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1 Evaluating Synthetic Dataset Quality

Our goal is to assess the quality of the synthetic datasets we use to train our
unsupervised counting model. This section provides a thorough analysis of these
datasets, aiming to deepen the understanding of our method’s strengths and
limitations.

1.1 Synthetic Counting Data

Understanding Prompt Label Noise. In the beginning of our paper, we in-
troduced the concept of label noise when using a latent diffusion model (LDM),
such as Stable Diffusion, to generate images with a specified number of objects.
Often, the actual number of objects in these images doesn’t align with the re-
quested counts. To understand this discrepancy better, we manually annotated
40 synthetic examples for counts ranging from 1 to 40. Our in-depth analysis,
shown in Tab. 1, highlights how the error between the requested and actual
counts grows with the increase in the prompt count. Although these findings
may not be universally applicable across all ranges or object categories, they
provide useful insights into how synthetic counting data affected by label noise
can still be valuable for learning. Notably, we observed that the average for the
true underlying counts is often close to the requested count, despite significant
variations. Often, the average count for these distributions is within 15% of the
prompt label, indicating that Stable Diffusion produces a distribution of images
with true counts centered near the desired amounts

Table 1: Prompt Count Noise. we manually annotate 40 synthetic examples for
each of several prompt count categories. We evaluate the statistics of the true under-
lying counts for each prompt count category.

Prompt Count Mean Std. MAE rMAE
1 1.02 0.34 0.07 0.07
5 4.26 0.79 0.88 0.18
10 10.0 3.48 2.57 0.26
15 14.86 5.73 4.86 0.32
20 23.07 11.10 8.98 0.45
40 49.29 39.00 24.38 0.61
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Table 2: Outlier Removal Ablation Study. We explore the performance implica-
tions of filtering likely outliers in the noisy synthetic counting dataset.

SHB JHU SHA QNRF
Strategy MAE MSE MAE MSE MAE MSE MAE MSE
No Outlier Removal 48.2 67.2 189.0 582.4 188.3 292.7 366.8 558.3
Outlier Removal 35.0 50.7 173.8 519.4 152.7 219.0 283.1 453.2
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Fig. 1: Impact of Maximum Prompt Count. We overview the performance impact
of changing the maximum prompt count used when training the counting network. Our
method is remains accurate across a range of values.

Impact of Outliers. Within our methodology, we introduced a straightforward
outlier removal technique to help reduce label noise. Tab. 2 evaluates the effec-
tiveness of this method in the context of crowd counting. The results indicate
that this basic form of outlier removal significantly boosts performance across dif-
ferent crowd counting datasets, highlighting its importance in enhancing model
accuracy. These results suggest that label noise hampers performance, especially
in datasets with larger average counts, such as SHA and QNRF. Nonetheless,
our analysis also indicates that identifying and mitigating this noise is feasible,
and further investigation into noise reduction strategies could be highly advan-
tageous.

Impact of the Maximum Prompt Count. In our approach to generating
noisy synthetic counting data, we employ a wide range of prompt counts to
create a rich dataset. This naturally raises the question of whether the range
of counts used during training influences the training and performance of our
counting network. Specifically, in Fig. 1, we explore the effect of setting different
maximum prompt counts (cmax) on the model’s accuracy using the JHU++ test
set. This involves using all synthetic counting images with a prompt count equal
to or lower than cmax. Our analysis reveals an optimal range for this maximum
count—specifically, between 250 and 800 for the JHU dataset. This optimal range
underscores our method’s adaptability, showing it can handle a wide variety of
scenarios effectively.
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Fig. 2: Synthetic Crowd Count Qualitative. We highlight samples of synthetic
counting images from a wide range of prompt count categories. We demonstrate that
images contain realistic crowds which are organized in a natural way.

Qualitative. In Fig. 2, we provide synthetic counting samples for a crowd count-
ing problem across a wide range of crowd densities. Despite the presence of la-
bel noise, synthetic images remain reasonably consistent within expected ranges,
even at high prompt counts. For instance, images prompted with a count of 1000
exhibit significant noise, often featuring several thousand objects. Nonetheless,
these images consistently depict large, dense crowds, suggesting that Stable Dif-
fusion retains an understanding of quantity to some extent, even at these higher
numbers. This observation aligns with our findings in Sec. 1.1 and Tab. 1, where
the average true count if often similar to the prompted count.

Moreover, our analysis sheds light on scene biases within the synthetic count-
ing images. Predominantly, the images showcase clear, daylight settings, fre-
quently set in expansive outdoor areas with greenery. Despite this tendency, the
dataset also exhibits variety; some images mimic historical photographs, while
others depict indoor scenes, such as concert halls, indicating a diversity in the
visual contexts of the generated crowds.

1.2 Synthetic Sorting Data

Removal Accuracy. To substantiate the reliability of the synthetic sorting
data, we examine 50 object removal examples from each dataset. We only analyze

Table 3: Object Removal. We manually annotate 50 synthetic sorting examples from
each dataset to determine how frequently Stable Diffusion successfully removes objects
from a reference image. We corroborate this by using a fully-supervised crowd counting
model (DM-Count [8]) to estimate the synthetic image counts for all examples.

Estimate Type SHB JHU SHA QNRF
Manual 100.0% 96.0% 98.0% 96.0%

DM-Count [8] 99.6% 90.2% 99.2% 97.2%
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Fig. 3: Synthetic Object Count Qualitative. Stable Diffusion can produce syn-
thetic counting data for a wide range of objects, including sheep and penguins.

object removal, due to the fact that outpainting inherently preserves original
objects, and thus these images always have at least as many objects as the
reference image. This inspection revealed minimal discrepancies: ShanghaiTechB
produced no incorrectly ranked examples, while ShanghaiTechA exhibited only
one. QNRF and JHU++ presented slightly higher instances of two incorrectly
ranked examples each.

Moreover, to corroborate our manual assessment, we employed a fully super-
vised DM-COUNT [8] model to evaluate crowd count estimations across 500 real
and synthetic removal pairs from each dataset. The resultant accuracy rates were
high: 99.6% for ShanghaiTechB, 99.2% for ShanghaiTechA, 97.2% for QNRF,
and 90.2% for JHU++. However, these results are dependent on the accuracy
of the model, and are only meant to compliment the manually collected an-
notations. These findings, summarized in Tab. 3, affirm the credibility of the
synthetic object removal strategy used during the data generation process.

1.3 Synthetic Density Classification Data

We observe that Stable Diffusion excels in creating density classification data,
which plays a crucial role in training our density classification network. In Fig. 4,
we showcase synthetic images crafted specifically for crowd counting scenarios.
These examples demonstrate Stable Diffusion’s capability to generate diverse
and accurate representations for such tasks.

Fig. 5 presents the classification maps generated by our network, trained
on this synthetic data. The maps reveal the network’s proficiency in accurately
identifying areas with dense and sparse crowds, as well as empty spaces devoid
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Fig. 4: Synthetic Density Qualitative. Stable Diffusion excels in producing diverse
and high-quality images across various density categories, encompassing dense, sparse,
and empty scenes with broad coverage.

Sparse CrowdDense Crowd No Crowd

Fig. 5: Density Class Maps. We overview the class maps generated by passing the
sorting network features through the density classifier. Our method does not utilize any
localization information, and yet it accurately localizes crowded regions within images.

of pedestrians. This underscores the significant impact and utility of utilizing
synthetic data for density classification

2 Expanded Qualitative Analysis

Crowd Counting. In Fig. 6, we delve deeper into the crowd counting challenge
with an expanded qualitative analysis. This section sheds light on our method’s
process, which integrates whole image estimates with those from densely pop-
ulated patches identified within the image. We illustrate this approach by pre-
senting the initial count map estimate, C(0), for the entire image, alongside C(1),
which represents the concatenated estimates for partitioned patches from a 3×3
grid. Additionally, we show the combined count map resulting from our density
classifier guided partitioning technique. These examples are valuable for under-
standing how our model calculates various estimates to achieve a precise overall
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Fig. 6: Crowd Counting Qualitative. We explore the quality of the model output
for the c(0), c(1), and density guided count maps which join c(0), c(1). Input images
are annotated with the ground truth count, and count maps are annotated with the
estimated count for that map.
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Fig. 7: Extension to Similar Objects. We investigate an emergent capability of
our system to generalize to similar object categories. For example, a model trained to
identify flamingos is also capable of identifying waterfowl.

count. Moreover, they demonstrate our method’s proficiency in accurately identi-
fying crowd locations, whether analyzing the complete image or specific patches.
Importantly, our model proves resilient against a wide array of non-target ele-
ments within a scene, such as buildings, roads, and natural features, underscoring
its robustness in complex environments.

Extension to Similar Objects. In this section, we examine our model’s ability
to recognize objects outside its training set but within related categories. Fig. 7
demonstrates that a model trained on flamingos can also accurately identify wa-
terfowl, showcasing impressive generalization to similar objects. This versatility
is significant, indicating that a model trained on a specific object category can be
effectively applied to analogous categories, enhancing its utility and broadening
its applicability.

3 Failure Cases

In Fig. 8, we highlight instances where our model does not perform as expected,
categorizing these into underestimation and overestimation failures. Underesti-
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Fig. 8: Failure Cases. We highlight instances of underestimation and overestimation
by our model, including challenges posed by environmental factors like fog and clutter,
and the model’s underestimation in some dense scenes.

mation can occur for several reasons. For instance, in the top left-most image,
fog obscures pedestrians, making it difficult for our model to recognize them.
Similarly, in other cases, people are hidden behind one another, or there simply
isn’t enough visible detail due to the object size or image resolution for accu-
rate detection. On the other hand, overestimation issues often arise from the
model mistaking unrelated elements for the target object. An example includes
a cluttered traffic scene at night being misinterpreted as a group of pedestri-
ans. Similarly, image regions with trees and dense foliage sometimes confuse the
model. Despite these challenges, our method generally performs well across a
range of scenarios. Nevertheless, these limitations highlight areas for improve-
ment in future research.

4 Implementation Details

Implementation. We employ ResNet50 [3] as the underlying architecture. We
train fθ for 5 epochs, utilizing the Adam optimizer with a learning rate set to
5e−5. We resize all images to a uniform size of (640, 853, 3). During inference,
we use a partition rate of 3 for all datasets. For the data generation process, we
rely on Stable Diffusion 2.1. When performing image-to-image generation, we set
the strength parameter to 0.45. Throughout all image generation procedures, we
maintain a fixed guidance scale of 7.5 and carry out optimization for 50 steps.
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For crowd counting problems, we set the prompt labels to:

N = [0, 1, 5, 10, 15, 20, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 600, 800, 1000].

And for all other object categories, which have significantly lower average counts,
we set the prompt labels to:

N = [0, 1, 2, 3, 5, 10, 15, 20, 30, 60].

Further, we set aside 15% of the synthesized sorting data as a validation set for
performing count model selection. We use this data to set the maximum prompt
count, cmax, in the set N when training the counting network gΦ. We do this by
performing inference on these validation sorting examples with gΦ and selecting
the model with the highest accuracy. This provides a cmax of 150 for SHB, 600
for SHA, 600 for JHU, and 1000 for QNRF, which approximately follows the
mean of each dataset.

Table 4: Prompt List. This list showcases the straightforward prompts utilized for
data generation, emphasizing the simplicity of the generation process.

Category Usecase Prompt Negative
Crowd Count A group of {N} people. -
Vehicle Count {N} vehicles. Overhead view. -
Penguin Count {N} Penguins. -
Crowd Remove An empty outside space. No-

body around.
people. crowds. pedestrians. hu-
mans.

Penguins Remove An empty outdoor arctic space.
Nobody around.

penguins, birds, animals, fowl,
avian.

Vehicles Remove An empty parking lot. Nobody
around.

vehicles, cars, automobiles,
trucks, jeeps, suvs, vans.

Crowd Add A crowd of people. -
Penguins Add A large group of penguins. -
Vehicles Add A busy parking lot with many

cars. Overhead view.
-

Prompt Selection. In Tab. 4, we present a selection of prompts utilized for
various synthesis tasks and object categories. It is not meant to be an exhaustive
list, but rather to highlight the simplicity of the prompts used. The most complex
specification involves directing that vehicle counting data be generated from an
overhead perspective to better align the synthetic images with the aerial drone
photography found within the CARPK dataset. All datasets utilize the following
negative prompt list to ensure realism: artistic, painting, vector art, graphic
design, watercolor, text, writing, anime.
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Inference Throughput. This section assesses the inference speed of our model,
conducted on a Nvidia Titan X Pascal GPU. Our findings reveal that the model
processes images with dimensions (640, 853, 3) at an average rate of 49.5 frames
per second (FPS). However, the model’s speed varies when handling images with
high-density areas, necessitating subdivision into sub-patches for detailed anal-
ysis. Specifically, in scenarios requiring the image to be divided into a 3× 3 grid
due to dense regions, the throughput decreases to an average of 5.5 FPS. This
variation outlines the range of our model’s inference speed, providing insights
into its performance under different conditions.

5 Negative Social Impacts & Human Subjects Data

The modern deep learning approaches to crowd counting emerged with a key
paper published in 2010 [5]. This area of research, crucial for tasks like event
management, disaster response, and public safety enhancement, has seen sub-
stantial developments over the years. For instance, advanced crowd counting
techniques played a pivotal role in analyzing crowd behavior during significant
events, such as the January 6th Capitol riot [1], which underscored its societal im-
portance. However, key datasets like ShanghaiTech A and B [10], JHU++ [6,7],
QNRF [4], and NWPU [9] have relied heavily on images from public surveillance
and the internet. This raises concerns about privacy and the potential for misuse
in surveillance by various entities.

it is important to note that crowd counting datasets do not contain informa-
tion related to facial recognition or individual identification; they merely mark
the location of persons with dots or bounding boxes without revealing any per-
sonal details which somewhat mitigates privacy concerns. However, concerns re-
main since individuals might unknowingly appear in these datasets. Some dataset
creators, like the authors of JHU++, offer a removal process for those depicted
in images, but this process often lacks transparency. We advocate for clearer and
more efficient opt-out procedures to protect individual privacy.

Moreover, the potential misuse of crowd counting in surveillance applications
cannot be overlooked. Although crowd counting is distinct from facial recogni-
tion and not intended for invasive monitoring, its misuse remains a concern.
Dataset licenses usually restrict use to academic and non-commercial purposes,
yet these licenses may still be too permissive to prevent downstream harms.
Recent proposals like the Open Responsible AI License (OpenRAIL) [2] have
been introduced to ensure AI’s ethical use, especially concerning applications
that could infringe on personal rights or safety. We propose that these more
restrictive licenses should be more widely adopted in the field.

We argue that the potential of crowd counting methods to serve societal good
outweighs the limited scope for misuse. Nevertheless, the ethical implications of
these technologies demand continuous vigilance from researchers. It is imperative
for contributors in this domain to be conscientious of how and by whom their
work is utilized, maintaining an awareness of the broader societal implications
of their contributions.
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