally, we made the experiments on real-world RAW semantic segmenta-
tion dataset iPhone XSmax [40], iPhone XSmax consist of 1153 RAW images
with their corresponding semnatic labels, where 806 images are set as training
set and the other 347 images are set as evaluation set. We adopt Segformer [70]
framework with MIT-B5 backbone, training iters are set to 20000 and other set-
tings are same as ADE 20K RAW’s setting. The experimental results are shown
in Fig. E7. RAW-Adapter method could also achieve satisfactory results.
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Fig. E7: Semantic segmentation results on iPhone XSmax [40] dataset.

F Limitation of Current Design

Input-level Adapter still adopts simple kernel-based denoising and sharpen-
ing methods, this approach is considered for saving computational costs and for
simplicity in design, however, we believe that perhaps more advanced denoising
methods could bring about better improvements. Another part is that the im-
plicit 3D LUT [11] is not designed to be image-adaptive, instead, it is a fixed LUT
learned from the same dataset, we believe that perhaps an image-adaptive LUT
could lead to better improvements, as different images within the same dataset
can still have significant variations in information and lighting conditions.

Model-level Adapter’s integration method is still relatively simple. We
have extracted intermediate images from the ISP process (I1, I2, I3, I4) to serve
as guidance information for designing the model-level adapter. We use the convo-
lution process to simply fuse I1, I2, I3, I4 together to assist the network backbone.
We believe that perhaps more effective feature fusion method [19] could better
help improve the performance of downstream tasks.

G More Visualization Results

We show more visualization results in this section. The detection results are
shown in Fig. G8, where line 1 ⇠ 6 are the detection results on LOD [27] dataset
and line 7 ⇠ 8 are the detection results on PASCAL RAW [52] dataset, we show
the comparison with ISP methods Karaimer et al. [35] and InvISP [71], along
with joint-training method Dirty-Pixel [18]. The segmentation results are shown
in Fig. G9, with comparison of various methods [6, 18,35,71,79].
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Table F7: Comparison on Swin-Transformer [45] in ADE 20K RAW (normal/over-
exp/dark). Bold denotes the best result while underline denotes second best result.
The same background color in the table indicates same backbone weights.

backbone params(M) #
inference

time(s) #
mIOU "
(normal)

mIOU "
(over-exp)

mIOU "
(dark)

Demosacing

Swin-N
121.27

0.168 43.71 40.86 31.22

Karaimer et al. [35] 0.588 44.97 41.21 34.84

InvISP [71] 0.266 43.02 41.87 6.01

LiteISP [79] 0.324 44.52 40.61 4.81

DNF [34] 0.249 - - 30.77

SID [6] 0.375 - - 24.92

Dirty-Pixel [18]
125.47 0.239 44.81 43.48 38.32

Swin-S 85.31 0.138 36.29 35.01 27.66

Swin-T 63.92 0.057 35.21 32.47 25.91

RAW-Adapter

(w/o M)

Swin-N 121.35 0.209 45.01 43.72 38.44

Swin-S 81.29 0.106 37.11 34.94 28.63

Swin-T 59.98 0.049 36.30 32.38 26.45

RAW-Adapter

Swin-N 121.81 0.238 45.97 44.86 39.78

Swin-S 81.65 0.112 38.02 37.01 28.99

Swin-T 60.29 0.063 36.85 33.00 26.77
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Fig.G8: Object detection results on LOD [27] (line 1 ⇠ 6) and PASCAL RAW [52]
(line 7 and line 8), please zoom in to see details.
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Fig.G9: Segmentation results on ADE20K RAW dataset, including dark scene, over-
exposure scene and normal scene.


