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Fig. 1: We present LN3Diff, which performs efficient 3D diffusion learning over a
compact latent space. The resulting model enables both high-quality monocular 3D
reconstruction and text-to-3D synthesis.

Abstract. The field of neural rendering has witnessed significant progress
with advancements in generative models and differentiable rendering tech-
niques. Though 2D diffusion has achieved success, a unified 3D diffusion
pipeline remains unsettled. This paper introduces a novel framework
called LN3Diff to address this gap and enable fast, high-quality, and
generic conditional 3D generation. Our approach harnesses a 3D-aware
architecture and variational autoencoder (VAE) to encode the input
image(s) into a structured, compact, and 3D latent space. The latent is
decoded by a transformer-based decoder into a high-capacity 3D neu-
ral field. Through training a diffusion model on this 3D-aware latent
space, our method achieves superior performance on Objaverse, ShapeNet
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and FFHQ for conditional 3D generation. Moreover, it surpasses ex-
isting 3D diffusion methods in terms of inference speed, requiring no
per-instance optimization. Video demos can be found on our project
webpage: https://nirvanalan.github.io/projects/ln3diff.
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1 Introduction

The advancement of generative models [19,28] and differentiable rendering [83] has
paved the way for a new research direction called neural rendering [83]. This field is
continuously pushing the limits of view synthesis [51], editing [42], and particularly
3D object synthesis [6]. While 2D diffusion models [28, 78] have outperformed
GANs in image synthesis [14] in terms of quality [68], controllability [99], and
scalability [72], a unified 3D diffusion pipeline has yet to be established.

3D object generation methods using diffusion models can be categorized into
2D-lifting and feed-forward 3D diffusion models. In 2D-lifting methods, score
distillation sampling (SDS) [63,90] and Zero-123 [45,74] achieve 3D generation
by leveraging pre-trained 2D diffusion models. However, SDS-based methods
require costly per-instance optimization and are prone to the multi-face Janus
problem [63]. Meanwhile, Zero-123 fails to enforce strict view consistency. On the
other hand, feed-forward 3D diffusion models [9, 33, 44, 52, 89, 97] enable fast 3D
synthesis without per-instance optimization. However, these methods typically
involve a two-stage pre-processing approach. First, during the data preparation
stage, a shared decoder is learned over a large number of instances to ensure
a shared latent space. This is followed by per-instance optimization to convert
each 3D asset in the datasets into neural fields [93]. After this, the feed-forward
diffusion model is trained on the prepared neural fields.

While the pipeline above is straightforward, it poses extra challenges to achieve
high-quality 3D diffusion: 1) Scalability. In the data preparation stage, existing
methods face scalability issues due to using a shared, low-capacity MLP decoder
for per-instance optimization. This approach is data inefficient, requiring over 50
views per instance [9, 52] during training. Consequently, computation cost scales
linearly with the dataset size, hindering scalability for large, diverse 3D datasets.
2) Efficiency. Employing 3D-specific architectures [11,64,86] is computationally
intensive and necessitates representation-specific designs [101]. Consequently,
existing methods compress each 3D asset into neural fields [93] before training.
However, this compression introduces high-dimensional 3D latent, increasing
computational demands and training challenges. Limiting the neural field size [9]
might mitigate these issues but at the cost of reconstruction quality. In addition,
the auto-decoding paradigm can result in an unclean latent space [20, 33, 75],
unsuitable for 3D diffusion training [68]. 3) Generalizability. Existing 3D
diffusion models primarily focus on unconditional generation over single classes,
neglecting high-quality conditional 3D generation (e.g ., text-to-3D) across generic,
category-free 3D datasets. Furthermore, projecting monocular input images into
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the diffusion latent space is crucial for conditional generation and editing [43,99],
but this is challenging with the shared decoder designed for multi-view inputs.

In this study, we propose a novel framework called Latent Neural fields
3D Diffusion (LN3Diff) to address these challenges and enable fast, high-
quality and generic conditional 3D generation. Our method involves training
a variational autoencoder [39] (VAE) to compress input images into a lower-
dimensional 3D-aware latent space, which is more expressive and flexible compared
to pixel-space diffusion [14,28,31,78]. From this space, a 3D-aware transformer-
based decoder gradually decodes the latent into a high-capacity 3D neural field.
This autoencoding stage is trained amortized with differentiable rendering [83],
incorporating novel view supervision for multi-view datasets [8,13] and adversarial
supervision for monocular dataset [34]. Thanks to the high-capacity model design,
our method is more view efficient, requiring only two views per instance during
training. After training, we leverage the learned 3D latent space for conditional
3D diffusion learning, ensuring effective utilization of the trained model for high-
quality 3D generation. The pre-trained encoder can amortize the data encoding
over incoming data, thus streamlining operations and facilitating efficient 3D
diffusion learning while remaining compatible with advances in 3D representations.

To enhance efficient information flow in the 3D space and promote coherent
geometry reconstruction, we introduce a novel 3D-aware architecture tailored for
fast and high-quality 3D reconstruction while maintaining a structured latent
space. Specifically, we employ a convolutional tokenizer to encode the input
image(s) into a KL-regularized 3D latent space, leveraging its superior perceptual
compression ability [17]. We employ transformers [15,60] to enable flexible 3D-
aware attention across 3D tokens in the latent space. Finally, we up-sample the
3D latent and apply differentiable rendering for image-space supervision, making
our method a self-supervised 3D learner [77].

In summary, we contribute a 3D-representation-agnostic pipeline for building
generic, high-quality 3D generative models. This pipeline provides opportunities
to resolve a series of downstream 3D vision and graphics tasks. Specifically, we
propose a novel 3D-aware reconstruction model that achieves high-quality 3D
data encoding in an amortized manner. Learning in the compact latent space, our
model demonstrates state-of-the-art 3D generation performance on the ShapeNet
benchmark [8], surpassing both Generative Adversarial Network (GAN)-based
and 3D diffusion-based approaches. Our method shows superior performance
in monocular 3D reconstruction and conditional 3D generation on ShapeNet,
FFHQ, and Objaverse datasets, with a fast inference speed, e.g ., 3� faster against
existing latent-free 3D diffusion methods [1].

2 Related Work

3D-aware GANs. GANs [19] have shown promising results in generating
photorealistic images [3, 35, 36], inspiring researchers to explore 3D-aware genera-
tion [25,53,58]. Motivated by the recent success of neural rendering [49,51,59], re-
searchers have introduced 3D inductive bias into the generation task [5,73], demon-
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strating impressive 3D-awareness synthesis through hybrid designs [6,21,29,55,57].
This has made 3D-aware generation applicable to a series of downstream applica-
tions [42,79,80,98]. However, GAN-based methods su�er from mode collapse [85]
and struggle to model datasets with larger scale and diversity [14]. Besides, 3D
reconstruction and editing with GANs require elaborately designed inversion
algorithms [43].

3D-aware Di�usion Models. The success of 2D di�usion models [28,78] has
inspired their application to 3D generation. DreamFusion [32,63,90] adapted 2D
models for 3D, but faces challenges like expensive optimization, mode collapse,
and the Janus problem. Some methods propose learning the 3D prior in a 2D
manner [7,45,46,84]. While these can produce photorealistic results, they lack
view consistency and fail to fully capture the 3D structure. A canonical 3D
di�usion pipeline involves a two-stage training process. First, an auto-decoder is
pre-trained with multi-view images [16,33,44,52,75,89]. Then, 3D latent codes
serve as the training corpus for di�usion. However, the auto-decoding stage leads
to an unclean latent space and limited scalability. Moreover, the large latent
codes, e.g.,256� 256� 96 [89], hinder e�cient di�usion learning [31].

Prior works, such as RenderDi�usion [1] and DMV3D [94], propose latent-
free 3D di�usion by integrating rendering into di�usion sampling. However, this
approach involves time-consuming volume rendering at each denoising step, signif-
icantly slowing down sampling. SSDNeRF [9] suggests a joint 3D reconstruction
and di�usion approach but requires a complex training schedule and shows
performance only in single-category unconditional generation. In contrast, our
proposedLN3Diff trains 3D di�usion on a compressed latent space without
rendering operations. As shown in Section 4, our method outperforms others in
3D generation and monocular 3D reconstruction, achieving three times faster
speed. Additionally, we demonstrate conditional 3D generation over diverse
datasets, whereas RenderDi�usion and SSDNeRF focus on simpler classes. Other
approaches, like 3DGen [23] and VolumeDi�usion [82], perform di�usion in the
3D latent space but heavily rely on 3D data (e.g., point clouds and voxels) and
do not support monocular datasets like FFHQ [34]. Moreover, their methods are
designed for U-Net, whereas our DiT-based architecture o�ers greater scalability.

Generalized 3D Reconstruction and View Synthesis. To bypass the
per-scene optimization of NeRF, researchers have proposed learning a prior
model through image-based rendering [10,30,70,88,95]. However, these methods
are primarily designed for view synthesis and lack explicit 3D representations.
LoLNeRF [67] learns a prior through auto-decoding but is limited to simple,
category-speci�c settings. Moreover, these methods are intended for view syn-
thesis and cannot generate new 3D objects. VQ3D [71] adapts the generalized
reconstruction pipeline to 3D generative models. However, it uses a 2D archi-
tecture with autoregressive modeling over a 1D latent space, ignoring much of
the inherent 3D structure. NeRF-VAE [40] directly models 3D likelihood with a
VAE posterior but is constrained to simple 3D scenes due to the limited capacity
of VAE. Concurrently, LRM [10,30] has proposed a feedforward model for gen-
eralized monocular reconstruction. However, its latent space is not speci�cally
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Fig. 2: Pipeline of LN3Diff . In the 3D latent space learning stage, a convolutional
encoderE� encodes a set of imagesI into the KL-regularized latent space. The encoded
3D latent is further decoded by a 3D-aware DiT transformer DT , in which we perform
self-plane attention and cross-plane attention. The transformer-decoded latent is up-
sampled by a convolutional upsampler DU towards a high-res tri-plane for rendering
supervisions. In the next stage, we perform conditional di�usion learning over the
compact latent space using either U-Net or DiT.

designed for learning a generative model, which limits its e�ectiveness for 3D
di�usion learning.

3 Scalable Latent Neural Fields Di�usion

This section introduces our latent 3D di�usion model, which learns e�cient
di�usion prior over the compressed latent space by a dedicated variational
autoencoder. Speci�cally, the goal of training is to learn a variational encoderE�

that maps a set of posed 2D image(s)I = f I i ; :::; I V g, of a 3D object to a latent
code z, a denoiser� � (zt ; t) to denoise the noisy latent codezt given di�usion
time step t, and a decoderD (including a Transformer DT and an Upsampler
DU ) to map z0 to the 3D tri-plane eX corresponding to the input object.

Such design o�ers several advantages: (1) By explicitly separating the 3D
data compression and di�usion stage, we avoid representation-speci�c 3D di�u-
sion design [1,33,52,75,101] and achieve 3D representation/rendering-agnostic
di�usion, which can be applied to any neural rendering techniques. (2) By leaving
the high-dimensional 3D space, we reuse the well-studied Latent Di�usion Model
(LDM) architecture [60,68,87] for computationally e�cient learning and achieve
better sampling performance with faster speed. (3) The trained 3D compression
model in the �rst stage serves as an e�cient and general-purpose 3D tokenizer,
whose latent space can be easily re-used over downstream applications or extended
to new datasets [12,96].

In the following subsections, we �rst discuss the compressive stage with a
detailed framework design in Sec. 3.1. Based on that, we introduce the 3D di�usion
generation stage in Sec. 3.2 and present the condition injection in Sec. 3.3. The
method overview is shown in Fig. 2.
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