SLEDGE: Synthesizing Driving Environments
with Generative Models and Rule-Based Traffic

Kashyap Chitta* Daniel Dauner* Andreas Geiger

University of Tiibingen Tiibingen AI Center
https://github.com /autonomousvision /sledge

Abstract. SLEDGE is the first generative simulator for vehicle mo-
tion planning trained on real-world driving logs. Its core component is
a learned model that is able to generate agent bounding boxes and lane
graphs. The model’s outputs serve as an initial state for rule-based traf-
fic simulation. The unique properties of the entities to be generated for
SLEDGE, such as their connectivity and variable count per scene, ren-
der the naive application of most modern generative models to this task
non-trivial. Therefore, together with a systematic study of existing lane
graph representations, we introduce a novel raster-to-vector autoencoder.
It encodes agents and the lane graph into distinct channels in a rasterized
latent map. This facilitates both lane-conditioned agent generation and
combined generation of lanes and agents with a Diffusion Transformer.
Using generated entities in SLEDGE enables greater control over the
simulation, e.g. upsampling turns or increasing traffic density. Further,
SLEDGE can support 500m long routes, a capability not found in ex-
isting data-driven simulators like nuPlan. It presents new challenges for
planning algorithms, evidenced by failure rates of over 40% for PDM,
the winner of the 2023 nuPlan challenge, when tested on hard routes and
dense traffic generated by our model. Compared to nuPlan, SLEDGE re-
quires 500% less storage to set up (<4 GB), making it a more accessible
option and helping with democratizing future research in this field.

Keywords: Diffusion - Transformers - Simulation - Planning - Driving

1 Introduction

While recent breakthroughs in generative AI have revolutionized natural image
synthesis |4,[14], generative models are yet to find widespread adoption in au-
tonomous driving. In contrast to the regular pixel grid of images, self-driving
planners typically require abstract bird’s eye view (BEV) representations as in-
put which characterize the most important scene elements (e.g., lanes, traffic
lights, static and dynamic objects) in a compact, vectorized format (see Fig. .
These representations are a key component of data-driven simulators which are
necessary for rigorous evaluation of planners [9,[1024/49]. However, learning a
generative model on such irregular vectorized representations is challenging.

*equal contribution

https://github.com/autonomousvision/sledge

2 K. Chitta et al.

Las Vegas Boston Pittsburgh Singapore

g : /
b & :]
o0 I - i AN N S \
< RS c:':':'mm e N S8s &
T O SN S N %
© 'S g%“‘:' Y XN /l (N
= . SE ¥ / ®
< ‘ Vi &] 9
] A ~ BN

7 S
o
gb e £ .

= ==l

= =r E;,. = B, = — . s =
g : Lo @ o
&
3 o

Fig. 1: SLEDGE. We show state snapshots of simulation environments generated by
our approach in 4 cities, with the lanes, ego-vehicle, , pedestrians,
, and traffic lights. Our supplementary video visualizes clips with more examples.

Consequently, many existing data-driven simulators [15}/20] are initialized by
simply replaying logs of abstract representations. They extract the local lane
graph from a High Definition (HD) map and object bounding boxes from pre-
recorded annotation logs. Planning algorithms can be tested in scenarios with
restricted routes and durations (~15 seconds long), to ensure that the envi-
ronment during simulation is covered in the recording. Moreover, to provide
sufficient diversity among routes for comprehensive testing, these simulators re-
quire huge databases, e.g., nuPlan [20] consists of 1300 hours of driving logs
which require over 2 TB of storage. Such high resource requirements heighten
the barrier for entry into the field of vehicle motion planning.

In this paper, we study the generation of simulation-ready abstract repre-
sentations of driving scenes. Using generative models as an alternative to log
replays has the potential for significant compression [38]. However, the unique
characteristics of abstract representations in driving scenes pose new challenges
to modeling them, e.g., they require accurate topological connectivity, variable
entity counts, and precise modeling of geometry (e.g., parallel lines). Due to
these characteristics, generative models that operate on uniformly sized repre-
sentations (e.g., images) are incompatible with our data-driven simulation task.

To tackle these complexities, we first perform a systematic study of the exist-
ing representations of lane graphs used in autonomous driving. We then propose
a novel representation based on a raster-to-vector autoencoder. It represents a
driving scene with a fixed-size BEV rasterized latent map (RLM). We learn to
generate these RLMs with a Diffusion Transformer (DiT) [34]. Our model gen-
erates high-fidelity results enabling both lane-conditioned agent generation or
joint lane and agent generation within a single flexible and scalable framework
(Fig. . Independent to its use of generative models, SLEDGE also provides
the previously missing functionality of simulating only agents within a certain
radius of the ego-vehicle. By doing so, we can test on routes that are significantly
longer than those currently used for evaluating planners. We find previously ig-
nored failure modes of the state-of-the-art PDM-Closed planner [10]|, which is

SLEDGE 3

unable to complete 25-50% of our new 500m long test routes despite having
failure rates below 10% on existing benchmarks.

Contributions. (1) We formalize the task of abstract scene generation for au-
tonomous driving with a challenging benchmark and corresponding metrics. (2)
We perform a systematic exploration of modern generative models (with various
architectures and representations) and propose a novel latent diffusion model for
synthesizing abstract driving scenes that largely outperforms other baselines. (3)
We present a simulation framework, SLEDGE, which is nearly 3 orders of mag-
nitude more storage efficient than nuPlan yet enables more rigorous testing of
planning algorithms with long-horizon simulations using rule-based traffic.

2 Related Work

Diffusion Models. Best known for their success in generative modeling of im-
ages [14.37] and video [3./4,/47], diffusion models have recently found widespread
adoption in diverse domains, including point clouds [29}/32}{48], floor plans [6,/40],
molecules [46], robot policies |7], traffic patterns [51], and many others. Scenario
Diffusion [35|, a pioneering approach in generating vehicles conditioned on HD
maps with diffusion, is the closest existing approach to ours. This method uses
latent diffusion with a raster-based vehicle decoder unlike our proposed trans-
former decoder head. Importantly, we offer significantly increased capabilities:
generation of lane graphs, support for pedestrians, obstacles, and traffic lights,
as well as long-horizon simulation environments with reactive agents.

Generating Lane Graphs. Lane graphs, the most important component of
HD maps, are well-studied. They are often constructed through an offline map-
ping process often involving human annotators [13|. However, a surge of recent
work on predicting lane graphs from sensor data [23}[25] has sparked interest on
generative modeling of these graphs. The first and only existing study on this
task, HDMapGen [31], proposes an autoregressive approach for generating lane
graphs node-by-node [8]. Our experiments show that this achieves reasonable
results, but is unable to match the high quality and scalability offered by our
model. Unlike HDMapGen, our approach jointly generates agents with lanes, and
efficiently generates all elements in parallel. A concurrent project, DriveScene-
Gen [41], generates lanes and vehicles with image-space diffusion. Our approach
covers agent types beyond vehicles, uses less heuristics, and is more efficient.
Additionally, we show the successful integration of our model into a simulator.

Data-driven Simulation. Developing an autonomous driving system necessi-
tates rigorous testing which is costly and risky if conducted in the real world.
Driving simulators are an alternative |12,/20,/45]. However, simulators face chal-
lenges in ensuring realism while initializing traffic scenes, simulating traffic.
Instead, data-driven simulators address these challenges by replaying traffic
scenes from real-world recordings [1}/15,/20,22]. The simulator can mine spe-
cific situations or even optimize the initial parameters for safety-critical scenar-

4 K. Chitta et al.

ios |11}16}/44]. Leveraging modern generative models, we take a step further than
existing frameworks and learn the underlying distribution of the real-world data.

3 Method

Our goal is to design a driving scene synthesis framework that can be trained
using real-world driving logs and incorporated into SLEDGE, our generative
simulator with rule-based traffic. We base this framework on LDMs [37] as: (1)
latent diffusion shows excellent training stability and scalability with compute.
(2) One can easily construct a fixed-size latent space for diffusion that can be
mapped to the variable sized set representation for simulation (Section using
detection-based transformer architectures [5,/25]. Our LDM is trained in two
stages: an autoencoder (Section followed by a diffusion model (Section [3.3).
We detail the simulation of scenes generated by the LDM in Section

3.1 nuPlan Vector Representation

We combine sets of entities to represent scenes in the default nuPlan format.

Lanes. Our focus is on the generation of lanes, the central element of HD maps
used in data-driven simulation. Each lane L € R20%2 i geometrically represented
by a polyline, i.e., a fixed set of 20 bird’s eye view (BEV) points. These are
bounded by two endpoints and form the lane centerline, connected along the
driving direction. A lane may share endpoint(s) with predecessor and successor
lanes. This information is encoded in an adjacency matrix A € RV*YN where
N is the number of lanes in a certain field of view (FOV). The set of all lane
polylines £ form the lane graph of the local map M = {L£, A}.

Traffic Lights. We then augment the lane graph with polylines representing
traffic lights. These share the same 20 x 2 format as lanes, and come in two types
(red and green). The set of red polylines (R) contains the lane regions that are
currently not traversable due to a red traffic light. The set of green polylines (G),
on the other hand, contains entities indicating lane segments where the road is
safe to proceed along due to the presence of a green traffic signal.

Agents. Further, we expand the scene representation using oriented bounding
boxes for the agents. Each bounding box is defined by a 2D center position,
heading, 2D extent and optional speed. We consider three types of agent sets:
pedestrians (P), vehicles (V) and static objects (O). Pedestrians and vehicle
boxes are assigned a speed attribute, whereas static objects are not.

Ego Velocity. Finally, initializing a simulation requires the BEV ego velocity
v € R2. Overall, we denote the scene state as S = {M,R,G,P,V,0,v}.

3.2 Raster-to-Vector Autoencoder

Each entity type in § is unique. To maintain overall scene consistency, we would
like to model them with a single architecture, instead of creating several inde-
pendent entity-specific generative models. Furthermore, most existing tools in

SLEDGE 5

Lanes £ Red Lights R Green Lights G

Scene étate S Pedestrians P Vehicles V Static Obj. O

Fig. 2: Rasterized State Image (RSI). We encode S into a 12-channel image, with
2 channels per entity type. We visualize these encodings as optical flow fields.

the literature have been developed and optimized for 2D input domains .
To this end, we propose the raster-to-vector autoencoder (RVAE) which unifies
all entity types in § into a compact, shared 2D representation well-suited for
diffusion modeling. The autoencoder is inspired by work in object detection
and online mapping for autonomous driving .

Rasterization. We first define a function p: S — I that encodes the scene state
into a rasterized state image (RSI) I € RW>*#>*12_ Qur design of p is motivated
by (and closely resembles) techniques used in motion planners . As shown
in Fig.[2] p maps the three polyline entity types (£, R, G) and three bounding box
entity types (P, V, O) to image pixel locations, assigning 2 channels to each entity
type which encode all their attributes. For polylines, we use a 2D directional
vector A = [dx,dy|, which points from any point to its successor, indicating
the presence of a polyline traversing a specific pixel. A background value (i.e.,
[0,0]) is assigned to other regions. For a bounding box type entity, we rasterize
it in BEV according to its position, extent, and heading. For dynamic bounding
boxes (P,V), the values in the two channels within the box region represent
the entity’s 2D velocity. For static obstacles, we fill the rasterized region with
the obstacle’s orientation vector. We use a square field of view centered at and
oriented as per the ego vehicle’s pose for rasterization. The ego velocity v is
encoded at the origin of I as an extra rasterized vehicle in V.

Vectorization. This step is necessary to decode the unified RSI representation
I back into the per-entity attributes (e.g., polylines, bounding boxes). We use a
learned vectorization pipeline consisting of a raster encoder 7 and vector decoder
head ¢. The ResNet-50 encoder takes the RSI and outputs a rasterized latent
map (RLM) M = 7(I) of shape W’ x H' x C, where H' = H/2¢ and W’ = W/2¢
for a downsampling factor d € N. C' is a chosen channel dimension. In practice,
the RLMs we use are compact, H = W’ = 8 and C = 64. Additionally, as shown
in Fig. [3] we split the RLM’s channels into 2 groups, C' = C, + C4 for the lanes
and agents respectively. For each group, we tokenize the latent vectors spatially
with 1 x 1 patches, resulting in W’ x H' lane tokens and W’ x H' agent tokens.

6 K. Chitta et al.

N Polyline'O
oo

-l O
Dline

~E

> FD Bounding Box

-0 e

Pbox

- B~ £ Ego Vel

Fig. 3: Raster-to-Vector Autoencoder (RVAE). We represent scenes with a ras-
terized latent map (RLM) consisting of two channel groups. The ‘Lanes’ group is de-
coded into lane segments and the ‘Agents’ group into all other scene entities, via a
transformer decoder with attention masking. The autoencoder is trained to predict
polylines, bounding boxes, and the ego velocity in a simulation-compatible format.

Following the DETR paradigm, we use these tokens as keys and values for
our transformer decoder ¢. The decoder uses a fixed number of learnable queries
of each entity type, which we cap to a maximum count per entity, based on
statistics from our dataset. The final decoder layer is unique per entity type and
outputs the attributes specific to that entity, e.g. a 20 x 2 set, of point coordinates
for a polyline, or a 6-dimensional descriptor (2D position, orientation, 2D extent,
and speed) for a bounding box. It also outputs an existence attribute p € [0, 1]
for both polylines (pjine) and bounding boxes (ppos), which is used to handle
variable counts of ground truth entities with a fixed number of queries.

Channel Group Masking. The motivation behind our design with two token
groups is to enable agent generation conditioned on known lanes. To this end,
the tokens for agents should contain no information about lanes. We implement
a binary mask in the cross-attention mechanism of ¢ to achieve this. Specifically,
queries for lanes £ are prevented from attending to the keys and values of the
agents tokens, and all other queries (i.e., R,G,P,V, 0, v) cannot attend to the
lanes tokens. Our experiments show the effectiveness of this approach.

Training. The autoencoder is optimized using both reconstruction and existence
losses, and a KL divergence loss on the RLM. For reconstruction, we first match
generated and ground truth entities using the Hungarian algorithm, as in . We
use a matching score based on the L1 error of the entity’s position attributes. We
then use the L1 error summed over all attributes and averaged over all matches
as the training loss. For the existence variable, we use a binary cross entropy
loss based on whether the query was matched to a ground truth entity.

3.3 Diffusion Transformer

We obtain RLMs M for each training example via the frozen, pretrained encoder
7 and use them to train a diffusion model § with the DDPM algorithm [19].

SLEDGE 7

\ 3. Tile

Fig. 4: Route Extrapolation by Inpainting. We show an example scenario gener-
ated by our DiT, where we iteratively sample poses along a route, warp the previous
tile’s RSI to this pose, and generate a new tile conditioned on the warped RSI.

Training. For each scene, we sample a noise scaling factor o from a log-normal
distribution and create a noisy sample M =M + ¢€ , with € sampled from a
standard normal distribution of the same shape as M. We model § (M, c,0) asa
Transformer [43], following DiT [34], where c is a conditioning vector. We choose
c to be a one-hot label indicating the city to which the example belongs. This
conditioning resolves ambiguities between locations (e.g. right- and left-hand
driving in the US and Singapore). However, it is possible to adapt our framework
to other conditioning, e.g., images, text descriptions, or learned clusters based
on the autoencoder features. The DiT architecture is simple, scalable, and free
from down- or upsampling operations, making it compatible with RLMs of any
spatial resolution. It applies a series of self-attention blocks to the tokenized
input M, with the conditioning on ¢ and ¢ implemented using AdaL.N-Zero |34].
We optimize the L2 reconstruction loss between £ and (5(1\7[; c,o).

Generation. During inference, we begin with an initial noisy sample M ~
N (O,UIQHMI)7 which undergoes iterative refinement from ¢ = omax to 0 = 0
based on the reverse PDE defined via ¢ [19]. We then use the trained vector
decoder ¢ from Section to predict £, R,G,P,V,O, and v. Only entities with
an existence probability above a threshold 7 are retained, and for overlapping
bounding boxes, those with the highest existence probability are kept. The pro-
cess of recovering the full scene state S further involves extracting the adjacency
matrix A of the lane graph, which is not an explicit output of our model. We
do this by simply matching lanes whose start and endpoints lie within a range
of 1.5 meters with orientations differing by less than 60 degrees, which we found
to be robust in practice given our highly accurate lane polyline predictions.

Conditional Generation via Inpainting. Diffusion models excel at inpaint-
ing, even without explicit training for this task |28|. Specifically, by executing
the denoising process on only a subset of the tokens in the noisy sample M,
with the remaining tokens extracted from a known and encoded scene, we can
inpaint RLMs. We use this capability to perform two tasks: (1) lane conditioned
agent generation and (2) route extrapolation. Lane conditioned agent gener-

8 K. Chitta et al.

ation involves encoding all lane tokens from a known map, and denoising all
agent tokens. Route extrapolation, as illustrated in Fig. [d] involves encoding a
subset of tokens within a known spatial region to denoise the unknown region.
Specifically, we can iteratively sample poses along a generated route, warp the
previously generated scene’s RSI to the new pose with an affine transformation,
and use a known region as conditioning for completing a newly created tile. We
provide implementation details in the supplementary material.

3.4 SLEDGE Simulation Environments

Finally, we initialize a reactive simulation in SLEDGE using the generated initial
scene state S. In the following, we provide an overview of the steps involved.

Hard Routes and Traffic. To evaluate a planner in ambiguous situations,
we must specify the driver intention, e.g. whether to turn left or right at an
intersection. Existing replay-based simulators offer limited controllability over
this, since they are unable to extract agents to simulate if the planner diverges
significantly from the route followed by the human driver from the log recording.
However, for generated scenes, we can extract multiple valid routes from the lane
graph, e.g., we define ‘hard’ routes by selecting the route with the highest number
of turns. In addition, our approach also provides a degree of control over traffic
density. We define a ‘hard’ traffic setting by generating multiple valid traffic
configurations along the desired route, and selecting the configuration with the
largest number of generated agents. Our experiments show that these ‘hard’
settings provide new challenges to the state of the art for planning.

Behavior Simulation. We simulate non-ego vehicles in SLEDGE by project-
ing each to the center of a lane based on proximity and heading, from which
it then laterally follows the lane centerlines. For longitudinal control, we use a
simple policy called the Intelligent Driver Model (IDM) [42]. Upon choosing a
connected lane sequence as a driving path, IDM calculates a longitudinal trajec-
tory, iteratively adjusting acceleration based on current position, velocity, and
distance to the leading vehicle. For pedestrians, we assume a constant veloc-
ity and heading while unrolling the simulation. Traffic lights are hard-coded to
change states every 15 seconds. While these choices are simplistic, they are in line
with the capabilities of today’s best data-driven simulators [15,20]. SLEDGE is
not incompatible by design with other types of policies for vehicle and pedestrian
simulation, but we leave this exploration to future work.

Simulation Radius. By default, existing data-driven simulators like nuPlan
simulate all the initialized agents at all timesteps. This severely limits the scala-
bility of these simulators to long simulation horizons or large scenes. We propose
a simple modification for SLEDGE wherein we only simulate agents at a dis-
tance below a=64m to the ego vehicle at a given timestep, while holding the
state of all other agents to be constant (Fig.[5)). We demonstrate the scalability
this provides by conducting experiments on simulations that are 10x longer than
those in nuPlan, i.e., up to 150 seconds as opposed to nuPlan’s 15 seconds.

SLEDGE 9

(a) Log Replay (b) Lane — Agent (c¢) Lane & Agent

N
[

Fig. 5: Long Route Simulation. SLEDGE supports (a) replayed scenarios, (b) lane-
conditioned agent generation, and (c) joint lane and agent generation. Importantly, we
enable testing on arbitrarily long routes by dynamically simulating agents near the ego
vehicle while keeping the state of distant agents fixed.

4 Experiments

We now present our experimental results. (1) We demonstrate the suitability of
the RLM as a lane graph representation. (2) We benchmark a series of mod-
els for lane graph generation. (3) We showcase the effectiveness of SLEDGE
environments for evaluating planners. For all experiments, we present concise
descriptions of baselines, metrics and implementations in the main paper. Addi-
tional details can be found in the supplementary material.

Dataset. We use nuPlan [20], the largest publicly available dataset for vehicle
motion planning. It comprises 1300 hours of logs from 4 cities. We sample 450k
train and 50k validation frames from these logs with sampling intervals of 30s,
1s, 2s and 2s between frames for Las Vegas, Boston, Pittsburgh and Singapore
respectively, in order to obtain a balanced distribution while achieving high
map coverage. Each city offers unique challenges for generative modeling, e.g.
Las Vegas has large and dense intersections, while Singapore involves left-hand
traffic. Each frame is limited to a 64mx64m FOV centered at the ego vehicle.

Implementation. We consider a ResNet-50 for the raster encoder 7 and a
transformer decoder with three layers for the vector decoder ¢ of the RVAE. For
the generative tasks, we apply the DiT-L and DiT-XL (138M vs. 487M params)
variants with a 1 x 1 patch size and DDPM noise scheduling as in [37].

4.1 Lane Graph Representations

In our first experiment, we evaluate various representations based on their ability
to reconstruct the complete directed lane graph M = {£, A}.

Baselines. We consider three baseline representations. (1) RSI: we use the skan
library [33| to extract vector polylines from the 256 x 256 x 2 RSI representation
of the lane graph. Skan is a highly optimized image processing pipeline for graph
extraction (details and visualizations in supplementary). (2) RLM w/o mask:
we train the RVAE without the channel group masking proposed in Section [3.2]

10 K. Chitta et al.

which entangles information about agents and lanes into a single 8 x 8 x 64 latent
map instead of an 8 x8x 32 tensor for the lane graph and an independent 8 x 8 x 32
tensor for agents. (3) Vector: As an upper bound, we additionally compute our
metrics for the respresentation used as target labels for the autoencoder during
training. This is a set of polylines shaped N x 20 x 2, where we cap N at 30 in
our experiments. Note that the ground truth for evaluation in this experiment
uses all polylines in the scene (which is sometimes greater than 30).

Metrics. Our metrics are adapted from the street map extraction literature |18].
We use three base metrics, which all operate on point sets sampled along graphs
at a resolution of one point every 1.5m. (1) F1: measures the harmonic mean
of the precision and recall, which are estimated using Hungarian matching be-
tween point sets with a distance threshold of 1.5m. Intuitively, this penalizes
large structural errors, while ignoring small positional offsets. (2) Lateral L2
(Lat.): averaged over all true positive matched points, measures the lateral off-
set of each such point from its nearest ground truth lane centerline. In contrast
to F1, it penalizes positional errors, while ignoring structurally incorrect and
unmatched lanes. (3) Chamfer: averaged over all points in two point sets, this
is the distance of each point to the closest in the other set. It requires both pre-
cise structure and details. These three base metrics are further applied in two
settings. (1) GEO uses point sets sampled from the complete graph, making
it independent of the predicted adjacency matrix A. On the other hand, (2)
TOPO uses A to extract sets of fully-connected sub-graphs corresponding to
every tenth node of the graph (i.e., every 15 meters). The base metrics are com-
puted on these sub-graphs and averaged. Errors in A can lead to large missing
sections of such sub-graphs, making TOPO suitable for evaluating connectivity.

Results. As shown in Table[T] the RSI is unable to match the RLM on all TOPO
and both the F1 and Chamfer GEO metrics. Despite the significantly larger
representation size of 524 KB per 64mx64m scene, the reliance on heuristics
to convert this representation back to its constituent entities serves as a major
limiting factor for the RSI. Qualitatively, we observe that the key issue is dense
groups of lines that nearly overlap at forks or cross over in intersections. For the
2 variants of RLM, we obtain similar reconstruction quality, largely closing the
gap towards the upper bound vector representation. Importantly, the proposed
channel group masking for the RLM (i.e., ‘Split’) disentangles the lane graph
from the agents with no impact on the graph reconstruction fidelity. Finally, as
we cap the maximum number of polylines to 30, we observe a very minor error
rate (<1% drop in F1) in the upper bound vector representation, corresponding
to the negligible fraction of scenes with over 30 lanes. However, the size of the
vector representation varies significantly per scene, ranging from 2 to 30 lanes.
The RLM achieves an ideal balance of high quality with a fixed size.

4.2 Lane Graph Generation

Next, we compare our proposed DiT to several generative models for lane graphs.

SLEDGE 11

Table 1: 64mx64m Lane Graph Reconstruction. We show the F1 score, lateral
displacement and Chamfer distance for graphs extracted from each representation.
We additionally include qualitative results (more in supplementary material). The RSI
struggles with nearly overlapping segments at the beginning of forks (FNs) and overlaps
at intersections (FPs). The RLM closes the gap towards the upper bound (vector).

Rep. | Fixed? splitz Size | GEO | TOPO

| (KB) | F11 | Lat.} | Ch. | | F11 | Lat. | | Ch. |
RSI | 524.3 | 0.933 | 0.133 | 0.423 | 0.851 | 0.438 | 64.824
RLM v

8.0 | 0.980 | 0.164 | 0.411 | 0.944 | 0.288 | 20.624
4.8 | 0.997 | 0.005 | 0.070 | 0.990 | 0.010 | 4.17%

16.0 ‘ 0.981 ‘ 0.161 ‘ 0.399 ‘ 0.945 ‘ 0.282 ‘ 20.096

v
X
v
v

RSI RLM RLM

TP
FP
x FN

x FN

Baselines. We select four diverse baselines. (1) VAE: we train a convolutional
VAE with a 2D decoder head to generate RSIs. (2) RVAE: we sample from the
decoder ¢ of our proposed autoencoder. (3) HDMapGen: an autoregressive
hierarchical graph neural network for lane graph generation , reimplemented
for nuPlan. (4) DiT (RSI): similar to the concurrent DriveSceneGen [41], this
is an image diffusion model that generates the RSI.

Metrics. Lane graph generation does not have established evaluation protocols.
Therefore, we use a comprehensive set of four metric types. (1) Route Length
measures the mean and std of the longest valid ego vehicle route in the 64mx64m
FOV for 1k generated graphs. We assess sample quality with (2) Precision and
coverage with (3) Recall based on the improved generative metrics from [21].
To obtain fixed-sized representations needed to estimate precision and recall
with a nearest neighbour classifier, we rasterize the lane graphs and consider the
penultimate feature vectors of a ResNet-50. We use two versions of these metrics
with ResNets trained on ImageNet and the encoder 7 of our autoencoder. The
remaining metrics are (4) Frechet distances taken from , based on graph
features used in urban planning. They operate on nodes of the generated lane
graphs with degree # 2, which are referred to in as key points. Connectivity:
this uses the degrees of all key points. Density: the number of key points in the
64mx64m FOV. Reach: the number of valid paths found from key points to
others. Convenience: Lengths of all valid paths from all key points. The Frechet
metrics are scaled by suitable powers of 10 for readability. Precision, Recall, and
Frechet distances are measured using 50k generated and ground truth graphs.

12 K. Chitta et al.

Table 2: 64mx64m Lane Graph Generation. We show the route lengths, precision
and recall (in %), and various Frechet distances between samples from the validation
set and model outputs. We additionally include qualititve results (more examples in
supplementary material). Latent diffusion combining DiT with an RLM obtains the
best results. *Trained with ~6x more compute than others, which already converge at
the lower compute budget.

Arch. Repr. ‘ Route ‘ Prec. (CNN) 1 ‘ Recall (CNN) 1 ‘ Frechet (Urban Planning) |

‘ Length 1 ‘ ImNet RVEnc ‘ ImNet RVEnc ‘ Conne. Densi. Reach Conve.

VAE RSI 2.68 + 3.66 26.58 0.00 8.70 0.16 9.45 0.99 2.86 13.06
RVAE Vector | 23.79 + 9.96 10.41 4.56 | 16.28 8.14 15.63 12.57 3.08 17.72
HDMapGen Vector | 28.17 + 14.81 19.10 7.48 17.17 12.45 7.02 3.03 2.49 18.10
DiT-L RSI 24.78 + 10.38 20.36 19.20 | 21.49 5.94 6.11 15.33 1.90 3.95
RLM 32.51 £ 9.93 33.25 63.99 36.24 61.60 2.35 3.52 0.88 3.10

DiT-XL* ~ RLM | 35.37 + 10.28 | 42.05 78.07 | 42.32 72.63 | 0.27 247 0.20 0.47

VAE (RSI) RVAE (Vec.) HDMapGen (Vec.) DIiT-L (RSI) DiT-L (RLM) DiT-XL (RLM)

Results. Our results are shown in Table [2 All DiT variants generate more
plausible layouts, with significantly better metrics than HDMapGen or the VAEs.
For DiT-L, we observe higher coverage and visual fidelity when using the RLM
representation instead of the RSI. In particular, the RLM-based models excel at
creating coincident endpoints in intersections between connected lanes, which is
crucial for smooth simulation. Scaling to DiT-XL provides further gains across
all metrics, demonstrating the effectiveness of increasing the model capacity and
compute budget. Since ImageNet features may be misaligned to BEV graphs, and
the RVEnc features might favor RLM diffusion models, we focus on the urban
planning Frechet metrics (in particular, Reach) in our subsequent experiments.

Scaling. We run a systematic analysis of scaling for our DiT with the RLM
representation. We conduct a grid of experiments, considering (1) 2 model
sizes: DiT-B and DiT-L, (2) 3 dataset sizes: 1x, 0.5x, and 0.25x our full
dataset, and (3) 3 compute budgets: 24, 48 and 96 GPU hours. As shown
in Fig. [f] the performance scales significantly with increased compute. While it
also scales with more parameters, more data does not have a large impact. This
is possibly because data diversity is more valuable than scale, and all of our
3 datasizes have similar diversity. This scaling behavior shows the potential of
further improvements for SLEDGE with more training resources.

SLEDGE 13

GPU hours #Parameters Datasize
DiT-B 0.25 . S
S DiT-B 1.0) dniia— Y Y ¥ ¥
$ w4 -V- DiT-L 0.25 | - 0.25 / 24h | | DiT-B 24h
o —A— DiT-L 1.0 0.25 / 96h DiT-B 96h
E N -¥- 1.0/ 24h V- DiT-L 24h
8 AN ~A— 1.0 / 96h —A— DiT-L 96h
SESE SN i]
- E s A—i —*
T T T T T T T T
24 48 96 138M 487TM 0.25 0.50 1.00

Fig. 6: Scaling. The DiT’s performance scales significantly with increased compute.
For our task, dataset size is less crucial, with all settings performing similarly.

4.3 SLEDGE Simulation of PDM-Closed

In our final experiment, we use the inpainting capabilities of DiT-XL in SLEDGE
to demonstrate its utility for testing vehicle motion planners.

Tasks and Settings. We consider the two inpainting-based tasks described in
Section lane conditioned agent generation (Lane — Agent) and joint lane
and agent generation via route extrapolation (Lane & Agent). For the Lane
— Agent task, we consider 100 existing nuPlan logs and use the original route
extracted from these logs as the ‘easy’ route. ‘Hard’ routes are generated from
the same initial pose while maximizing the number of turns. For the Lane &
Agent task, as we no longer rely on the nuPlan maps, we dynamically adjust the
difficulty of generated routes during DiT inpainting. We generate 100 scenarios.
For each, we perform iterative inpainting starting from an initial 64mx64m area,
and perform a depth-first search on the updated lane graph at every inpainting
step. ‘Hard’ routes correspond to selecting the the next point to inpaint from
to be the endpoint reachable with the most new turns, and ‘easy’ routes are
generated from endpoints with the fewest turns. We evaluate on route lengths
of 100m (with a simulation time of 30 seconds) and 500m (150 seconds). We
consider both ‘easy’ and ‘hard’ traffic densities: ‘easy’ is a single sample, and
‘hard’ is the scene with the largest number of agents among 8 DiT samples.

Metrics. We evaluate the Planner Failure Rate (PFR) in SLEDGE using
PDM-Closed [10]. This is the winner of the 2023 nuPlan challenge, and the state
of the art for motion planning in the short, 15 second scenarios possible with
existing data-driven simulators. The planner ‘fails’ if it achieves less than 20%
of the route’s total progress, goes in the wrong driving direction for more than
6m, goes off-road, or causes an at-fault collision. We also measure the #Turns
and #Agents, which are proxies of the difficulty of the route and traffic.

Results. We show our results in Table [3] Importantly, we note that setting
up an evaluation with SLEDGE only requires a 3 GB download of our DiT-
L checkpoint for the Lane & Agent mode, and an additional 1 GB download
of the nuPlan maps for the Lane — Agent mode, in contrast to the 2 TB of
logs needed to set up nuPlan. When using easy routes and traffic, we observe
similar PFRs for both replay-based and generative simulation despite this large

14 K. Chitta et al.

Table 3: Simulation of PDM-Closed in SLEDGE. Our simulator offers control
over the route length, difficulty and traffic density. In several settings, we present new
challenges for the existing state-of-the-art, leading to high failure rates of over 40%.

Task — ‘ Lane — Agent ‘ Lane & Agent
Length — ‘ 100 meters ‘ 500 meters ‘ 100 meters ‘ 500 meters
Routes ‘ Traffic ‘ Turns Agents PFR‘ Turns Agents PFR ‘ Turns Agents PFR‘ Turns Agents PFR
Replay | 0.89 57.40 0.06| 3.29 102.34 0.26| - - - - - -
Easy 44.61 0.07 125.23 0.25| 0.61 27.30 0.22| 2.22 110.51 0.39
Easy 0.89 . 3.29
Hard 56.44 0.11 167.47 0.39 | 0.57 39.11 0.20| 2.30 173.91 0.44
Hard Easy 118 44.66 0.14 4.20 12879 0.28 | 1.23 27.14 0.29| 3.66 107.11 0.45
& Hard ’ 57.65 0.11| 170.87 0.44 | 1.07 39.03 0.30 | 3.82 169.66 0.49

compression factor. For replay, we observe over a 4x rise in PFR from 0.06 to
0.26 when extending the route from 100m to 500m. These are primarily due to
PDM-Closed’s inability to make lane changes or overtake slow vehicles, which
are important planning behaviors that are not strongly penalized on current
benchmarks like Vall4 [10]. In all settings, switching to hard routes increases
the number of turns, which is more challenging than straight driving and in turn
deteriorates the planning performance. In the most challenging settings with
hard routes and traffic, the PFR increases to over 40%.

5 Conclusion

We present SLEDGE, a generative simulator for vehicle motion planning based
on latent diffusion. We conduct several experiments to show that it is more
realistic, compact, controllable, and diverse than other generative and replay-
based approaches. Additionally, we establish several baselines and metrics for
the generative simulation task. We hope our work can lay the foundation for
accelerating progress in data-driven simulation and vehicle motion planning.

Limitations. Evaluating simulators is hard. We provide metrics for the lane
graph generation sub-task, and preliminary experiments on testing rule-based
planning, but using the simulator for other downstream tasks, such as reinforce-
ment learning, will be important to showcase its full potential. For efficiency and
robustness, we use a relatively small FOV and simulation radius, a simplistic lane
representation consisting of only the centerline (assuming constant lane widths),
and rule-based traffic behavior with IDM. These issues could be alleviated by
further scaling of our model and extensions for learned motion behavior [411/50].
However, like other diffusion models, the compute requirements of our approach
are already high. We see value in improving the efficiency of SLEDGE through
relevant techniques for accelerating diffusion models [26,,27.30%/39].

SLEDGE 15

Acknowledgments. This work was supported by the ERC Starting Grant
LEGO-3D (850533), the DFG EXC number 2064 /1 - project number 390727645,
the German Federal Ministry of Education and Research: Tiibingen AI Center,
FKZ: 01IS18039A and the German Federal Ministry for Economic Affairs and
Climate Action within the project NXT GEN AI METHODS. We thank the In-
ternational Max Planck Research School for Intelligent Systems (IMPRS-IS) for
supporting Kashyap Chitta and Daniel Dauner. We also thank Agniv Sharma
for providing his reimplementation of HDMapGen, Bernhard Jaeger for proof-
reading, and the nuPlan team for open-sourcing their dataset and simulation
tools to the community.

References

1. Althoff, M., Koschi, M., Manzinger, S.: Commonroad: Composable benchmarks
for motion planning on roads. In: Proc. IEEE Intelligent Vehicles Symposium (IV)
(2017)

2. Bansal, M., Krizhevsky, A., Ogale, A.S.: Chauffeurnet: Learning to drive by imitat-
ing the best and synthesizing the worst. In: Proc. Robotics: Science and Systems
(RSS) (2019)

3. Blattmann, A., Dockhorn, T., Kulal, S., Mendelevitch, D., Kilian, M., Lorenz, D.,
Levi, Y., English, Z., Voleti, V., Letts, A., Jampani, V., Rombach, R.: Stable Video
Diffusion: Scaling Latent Video Diffusion Models to Large Datasets. arXiv.org
2311.15127 (2023)

4. Brooks, T., Peebles, B., Holmes, C., DePue, W., Guo, Y., Jing, L., Schnurr, D.,
Taylor, J., Luhman, T., Luhman, E.,; Ng, C., Wang, R., Ramesh, A.: Video gen-
eration models as world simulators (2024), https://openai.com /research/video-
generation-models-as-world-simulators

5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: Proc. of the European Conf. on
Computer Vision (ECCV) (2020)

6. Chen, J., Deng, R., Furukawa, Y.: Polydiffuse: Polygonal shape reconstruction
via guided set diffusion models. In: Advances in Neural Information Processing
Systems (NeurIPS) (2023)

7. Chi, C., Feng, S., Du, Y., Xu, Z., Cousineau, E., Burchfiel, B., Song, S.: Diffusion
policy: Visuomotor policy learning via action diffusion. In: Proc. Robotics: Science
and Systems (RSS) (2023)

8. Chu, H., Li, D., Acuna, D., Kar, A., Shugrina, M., Wei, X., Liu, M.Y., Torralba,
A., Fidler, S.: Neural Turtle Graphics for Modeling City Road Layouts. In: Proc.
of the IEEE International Conf. on Computer Vision (ICCV) (2019)

9. Contributors, N.: Navsim: Data-driven non-reactive autonomous vehicle simula-
tion. https://github.com/autonomousvision/navsim (2024)

10. Dauner, D., Hallgarten, M., Geiger, A., Chitta, K.: Parting with misconceptions
about learning-based vehicle motion planning. In: Proc. Conf. on Robot Learning
(CoRL) (2023)

11. Ding, W., Chen, B., Li, B., Eun, K.J., Zhao, D.: Multimodal safety-critical sce-
narios generation for decision-making algorithms evaluation. IEEE Robotics and
Automation Letters (RA-L) (2021)

12. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open
urban driving simulator. In: Proc. Conf. on Robot Learning (CoRL) (2017)

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://github.com/autonomousvision/navsim

16

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

K. Chitta et al.

Elhousni, M., Lyu, Y., Zhang, Z., Huang, X.: Automatic Building and Labeling of
HD Maps with Deep Learning. arXiv.org 2006.00644 (2020)

Esser, P., Kulal, S., Blattmann, A., Entezari, R., Miiller, J., Saini, H., Levi, Y.,
Lorenz, D., Sauer, A., Boesel, F., Podell, D., Dockhorn, T., English, Z., Lacey, K.,
Goodwin, A., Marek, Y., Rombach, R.: Scaling Rectified Flow Transformers for
High-Resolution Image Synthesis. arXiv.org 2403.03206 (2024)

Gulino, C., Fu, J., Luo, W., Tucker, G., Bronstein, E., Lu, Y., Harb, J., Pan, X.,
Wang, Y., Chen, X., Co-Reyes, J.D., Agarwal, R., Roelofs, R., Lu, Y., Montali, N.,
Mougin, P., Yang, Z., White, B., Faust, A., McAllister, R., Anguelov, D., Sapp, B.:
Waymax: An accelerated, data-driven simulator for large-scale autonomous driving
research. In: Advances in Neural Information Processing Systems (NIPS) Track on
Datasets and Benchmarks (2023)

Hanselmann, N., Renz, K., Chitta, K., Bhattacharyya, A., Geiger, A.: King: Gener-
ating safety-critical driving scenarios for robust imitation via kinematics gradients.
In: Proc. of the European Conf. on Computer Vision (ECCV) (2022)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2016)
He, S., Balakrishnan, H.: Lane-level street map extraction from aerial imagery. In:
Proc. of the IEEE Winter Conference on Applications of Computer Vision (WACV)
(2022)

Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. arXiv.org
2006.11239 (2020)

Karnchanachari, N., Geromichalos, D., Seang Tan, K., Li, N., Eriksen, C.,
Yaghoubi, S., Mehdipour, N., Bernasconi, G., Kit Fong, W., Guo, Y., Caesar,
H.: Towards learning-based planning: The nuPlan benchmark for real-world au-
tonomous driving. In: Proc. IEEE International Conf. on Robotics and Automation
(ICRA) (2024)

Kynk&anniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved precision
and recall metric for assessing generative models. Advances in Neural Information
Processing Systems (NeurIPS) (2019)

Li, Q., Peng, Z., Feng, L., Zhang, Q., Xue, Z., Zhou, B.: Metadrive: Composing
diverse driving scenarios for generalizable reinforcement learning. IEEE Trans. on
Pattern Analysis and Machine Intelligence (PAMI) 45(3), 3461-3475 (2022)

Li, T., Jia, P., Wang, B., Chen, L., Jiang, K., Yan, J., Li, H.: LaneSegNet: Map
Learning with Lane Segment Perception for Autonomous Driving. In: Proc. of the
International Conf. on Learning Representations (ICLR) (2024)

Li, Z., Yu, Z., Lan, S., Li, J., Kautz, J., Lu, T., Alvarez, J.M.: Is ego status all you
need for open-loop end-to-end autonomous driving? arXiv.org 2312.03031 (2023)
Liao, B., Chen, S., Wang, X., Cheng, T., Zhang, Q., Liu, W., Huang, C.: Maptr:
Structured modeling and learning for online vectorized hd map construction. In:
Proc. of the International Conf. on Learning Representations (ICLR) (2023)

Lin, S., Wang, A., Yang, X.: SDXL-Lightning: Progressive Adversarial Diffusion
Distillation. arXiv.org 2402.13929 (2024)

Liu, X., Gong, C., Liu, Q.: Flow Straight and Fast: Learning to Generate and
Transfer Data with Rectified Flow. arXiv.org 2209.03003 (2022)

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: Re-
Paint: Inpainting using Denoising Diffusion Probabilistic Models. In: Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR) (2022)

Luo, S., Hu, W.: Diffusion Probabilistic Models for 3D Point Cloud Generation. In:
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2021)

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

SLEDGE 17

Luo, S., Tan, Y., Huang, L., Li, J., Zhao, H.: Latent Consistency Models: Syn-
thesizing High-Resolution Images with Few-Step Inference. arXiv.org 2310.04378
(2023)

Mi, L., Zhao, H., Nash, C., Jin, X., Gao, J., Sun, C., Schmid, C., Shavit, N.,
Chai, Y., Anguelov, D.: Hdmapgen: A hierarchical graph generative model of high
definition maps. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) (2021)

Nichol, A., Jun, H., Dhariwal, P., Mishkin, P., Chen, M.: Point-E: A System
for Generating 3D Point Clouds from Complex Prompts. arXiv.org 2212.08751
(2022)

Nunez-Iglesias, J., Blanch, A.J., Looker, O., Dixon, M.\W.A., Tilley, L.: A new
python library to analyse skeleton images confirms malaria parasite remodelling of
the red blood cell membrane skeleton. PeerJ (2018)

Peebles, W., Xie, S.: Scalable diffusion models with transformers. In: Proc. of the
IEEE International Conf. on Computer Vision (ICCV) (2023)

Pronovost, E., Ganesina, M.R., Hendy, N., Wang, Z., Morales, A., Wang, K., Roy,
N.: Scenario Diffusion: Controllable Driving Scenario Generation With Diffusion.
In: Advances in Neural Information Processing Systems (NeurIPS) (2023)

Renz, K., Chitta, K., Mercea, O.B., Koepke, S., Akata, Z., Geiger, A.: Plant:
Explainable planning transformers via object-level representations. In: Proc. Conf.
on Robot Learning (CoRL) (2022)

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-Resolution
Image Synthesis with Latent Diffusion Models. In: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR) (2022)

Santurkar, S., Budden, D., Shavit, N.: Generative Compression. arXiv.org
1703.01467 (2017)

Sauer, A., Boesel, F., Dockhorn, T., Blattmann, A., Esser, P., Rombach, R.: Fast
High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation.
arXiv.org 2403.12015 (2024)

Shabani, M.A., Hosseini, S., Furukawa, Y.: Housediffusion: Vector floorplan gener-
ation via a diffusion model with discrete and continuous denoising. In: Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR) (2023)

Sun, S., Gu, Z., Sun, T., Sun, J., Yuan, C., Han, Y., Li, D., Ang, Marcelo H., J.:
DriveSceneGen: Generating Diverse and Realistic Driving Scenarios from Scratch.
arXiv.org 2309.14685 (2023)

Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical ob-
servations and microscopic simulations. Physical review E (2000)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems (NeurIPS). pp. 5998-6008 (2017)

Wang, J., Pun, A., Tu, J., Manivasagam, S., Sadat, A., Casas, S., Ren, M., Urtasun,
R.: Advsim: Generating safety-critical scenarios for self-driving vehicles. In: Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2021)
Wymann, B., Dimitrakakisy, C., Sumnery, A., Espié, E., Guionneauz, C.: Torcs:
The open racing car simulator (2015)

Xu, M., Powers, A., Dror, R., Ermon, S., Leskovec, J.: Geometric latent diffusion
models for 3d molecule generation. In: Proc. of the International Conf. on Machine
learning (ICML) (2023)

Yang, J., Gao, S., Qiu, Y., Chen, L., Li, T., Dai, B., Chitta, K., Wu, P., Zeng, J.,
Luo, P., Zhang, J., Geiger, A., Qiao, Y., Li, H.: Generalized Predictive Model for
Autonomous Driving. arXiv.org 2403.09630 (2024)

18

48.

49.

50.

51.

K. Chitta et al.

Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., Kreis, K.:
Lion: Latent point diffusion models for 3d shape generation. In: Advances in Neural
Information Processing Systems (NeurIPS) (2022)

Zhai, J.T., Feng, Z., Du, J., Mao, Y., Liu, J.J., Tan, Z., Zhang, Y., Ye, X., Wang, J.:
Rethinking the open-loop evaluation of end-to-end autonomous driving in nuscenes.
arXiv.org 2305.10430 (2023)

Zhong, Z., Rempe, D., Chen, Y., Ivanovic, B., Cao, Y., Xu, D., Pavone, M., Ray,
B.: Language-guided traffic simulation via scene-level diffusion. In: Proc. Conf. on
Robot Learning (CoRL) (2023)

Zhong, Z., Rempe, D., Xu, D., Chen, Y., Veer, S., Che, T., Ray, B., Pavone, M.:
Guided Conditional Diffusion for Controllable Traffic Simulation. In: Proc. IEEE
International Conf. on Robotics and Automation (ICRA) (2023)

	SLEDGE: Synthesizing Driving Environments with Generative Models and Rule-Based Traffic

