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In this supplementary material, we provide additional details regarding the
implementations and additional results. We also discuss the limitations of our
model.

Broader Social Impact. In this paper, we introduce a new latent 3D diffusion
model designed to produce high-quality textures and geometry using a single
model. As a result, our approach has the potential to be applied to generating
DeepFakes or deceptive 3D assets, facilitating the creation of falsified images or
videos. This raises concerns as individuals could exploit such technology with
malicious intent, aiming to spread misinformation or tarnish reputations.

A Implementation details

A.1 Training details

Diffusion. We mainly adopt the diffusion training pipeline implementation from
ADM [4], continuous noise schedule from LSGM [22] with the spatial transformer
attention implementation from LDM [16]. For ShapeNet and FFHQ dataset,
we adopt U-Net [17] architecture and list the hyperparameters in Tab. 1. For
Objaverse dataset, we adopt DiT-L [14] architecture with cross attention design,
as proposed in PixArt [3]. The diffusion transformer is built with 24 layers with
16 heads and 1024 hidden dimension, which result in 458M parameters.
VAE Architecture. For the convolutional encoder Eϕ, we adopt a lighter version
of LDM [16] encoder with channel 64 and 1 residual blocks for efficiency. When
training on Objaverse with V = 6, we incorporate 3D-aware attention [18] in
the middle layer of the convolutional encoder. For convolutional upsampler DU ,
we further half the channel to 32. All other hyper-parameters remain at their
default settings. Regarding the transformer decoder DT , we employ the DiT-L/2
architecture, and overall saved VAE model takes around 1.5 GiB storage. The
input dimension of z to the MLP in each DiT block is h× w × c for self-plane
attention, and h×w×3×c in cross-plane attention. When ablating the 3D-aware
attention in Tab.3, we adopt channel-wise concatenated latent h× w × (3c) for
model input, as in SSDNeRF. Note that we trade off a smaller model with faster
training speed due to the overall compute limit, and a heavier model would



2 Authors Suppressed Due to Excessive Length

Table 1: Hyperparameters and architecture of diffusion model ϵθ.

Diffusion Model Details

Learning Rate 2e− 5
Batch Size 96
Optimizer AdamW
Iterations 500K

U-Net base channels 320
U-Net channel multiplier 1, 1, 2, 2, 4, 4
U-Net res block 2
U-Net attention resolutions 4,2,1
U-Net Use Spatial Transformer True
U-Net Learn Sigma False
U-Net Spatial Context Dim 768
U-Net attention head channels 64
U-Net pred type v
U-Net norm layer type GroupNorm

Noise Schedules Linear
CFG Dropout prob 15%
CLIP Latent Scaling Factor 18.4

certainly empower better performance [14, 23]. We ignore the plucker camera
condition for the ShapeNet and FFHQ dataset, over which we find raw RGB
input already yields good enough performance.

A.2 Data and Baseline Comparison

Training data. For ShapeNet, following GET3D [8], we use the blender to
render the multi-view images from 50 viewpoints for all ShapeNet datasets
with foreground mask. Those camera points sample from the upper sphere of
a ball with a 1.2 radius. For Objaverse, we use a high-quality subset from the
pre-processed rendering from G-buffer Objaverse [15] for experiments. Since
G-buffer Objaverse splits the subset into 10 general categories, we use all the
3D instances except from “Poor-quality”: Human-Shape, Animals, Daily-Used,
Furniture, Buildings&Outdoor, Transportations, Plants, Food and Electronics.
The ground truth camera pose, rendered multi-view images and depth maps are
used for stage-1 VAE training.
Evaluation. The 2D metrics are calculated between 50k generated images and
all available real images. Furthermore, for comparison of the geometrical quality,
we sample 4096 points from the surface of 5000 objects and apply the Coverage
Score (COV) and Minimum Matching Distance (MMD) using Chamfer Distance
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(CD) as follows:
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, (1)

where X ∈ Sg and Y ∈ Sr represent the generated shape and reference shape.
Note that we use 5k generated objects Sg and all training shapes Sr to

calculate COV and MMD. For fairness, we normalize all point clouds by centering
in the original and recalling the extent to [-1,1]. Coverage Score aims to evaluate
the diversity of the generated samples, and MMD is used for measuring the
quality of the generated samples. 2D metrics are evaluated at a resolution of 128
× 128. Since the GT data contains intern structures, we only sample the points
from the outer surface of the object for results of all methods and ground truth.

For FID/KID evaluation, since different methods have their unique evaluation
settings, we standardize this process by re-rendering each baseline’s samples
using a fixed upper-sphere ellipsoid camera pose trajectory of size 20. With 2.5K
sampled 3D instances for each method, we recalculate FID@50K/KID@50K,
ensuring a fair comparison across all methods.
Details about Baselines. We reproduce EG3D, GET3D, and SSDNeRF on
our ShapeNet rendering using their officially released codebases. In the case of
RenderDiffusion, we use the code and pre-trained model shared by the author for
ShapeNet experiments. Regarding FFHQ dataset, due to the unavailability of
the corresponding inference configuration and checkpoint from the authors, we
incorporate their unconditional generation and monocular reconstruction results
as reported in their paper. For DiffRF, given the absence of the public code, we
reproduce their method with Plenoxel [7] and ADM [4].

B More Results

B.1 More Qualitative 3D Generation Results

We include more uncurated samples generated by our method on ShapeNet
in Fig. 1, and on FFHQ in Fig. 2. For Objaverse, we include its qualitative
evaluation against state-of-the-art generic 3D generative models (Shape-E [11]
and Point-E [13]in Fig. 3, along with the quantitative benchmark in Tab. ??
in the main paper. We use CLIP-precision score in DreamField [9] to evaluate
the text-3D alignment. As can be seen, LN3Diff shows more geometry and
appearance details with higher CLIP scores against Shape-E and Point-E.

B.2 More Monocular 3D Reconstruction Results

We further benchmark the generalization ability of our stage-1 monocular 3D
reconstruction VAE. For ShapeNet, we include the quantitative evaluation in
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Fig. 1: Unconditional 3D Generation by LN3Diff (Uncurated). We showcase
uncurated samples generated by LN3Diff on ShapeNet three categories. We visualize
two views for each sample. Better zoom in.

Tab. 2. Our method achieves a comparable performance with monocular 3D
reconstruction baselines. Note that strictly saying, our stage-1 VAE shares a
similar setting with Pix2NeRF [1], whose encoder also has a latent space for
generative modeling. Other reconstruction-specific methods like PixelNeRF [24]
do not have these requirements and can leverage some designs like pixel-aligned
features and long-skip connections to further boost the reconstruction perfor-
mance. We include their performance mainly for reference and leave training the
stage-1 VAE model with performance comparable with those state-of-the-art 3D
reconstruction models for future work.

Besides, we visualize LN3Diff’s stage-1 monocular VAE reconstruction
performance over our Objaverse split in Fig. 5. As can be seen, though only
one view is provided as the input, our monocular VAE reconstruction can
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FFHQ	Unconditional	Generation

Fig. 2: Unconditional 3D Generation by LN3Diff (Uncurated). We showcase
uncurated samples generated by LN3Diff on FFHQ. We visualize two views for each
sample along with the extracted depth. Better zoom in.

Point-E Shap-EOurs

A voxelized 
dog.

An 18th century
cannon.

Fig. 3: Qualitative Comparison of Text-to-3D We showcase uncurated samples
generated by LN3Diff on ShapeNet three categories. We visualize two views for each
sample. Better zoom in.
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Table 2: Quantitative results on ShapeNet-SRN [2,19] chairs evaluate on 128× 128.
Legend: * – requires test time optimization. Note that our stage-1 VAE shares the same
setting only with Pix2NeRF [24], which also has an explicit latent space for generative
learning. Other baselines are included for reference.

Method PSNR ↑ SSIM ↑

GRF [21] 21.25 0.86
TCO [20] 21.27 0.88
dGQN [6] 21.59 0.87
ENR [5] 22.83 -
SRN* [19] 22.89 0.89
CodeNeRF* [10] 22.39 0.87
PixelNeRF [24] 23.72 0.91

Pix2NeRF [1] conditional 18.14 0.84
Ours 20.91 0.89

A yellow plastic 
chair with 
armrests.

Two yellow 
plastic chair 

with armrests.

Fig. 4: Limitation analysis. We
showcase the deficiency to generate
composed 3D scenes by LN3Diff.
As shown here, the prompt Two
chair yields similar results with A
chair.

yield high-quality and view-consistent 3D reconstruction with a detailed depth
map. Quantitatively, the novel-view reconstruction performance over our whole
Objaverse dataset achieves an average PSNR of 26.14. This demonstrates that
our latent space can be treated as a compact proxy for efficient 3D diffusion
training.

C Limitation and Failure Cases

We have included a brief discussion of limitations in the main submission. Here
we include more details along with the visual failure cases for a more in-depth
analysis of LN3Diff’s limitations and future improvement directions.

C.1 VAE Limitations

We have demonstrated that using a monocular image as encoder input can achieve
high-quality 3D reconstruction. However, we noticed that for some challenging
cases with diverse color and geometry details, the monocular encoder leads to
blurry artifacts. As labeled in Fig. 5, our method with monocular input may yield
floating artifacts over unseen viewpoints. We hypothesize that these artifacts are
largely due to the ambiguity of monocular input and the use of regression loss
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(L2/LPIPS) during training. These observations demonstrate that switching to a
multi-view encoder is necessary for better performance.

Besides, since our VAE requires plucker camera condition as input, the pre-
trained VAE method cannot be directly applied to the unposed dataset. However,
we believe this is not a research issue at the current time, considering the current
methods still perform lower than expected on existing high-quality posed 3D
datasets like Objaverse.

C.2 3D Diffusion Limitations

As one of the earliest 3D diffusion models that works on Objaverse, our method
still suffers from several limitations that require investigation in the future.
(1) The support of image-to-3D on Objaverse. Currently, we leverage CLIPtext
encoder with the 77 tokens as the conditional input. However, unlike 2D AIGC
with T2I models [16], 3D content creation can be greatly simplified by providing
easy-to-get 2D images. An intuitive implementation is by using our ShapeNet
3D diffusion setting, which provides the final normalized CLIP text embeddings
as the diffusion condition. However, as shown in the lower half of Fig. 4 in the
main submission, the CLIP encoder is better at extracting high-level semantics
rather than low-level visual details. Therefore, incorporating more accurate image-
conditioned 3D diffusion design like ControlNet [25] to enable monocular 3D
reconstruction and control is worth exploring in the future. (2) Compositionality.
Currently, our method is trained on object-centric dataset with simple captions,
so the current model does not support composed 3D generation. For example,
the prompt "Two yellow plastic chair with armchests" will still yield one chair, as
visualized in Fig. 4. (3) UV map. To better integrate the learning-based method
into the gaming and movie industry, a high-quality UV texture map is required.
A potential solution is to disentangle the learned geometry and texture space
and build the connection with UV space through dense correspondences [12].
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Fig. 5: Monocular 3D Reconstruction by LN3Diff stage-1 VAE on Objaverse
(Uncurated). We showcase uncurated samples monocular-reconstructed by LN3Diff
on Objaverse. From left to right, we visualize the input image, four reconstructed novel
views with the corresponding depth maps. Artifacts are labeled in Red. Better zoom in.
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