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In this supplementary material, we provide additional details regarding the
implementations and additional results. We also discuss the limitations of our
model.

Broader Social Impact. In this paper, we introduce a new latent 3D diffusion
model designed to produce high-quality textures and geometry using a single
model. As a result, our approach has the potential to be applied to generating
DeepFakes or deceptive 3D assets, facilitating the creation of falsified images or
videos. This raises concerns as individuals could exploit such technology with
malicious intent, aiming to spread misinformation or tarnish reputations.

A Implementation details

A.1 Training details

Diffusion. We mainly adopt the diffusion training pipeline implementation from
ADM [4], continuous noise schedule from LSGM [22] with the spatial transformer
attention implementation from LDM [16]. For ShapeNet and FFHQ dataset,
we adopt U-Net [17] architecture and list the hyperparameters in Tab. 1. For
Objaverse dataset, we adopt DiT-L [14] architecture with cross attention design,
as proposed in PixArt [3]. The diffusion transformer is built with 24 layers with
16 heads and 1024 hidden dimension, which result in 458M parameters.
VAE Architecture. For the convolutional encoder Eϕ, we adopt a lighter version
of LDM [16] encoder with channel 64 and 1 residual blocks for efficiency. When
training on Objaverse with V = 6, we incorporate 3D-aware attention [18] in
the middle layer of the convolutional encoder. For convolutional upsampler DU ,
we further half the channel to 32. All other hyper-parameters remain at their
default settings. Regarding the transformer decoder DT , we employ the DiT-L/2
architecture, and overall saved VAE model takes around 1.5 GiB storage. The
input dimension of z to the MLP in each DiT block is h× w × c for self-plane
attention, and h×w×3×c in cross-plane attention. When ablating the 3D-aware
attention in Tab.3, we adopt channel-wise concatenated latent h× w × (3c) for
model input, as in SSDNeRF. Note that we trade off a smaller model with faster
training speed due to the overall compute limit, and a heavier model would
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Table 1: Hyperparameters and architecture of diffusion model ϵθ.

Diffusion Model Details

Learning Rate 2e� 5
Batch Size 96
Optimizer AdamW
Iterations 500K

U-Net base channels 320
U-Net channel multiplier 1, 1, 2, 2, 4, 4
U-Net res block 2
U-Net attention resolutions 4,2,1
U-Net Use Spatial Transformer True
U-Net Learn Sigma False
U-Net Spatial Context Dim 768
U-Net attention head channels 64
U-Net pred type v
U-Net norm layer type GroupNorm

Noise Schedules Linear
CFG Dropout prob 15%
CLIP Latent Scaling Factor 18:4

certainly empower better performance [14, 23]. We ignore the plucker camera
condition for the ShapeNet and FFHQ dataset, over which we find raw RGB
input already yields good enough performance.

A.2 Data and Baseline Comparison

Training data. For ShapeNet, following GET3D [8], we use the blender to
render the multi-view images from 50 viewpoints for all ShapeNet datasets
with foreground mask. Those camera points sample from the upper sphere of
a ball with a 1.2 radius. For Objaverse, we use a high-quality subset from the
pre-processed rendering from G-buffer Objaverse [15] for experiments. Since
G-buffer Objaverse splits the subset into 10 general categories, we use all the
3D instances except from “Poor-quality”: Human-Shape, Animals, Daily-Used,
Furniture, Buildings&Outdoor, Transportations, Plants, Food and Electronics.
The ground truth camera pose, rendered multi-view images and depth maps are
used for stage-1 VAE training.
Evaluation. The 2D metrics are calculated between 50k generated images and
all available real images. Furthermore, for comparison of the geometrical quality,
we sample 4096 points from the surface of 5000 objects and apply the Coverage
Score (COV) and Minimum Matching Distance (MMD) using Chamfer Distance
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(CD) as follows:

CD(X,Y ) =
∑
x∈X

min
y∈Y

||x− y||22 +
∑
y∈Y

min
x∈X

||x− y||22,

COV (Sg, Sr) =
|{arg minY ∈Sr

CD(X,Y )|X ∈ Sg}|
|Sr|

MMD(Sg, Sr) =
1

|Sr|
∑
Y ∈Sr

min
X∈Sg

CD(X,Y )

, (1)

where X ∈ Sg and Y ∈ Sr represent the generated shape and reference shape.
Note that we use 5k generated objects Sg and all training shapes Sr to

calculate COV and MMD. For fairness, we normalize all point clouds by centering
in the original and recalling the extent to [-1,1]. Coverage Score aims to evaluate
the diversity of the generated samples, and MMD is used for measuring the
quality of the generated samples. 2D metrics are evaluated at a resolution of 128
× 128. Since the GT data contains intern structures, we only sample the points
from the outer surface of the object for results of all methods and ground truth.

For FID/KID evaluation, since different methods have their unique evaluation
settings, we standardize this process by re-rendering each baseline’s samples
using a fixed upper-sphere ellipsoid camera pose trajectory of size 20. With 2.5K
sampled 3D instances for each method, we recalculate FID@50K/KID@50K,
ensuring a fair comparison across all methods.
Details about Baselines. We reproduce EG3D, GET3D, and SSDNeRF on
our ShapeNet rendering using their officially released codebases. In the case of
RenderDiffusion, we use the code and pre-trained model shared by the author for
ShapeNet experiments. Regarding FFHQ dataset, due to the unavailability of
the corresponding inference configuration and checkpoint from the authors, we
incorporate their unconditional generation and monocular reconstruction results
as reported in their paper. For DiffRF, given the absence of the public code, we
reproduce their method with Plenoxel [7] and ADM [4].

B More Results

B.1 More Qualitative 3D Generation Results

We include more uncurated samples generated by our method on ShapeNet
in Fig. 1, and on FFHQ in Fig. 2. For Objaverse, we include its qualitative
evaluation against state-of-the-art generic 3D generative models (Shape-E [11]
and Point-E [13]in Fig. 3, along with the quantitative benchmark in Tab. ??
in the main paper. We use CLIP-precision score in DreamField [9] to evaluate
the text-3D alignment. As can be seen, LN3Diff shows more geometry and
appearance details with higher CLIP scores against Shape-E and Point-E.

B.2 More Monocular 3D Reconstruction Results

We further benchmark the generalization ability of our stage-1 monocular 3D
reconstruction VAE. For ShapeNet, we include the quantitative evaluation in
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Fig. 1: Unconditional 3D Generation by LN3Diff (Uncurated). We showcase
uncurated samples generated by LN3Diff on ShapeNet three categories. We visualize
two views for each sample. Better zoom in.

Tab. 2. Our method achieves a comparable performance with monocular 3D
reconstruction baselines. Note that strictly saying, our stage-1 VAE shares a
similar setting with Pix2NeRF [1], whose encoder also has a latent space for
generative modeling. Other reconstruction-specific methods like PixelNeRF [24]
do not have these requirements and can leverage some designs like pixel-aligned
features and long-skip connections to further boost the reconstruction perfor-
mance. We include their performance mainly for reference and leave training the
stage-1 VAE model with performance comparable with those state-of-the-art 3D
reconstruction models for future work.

Besides, we visualize LN3Diff’s stage-1 monocular VAE reconstruction
performance over our Objaverse split in Fig. 5. As can be seen, though only
one view is provided as the input, our monocular VAE reconstruction can
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Fig. 2: Unconditional 3D Generation by LN3Diff (Uncurated). We showcase
uncurated samples generated by LN3Diff on FFHQ. We visualize two views for each
sample along with the extracted depth. Better zoom in.
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Fig. 3: Qualitative Comparison of Text-to-3D We showcase uncurated samples
generated by LN3Diff on ShapeNet three categories. We visualize two views for each
sample. Better zoom in.
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