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Abstract. Adversarial robustness generally relies on large-scale archi-
tectures and datasets, hindering resource-efficient deployment. For scal-
able solutions, adversarially robust knowledge distillation has emerged as
a principle strategy, facilitating the transfer of robustness from a large-
scale teacher model to a lightweight student model. However, existing
works focus solely on sample-to-sample alignment of features or predic-
tions between the teacher and student models, overlooking the vital role
of their statistical alignment. Thus, we propose a novel adversarially
robust knowledge distillation method that integrates the alignment of
feature distributions between the teacher and student backbones under
adversarial and clean sample sets. To motivate our idea, for an adversar-
ially trained model (e.g ., student or teacher), we show that the robust
accuracy (evaluated on testing adversarial samples under an increasing
perturbation radius) correlates negatively with the gap between the fea-
ture variance evaluated on testing adversarial samples and testing clean
samples. Such a negative correlation exhibits a strong linear trend, sug-
gesting that aligning the feature covariance of the student model toward
the feature covariance of the teacher model should improve the adver-
sarial robustness of the student model by reducing the variance gap. A
similar trend is observed by reducing the variance gap between the gram
matrices of the student and teacher models. Extensive evaluations high-
light the state-of-the-art adversarial robustness and natural performance
of our method across diverse datasets and distillation scenarios.

1 Introduction

Deep Neural Networks (DNNs) [20, 22, 45] have been demonstrated to be sus-
ceptible to adversarial samples [49]. These malicious inputs, subtly altered with
visually imperceptible perturbations, can disrupt deep learning-based systems
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Fig. 1: Analysis on robust teacher and lightweight student (RSLAD [59]). Fig. 1a: The
robust accuracy (on test adversarial samples under an increasing perturbation radius
255 · ϵ) correlates negatively with the gap between the feature variance evaluated on
testing adversarial samples and testing clean samples. Fig. 1b: A similar trend occurs
for the gap between variances of prediction score-based gram matrices (inner product).
The negative correlation with linear characteristics suggests that reducing the variance
gaps of the student toward the variance gaps of the teacher should improve robustness.

[14, 27]. Thus, establishing robustness against adversarial samples becomes vi-
tal for the practical applicability of DNNs in trustworthy real-world applica-
tions [11,30]. To this end, adversarial training has emerged as the most effective
defense approach against adversarial samples [12, 21, 37]. However, achieving
substantial adversarial robustness essentially necessitates the use of large-scale
models or abundant training data [47, 52]. To circumvent this and achieve ro-
bustness in resource-efficient scenarios, adversarially robust knowledge distilla-
tion [10,19,25,58,59] transfers adversarial robustness from a large-scale teacher
model to a lightweight student model under some performance trade-off. Existing
robust distillation approaches typically align feature representations or predic-
tions between the teacher and student models. However, such a sample-to-sample
feature alignment scheme differs from the feature-statistics alignment which of-
ten serves as a better mechanism for modeling properties of sets of samples. This
oversight leads to a significant gap between the variance of features of adversarial
samples and the variance of features of clean samples, consequently limiting the
robust generalization ability of the student, as detailed in the motivation below.
Motivation. The feature variance has been linked with the generalization gap.
For example, Huang et al . [26] observed that for functions f ∈ F , where F is a
finite class of functions, for each δ ∈ (0, 1) with probability at least 1−δ, the gap
between expected and empirical risks r and r̃ is bounded as:

|r(f,Q)− r̃(f(X),Y)| ≤ ζ+
√
8(N−1)σ2

(
f(X)

)
ι/N,

where ι=ln(3|F|/δ), ζ=3.5ι/N+3/, |F| is the cardinality of a class of functions
F , N is the number of samples, Q is the data distribution (e.g ., (x, y) ∼ Q),
whereas f(X) and Y are features and labels for empirical samples (e.g ., column
vectors of X), and σ2(·) estimates their variance.
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Considering the above bound, we suggest that matching the variance of fea-
tures of adversarial samples with the variance of features of clean samples can
naturally tighten the gap between the expected risk and the empirical risks of
adversaries, i.e., |r(f,Q) − r̃(f(Xadv),Y)| gets closer to |r(f,Q) − r̃(f(X),Y)|
when σ2

(
f(Xadv)

)
gets closer to σ2

(
f(X)

)
. The bound in the equation is fulfilled

simultaneously for both X and Xadv with probability at least (1−δ)2.
To support our claim, we study the robust accuracy of adversarial test sam-

ples w.r.t. the gap between the variance of features from adversarial test samples
and that from clean samples (see Figure 1a). Note that the larger the variance
gap is, the worse the robust accuracy is, irrespective of whether the experi-
ment is performed on the robust teacher or the student model (RSLAD [59]).
Moreover, as RSLAD performs sample-to-sample distillation, its variance gap re-
mains larger than that of the teacher across diverse perturbation radii, resulting
in comparatively lower robustness. Figure 1b presents similar findings related to
the variance gap of prediction score-based gram matrices (inner products).

Drawing on the insights from the above analyses, we hypothesize that bridg-
ing the gap in the robust accuracy of student and teacher can be achieved by
aligning (i) the student’s covariance to the teacher’s covariance, (ii) the student’s
statistics for adversarial samples with the student’s statistics on clean samples
if the student is unable to distill the robust knowledge from the teacher, (iii)
the student’s prediction-based gram matrix with the teacher’s gram matrix, as
gram matrices capture the complementary information to covariance matrices.

Moreover, we introduce cost-effective parameter-level adversarial perturba-
tions on the feature projection head alone to improve the student-teacher align-
ment of the multivariate Normal distributions (covariances). Looking at the spec-
trum of covariances, one may imagine that this mechanism helps find dominant
directions in the eigenspace that are prone to misalignment, and the parameters
of the feature projection head are minimized to overcome this effect.
Our key contributions can be summarized as follows:

i. We provide an intuitive motivation by analyzing the robust performance vs.
the gap between variances of features of adversarial samples and clean sam-
ples. Such an exploration reveals a strong negative correlation with a linear
trend, suggesting that aligning the covariance for adversarial features with
the covariance for clean features helps improve the adversarial robustness.

ii. Contrary to prior robust distillation methods that typically conduct sample-
to-sample feature alignment between the teacher and student models, or
even align adversarial features of the student with the corresponding clean
features of the teacher, we investigate the covariance alignment between
the student and the teacher, as well as aligning the sub-covariance built
from adversarial samples toward those from clean samples. Similarly, we
investigate aligning score-based gram matrices for better robustness transfer.

iii. We provide comprehensive experiments across various datasets and scenar-
ios, highlighting the superiority of our method, dubbed adverSarially robusT
distillAtion by Reducing Student-teacHer varIance gaP (STARSHIP), over
state-of-the-art adversarially robust knowledge distillation approaches.
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2 Related Works

Adversarial Training. Goodfellow et al . [21] proposed to enhance robustness
by adaptively incorporating adversaries [49] into the training data, which repre-
sents a “train-from-scratch” scheme. Existing works primarily focus on optimizing
the input-loss landscape to mitigate the disruption impact of input-level noise on
final predictions [13,16,37,43,55]. Wu et al . [51] introduced a double-perturbation
mechanism that combines both input-level and parameter-level perturbations,
flattening the parameter-loss landscape during adversarial training. Our method
leverages parameter-level perturbations but in the context of exacerbating the
student-teacher disagreement at the covariance level. To this end, the parameters
of the feature projection head are optimized to overcome the introduced pertur-
bations to attain robust alignment of student-teacher covariances, narrowing the
variance gap between the student and teacher models. Despite the effectiveness
of adversarial training, such methods heavily depend on large network architec-
tures [52] and a massive amount of training data [15, 47]. In contrast, we focus
on obtaining the robustness w.r.t. lightweight models by robust distillation.
Vanilla Knowledge Distillation. Hinton et al . [23] proposed knowledge dis-
tillation with the goal of transferring the learned knowledge from a large-scale
model (teacher) to a lightweight model (student) by leveraging ground-truth
labels and the teacher’s predictions. Subsequent knowledge distillation studies
focus on the feature-level distillation [4,5,42,50], and the prediction-level distil-
lation [2,6,28,39]. However, vanilla knowledge distillation has been identified as
insufficient for robustness transfer from an adversarially trained teacher [19].
Adversarially Robust Knowledge Distillation. To bridge the robustness
gap between large-scale and lightweight models, recent studies have investigated
adversarially robust knowledge distillation [19,25,58,59]. Zi et al . [59] primarily
resort to the soft labels of clean samples predicted by the teacher model to guide
the student’s predictions. Huang et al . [25] further integrated the gradient flow of
the teacher model into the robust knowledge distillation to search for the worst-
case matching point (adversarial sample). In contrast to these sample-to-sample
alignment methods, our robust distillation method emphasizes a statistics-level
robustness transfer that considers the properties of sample sets rather than indi-
vidual samples. Thus, we align the covariance and gram matrices of the student
toward those of the teacher for a more effective robust knowledge transfer.

3 Proposed Method

Below, we introduce the background of our work and propose our robust knowl-
edge distillation method, STARSHIP, motivated by observations in Figure 1.
Background. Adversarially robust knowledge distillation generally requires an
adversarially pre-trained teacher obtained via adversarial training from scratch.
Let the network backbone and the classifier head be denoted as fθ : X → Rd

and gθ′ : Rd → Rc, given network parameters θ and θ′, respectively. Let d be
the backbone feature dimension, and C be the number of categories. Adversarial
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Fig. 2: Our STARSHIP pipeline. For brevity, assume we have a set of clean samples X
and adversarial samples X̂. The student and the teacher backbones are equipped with
the projection head and the classification head. Apart from aligning predictions which
is a mere sample-to-sample strategy, in the green box we form covariance matrices
Σt and Σs, and align Σs toward Σt by LFCA. We also form prediction score based
gram matrices Gt and Gs, and align Gs toward Gt by LPGM. Moreover, LΩ aligns
adversarial-adversarial, natural-adversarial and adversarial-natural sub-matrices of Σs

and Gs with the natural-natural sub-matrices. ∆θ denotes parameter perturbations.

training [37] on a dataset from distribution D solves the following min-max game:

min
θ,θ′

E(x,y)∼D

[
max

∥δ∥∞<ϵ
LCE

(
gθ′

(
fθ(x+ δ)

)
, y
)]
, (1)

where the perturbation δ forms the adversarial sample x̂=x+δ restricted within
radius ϵ of the original sample x. The inner optimization maximizes the Cross-
Entropy (CE) loss LCE to find the worst-case adversarial sample posing mis-
classification, while the outer minimization optimizes the empirical risk on these
adversaries. In the context of adversarially robust knowledge distillation, we gen-
erate adversarial samples by maximizing the prediction discrepancy between the
teacher model gθ′

t

(
fθt(·)

)
and the student model gθ′

s

(
fθs(·)

)
as follows:

x̂t+1=ΠB(x,ϵ)

[
x̂t+α sign

(
∇x̂tLKL

(
gθ′

t

(
fθt

(x)
)∥∥∥gθ′

s

(
fθs

(x̂t)
)))]

, (2)

where LKL(·∥·) is the Kullback–Leibler (KL) divergence, α is the step size, x̂t is
an adversarial sample at the tth iteration in an m-step generation, and x̂= x̂m is
the final adversarial sample. As Zi et al . [59], we use soft labels of clean samples
predicted by the teacher model to guide the adversarial sample generation.

In addition to adversary generation via Eq. (2), we also consider its adaptive
variant following [25], which integrates the gradient flow of the teacher model
into the adversary generation, albeit at a higher computational cost:

x̂t+1
ada=ΠB(x,ϵ)

[
x̂t

ada+α sign
(
∇x̂t

ada
LKL

(
gθ′

t

(
fθt(x̂

t
ada)

)∥∥∥gθ′
s

(
fθs(x̂

t
ada)

)))]
, (3)

where x̂t
ada denotes the tth iteration during adaptive adversary generation. The

primary distinction of Eq. (3) from Eq. (2) is the use of adaptive predictions
from the teacher model for iterative adversarial samples, which can be regarded
as adversaries with the worst-case prediction alignment. While Eq. (3) brings
performance gains, it implicitly poses an increased computational cost.
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3.1 Adversarially Robust Knowledge Distillation

In contrast to vanilla knowledge distillation, which aligns only clean samples,
robust knowledge distillation additionally incorporates adversarial samples into
knowledge transfer. Existing works primarily rely on fixed references (e.g ., ground-
truth labels or the teacher’s predictions on a certain type of samples) to guide the
distillation process [25,58,59]. In contrast, we treat adversarial samples not just
as noise but as specialized augmentations that retain the visual semantic con-
tent of their original counterpart. For brevity, denote the teacher’s predictions on
clean samples as pt=gθ′

t

(
fθt

(x)
)

and on adversarial samples as p̂t=gθ′
t

(
fθt

(x̂)
)
.

For the student model, let ps = gθ′
s

(
fθs(x)

)
and p̂s = gθ′

s

(
fθs(x̂)

)
be the stu-

dent’s predictions on clean and adversarial samples. Then, the baseline loss used
in our work, Adversarially Robust Knowledge Distillation (ARKD), is given as:

LARKD = (1−β)LKL
(
pt∥ps

)︸ ︷︷ ︸
align clean predictions

+ β LKL
(
p̂t∥p̂s

)
,︸ ︷︷ ︸

align adversarial predictions
(4)

where β∈ [0, 1] balances the focus of distillation between the clean samples and
their adversarial counterparts. By adopting the ARKD loss, the student model
can effectively probe responses of the adversarially pre-trained teacher model to
learn its implicit robust behavior against adversarial samples.

3.2 Clean and Adversarial Feature Covariance Alignment

Following the motivation from Figure 1 and our hypothesis that reducing the
feature variance gap between the student and teacher models can facilitate dis-
tilling the robust behavior from the teacher model, we attach feature projection
heads ϕθϕ

s
(·) and ϕθϕ

t
(·) with parameters θϕ

s and θϕ
t to the student and teacher

models, respectively. Let ϕt(x;θ
ϕ
t )≡ϕθϕ

t

(
fθt

(x)
)

and ϕt(x̂;θ
ϕ
t )≡ϕθϕ

t

(
fθt

(x̂)
)

be
the features obtained by combining the teacher projection head with the teacher
backbone, given the clean sample x and its adversarial counterpart x̂.

Similarly, let ϕs(x;θ
ϕ
s ) ≡ ϕθϕ

s

(
fθs

(x)
)

and ϕs(x̂;θ
ϕ
s ) ≡ ϕθϕ

s

(
fθs

(x̂)
)

be the
features obtained by combining the student projection head with the student
backbone, given the clean sample x and its adversarial counterpart x̂.

Considering X and X̂ as the sets (e.g ., mini-batch) comprising clean and
adversarial samples, respectively, organized as column vectors. Then, we sim-
ply denote the corresponding clean and adversarial features obtained from the
teacher projection head as Φt and Φ̂t, and from the student head as Φs and Φ̂s.
To highlight that these features depend on the parameters of projection heads,
we denote Φt|θϕ

t and Φ̂t|θϕ
t for the teacher, and Φs|θϕ

s and Φ̂s|θϕ
s for the student.

We concatenate the feature sets Φt and Φ̂t along the channel dimension and
compute covariance Σt|Φ̂t or Σt ∈ Q2d×2d for brevity. Symbol Q is the set of
symmetric positive definite matrices. Similarly, we concatenate Φs and Φ̂s along
the channel dimension and compute Σs|Φ̂s, or equivalently, Σs ∈Q2d×2d. Note
that the feature covariance matrices for the teacher and student models,

Σt =

[
Σnat-nat

t Σnat-adv
t

Σadv-nat
t Σadv-adv

t

]
and Σs =

[
Σnat-nat

s Σnat-adv
s

Σadv-nat
s Σadv-adv

s

]
, (5)
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contain four types of interactions, i.e., nat-nat, nat-adv, adv-nat, and adv-adv,
which capture clean-clean, clean-adversarial, adversarial-clean, and adversarial-
adversarial feature interactions, respectively. Then, the Feature Covariance Align-
ment (FCA), as a function of the projection parameters θϕ

t and θϕ
s , is given by:

LFCA(θ
ϕ
t ,θ

ϕ
s ) =

1

4
d2
(
Σt|θϕ

t ,Σs|θϕ
s

)
, (6)

where d2(·, ·) can be any suitable distance metrics between the covariance matri-
ces, e.g ., the Frobenius norm, the Power-Euclidean (Pow-E) metric [17, 33, 34],
the fast spectral expectation of Max-pooling (MaxExp) [33, 34], or a metric
between Multivariate normal distributions, e.g ., the KL divergence (similar to
[56,57]). The distance is scaled by 0.25, as Σt and Σs comprise four sub-matrices.

To improve the resilience of the learned feature-level statistical information
and achieve better covariance alignment, we employ adversarial perturbations
to optimize parameters of the projection heads, inspired by Wu et al . [51], who
suggested that the robust generalization gap is bounded by the flatness of the
parameter-loss landscape. We introduce parameter-level perturbations to induce
a feature- and covariance-level disagreement between the teacher and student:

min
θϕ
t ,θ

ϕ
s

max
∆θ∈Vs

[
(1−β)

∥∥∥Φt|θϕ
t −Φs|

(
θϕ
s+∆θ

)∥∥∥2
F
+β

∥∥∥Φ̂t|θϕ
t − Φ̂s|

(
θϕ
s+∆θ

)∥∥∥2
F

+LFCA
(
θϕ
t ,θ

ϕ
s+∆θ

)]
, (7)

where ∆θ denotes the parameter-level perturbations, and Vs is the perturbation
region set

{
∆θ ∈ Vs : ∥∆θ∥F ≤ η∥θϕ

s ∥F
}

for the perturbation intensity η. The
parameter-level perturbation is then optimized using iterative gradient ascent.

3.3 Matching Gram Matrices for Prediction Scores

As evidenced by Figure 1b, there exists a direct correlation between enhancing
robust performance and reducing the variance gap across prediction score-based
gram matrices derived from adversarial and clean samples. Inspired by this nearly
linear negative correlation of robustness with the gap, we propose to align the
prediction score-based student’s gram matrix towards the teacher’s counterpart.
In analogy to Section 3.2, given clean and adversarial samples X and X̂ (rep-
resented as column vectors), we obtain prediction score matrices Pt and P̂t by
stacking prediction score column vectors (pt and p̂t) obtained from the teacher’s
prediction head, as detailed in Section 3.1. By analogy, we also obtain prediction
score matrices Ps and P̂s based on outputs of the student’s prediction head for
B samples. We form the gram matrices for the teacher and the student:

Gt =
1

C

[
P⊤

t Pt P
⊤
t P̂t

P̂⊤
t Pt P̂

⊤
t P̂t

]
and Gs =

1

C

[
P⊤

s Ps P
⊤
s P̂s

P̂⊤
s Ps P̂

⊤
s P̂s

]
. (8)

Modeling sample-to-sample relations does not take the spectrum of gram ma-
trices into account. Thus, we propose Prediction-score Gram Matching (PGM):

LPGM =
1

4
d2
(
Gt,Gs

)
, (9)
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which aligns the student’s gram matrix with the teacher’s gram matrix. Let
d2(·, ·) be any suitable distance measure (as detailed in Section 3.2) between
symmetric positive definite matrices Gt∈Q2B×2B . Gs∈Q2B×2B , given B clean
samples and their B adversarial counterparts in a batch of data.

3.4 Aligning Adversarial Statistics with Clean Statistics

Drawing insights from the standard adversarially robust distillation that aligns
the student’s representations of adversarial samples with the teacher’s (or even
student’s) representations of clean samples, the analogous alignment can be per-
formed between covariance sub-matrices or gram sub-matrices. Let a sub-matrix
extractor ψij(·) split a matrix into two halves along the rows and two halves along
the columns. For Σs in Eq. (5), operations ψ11(·), ψ12(·), ψ21(·) and ψ22(·) re-
turn Σnat-nat

s , Σnat-adv
s , Σadv-nat

s , and Σadv-adv
s , respectively, as defined in Eq. (5).

ψij(·) acts on Gs by analogy. Define a set of index pairs I=
{
(1, 2), (2, 1), (2, 2)

}
.

The loss aligning sub-matrices of adversarial-adversarial and clean-adversarial
statistical interactions toward clean-clean interactions is thus defined as:

LΩ =
1

2

∑
(i,j)∈I

∥∥ψ11(Σs), ψij(Σs)
∥∥2
F
+
∥∥ψ11(Gs), ψij(Gs)

∥∥2
F
. (10)

The above alignment function leverages the Frobenius norm rather than non-
Euclidean distances, as generally, sub-matrices extracted by ψ12(·) and ψ21(·) are
non-symmetric indefinite (they become symmetric positive definite if they fully
converge to ψ11(·)). Taking Σs as an example, the interpretation of the above
loss is as follows: term ψ12(·) (and ψ21(·)) captures correlations across feature
channels of the clean samples and their adversarial counterparts.

Discussion. The loss functions LFCA and LPGM contain highly comple-
mentary statistics. Observe that even for perfectly aligned Σs=Σt, consider
N zero-centered feature vectors ϕ(n)

s and ϕ
(n)
t , which were used to compute

their covariance matrices, and note that the corresponding feature vectors

are not aligned at all, i.e.,
∑

n=1,...,N

ϕ(n)
s ϕ(n)

s

⊤
=

∑
n=Π(1,...,N)

ϕ
(n)
t ϕ

(n)
t

⊤
,∀Π, where

Π(1, . . . , N) is a random permutation of the sample indexes {1, . . . , N}. In-
deed, covariance is invariant to the sample order. In contrast, for two matched
gram matrices Ps = Pt, we know that assuming classification scores lie on

the ℓ1 simplex, then
∑

c=1,...,C

P (c,:)
s

⊤
P (c,:)

s =
∑

c=Π(1,...,C)

P
(c,:)
t

⊤
P

(c,:)
t ,∀Π, where

Π(1, . . . , C) is a random permutation of class indexes {1, . . . , C}. Thus, LFCA

is invariant to the sample order, whereas LPGM is invariant to the class order.

3.5 Objective Function

Below, we formalize the objective function of our STARSHIP by combining in-
dividual loss components introduced in the preceding sections as follows:

L = LARKD + λ1 LFCA + λ2 LPGM + λ3 LΩ , (11)
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Table 1: CIFAR-10 and CIFAR-100: Comparisons of our STARSHIP with other ad-
versarially robust knowledge distillation methods when distilled from a large-scale
WRN-28 teacher model. Adversarial perturbations are restricted within the ℓ∞-
norm radius ϵ = 8/255. We report both clean and robust accuracies (%).

Type Architecture Method CIFAR-10 CIFAR-100
Clean PGD CW AA Clean PGD CW AA

Teacher WRN-28 SCORE [41] 88.61 64.95 61.79 61.03 63.64 35.46 32.14 31.13

Student

ResNet-18

ARD [19] 84.35 53.21 51.58 49.40 58.20 30.87 27.97 26.02
IAD [58] 83.46 53.34 51.69 49.09 57.35 31.11 28.12 26.22

RSLAD [59] 84.42 54.52 53.46 51.36 57.97 32.57 29.28 27.52
AKD [38] 86.04 53.95 52.39 50.11 60.79 31.37 28.85 26.93

AdaAD [25] 86.38 56.23 54.16 52.36 61.26 32.24 29.19 27.46
STARSHIP 86.47 57.45 55.50 53.78 61.54 34.45 30.75 29.30

Ada-STARSHIP 87.04 58.30 56.03 54.47 62.19 33.52 30.24 28.28

MNV2

ARD [19] 82.10 52.82 50.80 48.44 57.26 30.77 27.96 25.79
IAD [58] 81.62 52.77 50.61 48.53 56.88 30.54 27.59 25.69

RSLAD [59] 84.33 53.98 52.37 50.38 59.38 31.32 28.38 26.54
AKD [38] 84.52 51.80 50.29 48.09 59.32 30.13 27.61 25.46

AdaAD [25] 85.45 53.16 51.25 49.49 59.97 31.31 28.69 26.49
STARSHIP 85.71 55.95 53.79 51.85 60.25 34.20 30.72 28.57

Ada-STARSHIP 86.44 56.39 54.87 52.62 61.33 32.89 29.57 27.69

where λ1, λ2, and λ3 are loss weighting factors. Generally, λ1 =1 in all exper-
iments, as LFCA is a covariance-based alignment equivalent of the sample-to-
sample alignment LARKD (which has the default weight of 1). Moreover, as LΩ

operates on the student only by encouraging the “adversarial parts” of matrices
Σs and Gs to align with their “non-adversarial parts”, we set λ3=1 in all exper-
iments, and we only vary λ2 to ensure a desired level of aligning the student’s
statistics with the teacher’s statistics. We optimize the network parameters of
the student model by minimizing L. In inference, we use the distilled student.

4 Experiments

In this section, we provide our experimental settings and compare our STAR-
SHIP method with other adversarially robust knowledge distillation approaches.
Datasets. We conduct all the experiments on three standard image classification
datasets: CIFAR-10, CIFAR-100 [35], and ImageNet-100 [9]. Further details of
these datasets can be found in Appendix A.1.
Implementation details. Following previous works [25,58,59] & RobustBench
[7], we adopt ResNet-18/34 [22], MobileNetV2 (MNV2) [46], and Wide-ResNet-
28-10 (WRN-28) [53] as the teacher and student models. We also adopt the
Vision Transformer (ViT) as the teacher architecture. Unless specified otherwise,
we conduct adversarial sample generation based on the ℓ∞-norm threat model
with the perturbation radius ϵ = 8/255. More experimental details are included
in Appendix A.2. In all the experiments, we adopt the loss weighting factors λ1 =
λ3 = 1.0. We determine the hyper-parameters λ2 = 2.0 and β = 0.8 through
cross-validation on CIFAR-10 and consistently apply them across all datasets
without modifications. We provide hyper-parameter evaluations in Appendix E.
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Table 2: CIFAR-10 and CIFAR-100: Comparisons of our STARSHIP with other ad-
versarially robust knowledge distillation methods in the self-distillation setting. We
report both clean and robust accuracies (%).

Type Architecture Method CIFAR-10 CIFAR-100
Clean PGD CW AA Clean PGD CW AA

Teacher ResNet-18 TRADES [55] 82.45 52.21 50.29 48.90 56.37 28.68 24.87 23.78

Student ResNet-18

ARD [19] 81.64 52.62 51.35 49.19 57.96 31.34 27.84 26.13
IAD [58] 80.66 52.63 52.21 48.90 56.45 31.87 28.00 26.66

RSLAD [59] 81.30 53.80 52.32 50.78 55.17 31.21 27.82 26.46
AKD [38] 82.30 52.84 51.39 49.71 56.37 30.02 26.48 25.44

AdaAD [25] 82.34 52.75 51.26 49.92 56.62 29.62 26.11 24.78
STARSHIP 81.97 55.72 54.06 52.42 57.60 32.19 28.19 27.05

Ada-STARSHIP 82.62 55.05 53.40 51.89 58.09 31.95 28.07 26.92

Teacher MNV2 TRADES [55] 81.04 50.87 48.46 47.15 54.11 27.28 23.39 22.36

Student MNV2

ARD [19] 81.25 53.02 50.69 48.85 55.64 30.93 27.47 26.05
IAD [58] 79.36 53.45 50.93 49.14 54.00 31.01 27.59 26.11

RSLAD [59] 80.01 53.35 51.04 49.74 53.52 29.95 26.66 25.47
AKD [38] 80.86 52.74 50.60 49.13 54.26 28.99 25.46 24.31

AdaAD [25] 80.48 50.80 48.14 46.98 53.97 28.31 24.69 23.51
STARSHIP 80.97 54.28 51.58 50.46 56.21 32.03 27.98 26.74

Ada-STARSHIP 81.45 54.17 51.63 50.28 56.70 31.79 27.85 26.36

4.1 Results

Robust distillation from a larger teacher. We compare our STARSHIP
method with the state-of-the-art adversarially robust knowledge distillation ap-
proaches in Table 1. We report the classification accuracies on clean samples
and their adversarial counterparts generated by three standard adversarial at-
tack approaches: 20-step Projected Gradient Descent (PGD) [37] with a fixed
step size α = 2/255, CW [3], and Auto-Attack (AA) [8]. For a fair comparison, all
the results are obtained by robust knowledge distillation from the same WRN-
28 teacher model. Table 1 shows that our STARSHIP and its adaptive variant
achieve the best accuracy on both clean and adversarial samples. Notably, the
incorporation of the adaptive adversary generation strategy in Ada-STARSHIP
leads to further improvements in natural performance. The superior performance
on both ResNet-18 [22] and MNV2 [46] showcases the versatility of our method.
Robust self-distillation. In self-distillation setting, the teacher and student
architectures are identical. Table 2 shows that our STARSHIP and its adap-
tive extension, Ada-STARSHIP, outperform other robust knowledge distillation
methods across CIFAR-10/100. In addition, our method achieves comparable or
even better performance on clean samples than the teacher model. We attribute
such a gain to our LΩ (Eq. (10)), which facilitates an intrinsic self-distill within
the student, i.e., sub-matrices in this loss entirely operate on the student back-
bone. Given the teacher backbone in this experiment is not stronger than the
student backbone, such an internal self-distillation enables the student model
to autonomously refine its decision boundaries. More experimental results w.r.t.
diverse settings of LΩ can be found in Appendix C.4.
Robust distillation on ImageNet-100. Below, we extend our investigation
to evaluate the generalization ability of our STARSHIP method in the context
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Table 3: ImageNet-100: Robust accuracy
(%) on the distilled student models using
ResNet-18 and MNV2 backbones.

Type Architecture Method Clean PGD AA

Teacher ResNet-34 TRADES [55] 72.66 40.88 34.70

Student

ResNet-18

ARD [19] 65.41 38.34 30.94
IAD [58] 65.62 39.09 32.63

RSLAD [59] 66.60 39.12 32.18
AKD [38] 67.00 38.85 31.56

AdaAD [25] 68.64 38.99 32.24
STARSHIP 69.68 40.08 33.18

Ada-STARSHIP 71.10 39.86 32.74

MNV2

ARD [19] 65.90 37.28 30.20
IAD [58] 64.96 38.00 31.40

RSLAD [59] 65.82 37.86 31.66
AKD [38] 66.09 36.47 30.03

AdaAD [25] 67.26 37.16 30.55
STARSHIP 68.20 39.84 32.87

Ada-STARSHIP 69.74 39.21 32.58

Table 4: Robust accuracy (%) of models
distilled from ViTs using ResNet-18 and
MNV2 student backbones on CIFAR-10.

Type Architecture Method Clean PGD AA

Teacher ViT-B AT-PRM [40] 83.98 53.10 49.66

Student ResNet-18

ARD [19] 82.76 52.95 49.03
IAD [58] 82.27 53.42 49.48

RSLAD [59] 82.33 54.89 49.74
AKD [38] 82.86 53.44 49.26

AdaAD [25] 82.51 54.30 50.02
STARSHIP 83.53 55.89 52.07

Ada-STARSHIP 83.60 55.31 51.49

Teacher DeiT-S AT-PRM [40] 82.68 52.47 49.27

Student MNV2

ARD [19] 81.59 53.45 49.20
IAD [58] 80.41 54.12 49.62

RSLAD [59] 80.86 53.91 50.18
AKD [38] 81.62 53.08 49.02

AdaAD [25] 82.11 53.85 49.57
STARSHIP 83.45 55.04 51.48

Ada-STARSHIP 83.52 54.92 51.54

Table 5: Robust distillation (WRN-28 →
ResNet-18) on CIFAR-10/100 with auxil-
iary synthetic training data. We report
both clean and (Auto-Attack) robust accu-
racies (%) associated with the robustness
gain ∆Rob with additional data.

Type Method CIFAR-10 CIFAR-100

Clean Robust ∆Rob Clean Robust ∆Rob

Teacher SCORE [41] 88.61 61.03 — 63.64 31.13 —

Student

ARD [19] 83.93 51.04 +1.64 57.36 26.20 +0.18
IAD [58] 83.16 50.30 +1.21 56.13 26.54 +0.32

RSLAD [59] 83.79 52.42 +1.06 56.17 27.84 +0.32
AKD [38] 85.50 51.34 +1.23 58.95 27.26 +0.33

AdaAD [25] 85.93 53.08 +0.72 60.54 27.62 +0.16
STARSHIP 85.67 54.49 +0.71 60.68 29.43 +0.13

Ada-STARSHIP 86.52 55.75 +0.83 61.31 28.63 +0.35

Table 6: Extension of robust distilla-
tion (WRN-28 → ResNet-18/MNV2)
with single-step adversary strat-
egy (N-FGSM [29]) on CIFAR-10. We
report accuracy (%) with the average
training time per epoch.

Type Architecture Method Clean Robust Time (s)

Teacher WRN-28 SCORE [41] 88.61 61.03 —

Student

ResNet-18

IAD [58] 83.87 46.21 68
RSLAD [59] 84.74 48.71 42
AdaAD [25] 85.50 50.22 112

STARSHIP 86.68 51.06 50
Ada-STARSHIP 87.49 51.90 121

MNV2

IAD [58] 81.62 45.53 77
RSLAD [59] 84.55 46.69 51
AdaAD [25] 84.49 47.37 126

STARSHIP 86.22 48.65 61
Ada-STARSHIP 86.76 49.17 138

of larger-scale and practical images. As presented in Table 3, we perform robust
knowledge distillation on ImageNet-100 [9] using different student backbones.
We can observe that our STARSHIP method is superior to existing robustness
transfer methods by retaining more comprehensive knowledge inherited from the
teacher model in terms of clean accuracy and adversarial robustness.
Robust distillation from a ViT-based teacher. ViT has emerged as a com-
petitive alternative to the convolutional network, showcasing good adversarial
robustness [1, 40]. Thus, we investigate if the intrinsic robustness of ViTs can
also be transferred to lightweight student backbones. Table 4 shows that our
proposed STARSHIP consistently achieves superior robust accuracy that even
surpasses the ViT-based teacher model. Such a robustness improvement also
demonstrates the viability of our method in the context of inheriting robustness
from ViT-based teachers without compromising natural performance.
Robust distillation with additional synthetic data. Auxiliary data gen-
erated by Denoising Diffusion Probabilistic Models (DDPMs) [24] can further
improve adversarial training. Nevertheless, there exists a gap in applying the
auxiliary data in the context of robust knowledge distillation. To bridge this
gap, we incorporate an additional 1M synthetic training data for CIFAR-10/100
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Table 7: Ablation study (WRN-28 →
ResNet-18) of three main components in
our STARSHIP on CIFAR-10/100.

FCA PGM Ω
CIFAR-10 CIFAR-100

Clean PGD AA Clean PGD AA

1 84.13 54.49 51.27 58.52 32.43 27.23
2 ✓ 84.56 56.94 52.43 58.83 33.58 28.60
3 ✓ ✓ 85.35 57.28 53.12 59.79 33.94 28.93
4 ✓ ✓ 86.66 56.80 52.36 61.20 33.46 28.38

✓ ✓ ✓ 86.47 57.45 53.78 61.54 34.45 29.30

Table 8: Comparison of different dis-
tance metrics for our STARSHIP during
robust knowledge distillation (WRN-28 →
ResNet-18) on CIFAR-10/100.

Metric CIFAR-10 CIFAR-100

Clean PGD AA Clean PGD AA

Frobnius norm 85.15 56.03 52.10 59.66 33.23 28.16
Pow-E 86.14 56.85 52.79 60.27 33.51 28.54

MaxExp 86.47 57.45 53.78 61.54 34.45 29.30
KL Divergence 86.32 57.06 53.16 60.49 33.92 28.87
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Fig. 3: Robust distillation on CIFAR-10
(WRN-28 → ResNet-18). Fig. 3a: Trade-
off between clean and (Auto-Attack) ro-
bust accuracies w.r.t. β that balances dis-
tillation between clean and adversarial
samples. Fig. 3b: Difference of robust ac-
curacy between our Ada-STARSHIP and
STARSHIP under diverse perturb. radii ϵ.
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(Student)
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Fig. 4: Visualizations of attention of both
the teacher and student models distilled via
different robust distillation methods.

when distilling from a large-scale teacher model. Table 5 shows that the auxiliary
training data improves the adversarial robustness of distilled students compared
to the original training in Table 1. STARSHIP achieves the most significant gain
in robustness by incorporating auxiliary DDPM-generated data during robust
knowledge distillation.

Single-step robust distillation. Due to the multi-step adversary generation
scheme, achieving adversarial robustness requires several times more compu-
tation resources than the standard training [18]. To mitigate such a compu-
tational burden, we explore the adversarially robust knowledge distillation with
the single-step adversary generation strategy [29]. Table 6 shows that our STAR-
SHIP can efficiently inherit non-trivial robustness from the teacher model based
on single-step adversarial samples. Further details and more experiments can be
found in Appendix B.2 and Appendix C.5, respectively.

5 Further Analyses

Ablation studies. Below, we investigate modules of STARSHIP: (i) Feature
Covariance Alignment (FCA) in Sec. 3.2, (ii) Prediction-score Gram Matching
(PGM) in Eq. (9), and (iii) Statistical Sub-matrices Alignment (Ω) in Eq. (10).
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Fig. 5: The robust accuracy (%) of several student models w.r.t. their average gap (%)
between feature-wise variances evaluated on the adversarial samples and clean samples
(5a). In Fig. 5b, we show equivalent evaluations with the use of prediction-based gram-
wise variances. The variance gaps are captured under several adversarial perturbation
radii. Note that the experimental settings are the same as Fig. 1.

Table 7 shows results on CIFAR-10. Our baseline (first row) uses the standard
prediction alignment in Eq. (4). Both FCA and PGM improve adversarial ro-
bustness. The statistical sub-matrices alignment (Ω) boosts the clean accuracy of
student by promoting the prediction invariance between clean and adv. samples.
Clean vs. robust accuracy trade-off. The trade-off between clean accuracy
and adversarial robustness has been widely investigated in adversarial train-
ing [12,43,55]. Less is known about such a trade-off within the context of robust
knowledge distillation. Thus, we study the effect of β, which balances the pre-
diction alignment on clean and adversarial samples. Fig. 3a shows an improved
adversarial robustness associated with a decrease in clean performance as β gets
larger. Furthermore, we explore the robustness of our STARSHIP and its adap-
tive variant (Ada-STARSHIP) against adversarial samples across diverse attack
strengths in Fig. 3b. We adopt adversaries with ϵ = 8/255 (signified by the
dashed red line) for robust distillation. Compared with the vanilla STARSHIP,
Ada-STARSHIP has a better performance on clean samples and their adversar-
ial counterparts of lower attack strength (ϵ ≤ 10). In comparison, STARSHIP
achieves better robustness against strong adversarial samples (ϵ > 10). Such an
intrinsic robustness trade-off makes our method applicable in diverse scenarios.
Visualization. As shown in Figure 4, we provide visualizations of adversarial
samples (ϵ = 8/255) related to both the teacher and student models via Grad-
CAM [48]. In comparison with other robust distillation methods, the student
model distilled by our STARSHIP method shares similar attention regions to
that of the teacher model. Such an observation further underscores the efficacy of
our method in preserving the adversarially robust prediction alignment between
the teacher and student. Additional visualization results are in Appendix D.
Discussion on effectiveness of our method. Building on the insights from
Figure 1, we further analyze the robustness w.r.t. the variance gap between ad-
versarial and clean representations under different attack strengths. Figure 5



14 Dong et al.

evaluates our STARSHIP method and its adaptive variant. For comparison, we
also introduce a Feature Alignment (FA) variant of our baseline method (ARKD)
from Eq. (4). According to Figure 5, relying on the feature or prediction align-
ment alone cannot reduce such a statistical gap, leading to relatively weaker
robustness against adversarial samples. Unlike the sample-to-sample matching
paradigm (e.g ., FA), our STARSHIP method introduces the alignment of second-
order statistics [31, 32, 34, 36, 44, 54] at both the feature and prediction levels,
which introduces the multivariate Normal distribution alignment prior to the
alignment process (e.g ., correlation alignment instead of mere matching of in-
dividual features or instances). Analysis of the parameter-level perturbations
(Eq. (7)) is in Appendix C.6.
Performance comparison w.r.t. different distance measures. Below, we
explore the efficacy of several distance metrics on the alignment of covariance
and gram matrices between the teacher and student distilled via our STAR-
SHIP. As such matrices are symmetric positive (semi-)definite, distance d2(·, ·)
in Eq. (6) for feature covariance alignment and Eq. (9) for prediction-score gram
matching can be achieved by non-Euclidean distances. Table 8 reports clean and
robust accuracies of the distilled student model based on different distance met-
rics: (i) the Frobenius norm, (ii) the Power-Euclidean (Pow-E) metric [17,33,34],
(iii) fast spectral expectation of Max-pooling (MaxExp) [33,34], and (iv) the KL
divergence. Note that we conduct the alignment of multivariate Normal distribu-
tions (statistics) between the teacher and student models when adopting the KL
divergence as the distance metric. We observe that the statistical alignment via
MaxExp achieves the highest accuracy on both clean and adversarial examples,
even surpassing the performance of distribution alignment via the KL divergence
that adopts both the mean and covariance information. The main reason is that
MaxExp can balance (and partially equalize) the spectrum of the aligned statis-
tics. It dampens the significance of leading eigenvalues and boosts the impact of
non-leading eigenvalues. Thus, it encourages the student to distill all orthogonal
variance vectors of the teacher covariance, not only those corresponding to the
leading eigenvalues, preventing overfitting to leading principal directions.

6 Conclusions

Motivated by the implicit link between feature variance and model generaliza-
tion, we have investigated the relation between the adversarial robustness and its
correlation to the variance gap between feature variances of adversarial and clean
samples. We have observed that a similar phenomenon holds for prediction-based
gram matrices. We devised several alignment strategies leveraging second-order
statistics to align the student’s statistics with the teacher’s statistics. We have
also shown that a degree of self-distillation within the student model is beneficial
for robustness. Leveraging second-order statistics to align the student toward the
teacher helps capture well intricacies of the teacher’s robust boundary through
aligning correlations rather than sample-to-sample scores. Appendix F discusses
limitations of our method.
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