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1 Additional Results

1.1 Qualitative Results

We report additional qualitative results in Figure 1 and Figure 2. As illustrated in
Figure 1, we provide more qualitative comparison results between our proposed
method and VoxFormer on the SemanticKITTI [1] validation set. Compared with
VoxFormer, our method can predict more accurate scene layouts (e.g., crossroads
in the first and second rows) and moving objects (e.g., trucks in the third row).
Moreover, our method hallucinates more complete and proper out-FOV (field of
view) scenes(e.g., shadow areas in the second row). As illustrated in Figure 2, we
also report more visualization results on the OpenOccupancy [11] validation set.
Compared to the ground truth with sparse annotations, our proposed method
can generate more fine-grained realistic predictions (e.g., dense road predictions
in the first and second rows).

1.2 Quantitative Results

As shown in Table 1, We conduct additional quantitative experiments on the
SemanticKITTI validation dataset with other camera-based SSC methods [3,8].
Compared to other baselines, our method achieves significant improvements in
mIoU, demonstrating our method’s effectiveness for semantic scene completion.
Specifically, our method shows obvious superiority in capturing better moving
objects (e.g., cars, bicycles, trucks) and scene layouts (e.g., roads, sidewalks).

2 More Visualization on Cross-frame Pattern Affinity

We provide more visualization results in Figure 3. Compared with the original
cosine similarity, our proposed Cross-frame Pattern Affinity (CPA) effectively
illustrates the contextual correspondence within the temporal content.
⋆ Corresponding author
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Ground Truth HTCL-S (ours) VoxFormer-T VoxFormer-SCamera Input

■bicycle ■car ■motorcycle ■truck ■other-veh. ■person ■bicyclist ■motorcyclist ■road
■parking ■sidewalk ■other.grd ■building ■fence ■vegetation ■trunk ■terrain ■pole ■traf.sign

Fig. 1: Qualitative results on the SemanticKITTI validation set.

Ground Truth HTCL-M (ours)Camera Input

■bicycle ■bus ■car ■const.veh. ■motorcycle ■pedestrian ■truck ■sidewalk
■traffic cone ■trailer ■drive.suf. ■other flat ■terrain ■manmade ■vegetation

Fig. 2: Qualitative results on the OpenOccupancy validation set.

3 Extensive Experiments on BEV Detection

To further demonstrate the potential of our method, we present preliminary ex-
perimental evaluations on the Bird-Eye-View (BEV) detection [6, 7, 9, 10, 13] in
the nuScenes [2] validation dataset. Specifically, we utilize BEVDet [5] as the
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Table 1: Quantitative results on the SemanticKITTI validation set with the state-
of-the-art camera-based SSC methods. The “S-T”, “S” and “M” denote temporal stereo
images, single-frame stereo images, and single-frame monocular images, respectively.

Methods HTCL-S (ours) VoxFormer-T VoxFormer-S MonoScene

Input S-T S-T S M

IoU 45.51 44.15 44.02 37.12

mIoU 17.13 13.35 12.35 11.50

car 34.30 26.54 25.79 23.55
bicycle 3.99 1.28 0.59 0.20
motorcycle 2.80 0.56 0.51 0.77
truck 20.72 8.10 7.26 7.83
other-veh. 11.99 7.81 3.77 3.59
person 2.56 1.93 1.78 1.79
bicyclist 2.30 1.97 3.32 1.03
motorcyclist 0.00 0.00 0.00 0.00
road 63.70 53.57 54.76 57.47
parking 23.27 19.69 15.50 15.72
sidewalk 32.48 26.52 26.35 27.05
other.grd 0.14 0.42 0.70 0.87
building 24.13 19.54 17.65 14.24
fence 11.22 7.31 7.64 6.39
vegetation 26.96 26.10 24.39 18.12
trunk 8.79 6.10 5.08 2.57
terrain 37.73 33.06 29.96 30.76
pole 11.49 9.15 7.11 4.11
traf.sign 6.95 4.94 4.18 2.48

baseline configuration and substitute the original model of BEVDet with our
proposed HTCL-M, while maintaining the same detection head. The evaluation
results are reported in Table 2 and visually depicted in Figure 4. As shown in
Table 2, our HTCL-M outperforms BEVDet4D-Base with a relative improve-
ment of 20.19% mAP and 6.34% NDS, respectively. These results illustrate the
effectiveness of our proposed methodology, indicating its potential applicability
to a broader spectrum of downstream tasks.

Table 2: Quantitative results of BEV Detection on the nuScenes validation set. We
conduct preliminary experiments by employing the detection head.

Methods Resolution mAP ↑ NDS ↑

BEVDet-Base 1600× 640 0.397 0.477
BEVDet4D-Base 1600× 640 0.426 0.552
PETR-R101 1408× 512 0.357 0.421
BEVDepth-R101 512× 1408 0.412 0.535
HTCL-M (ours) 1600× 640 0.512 0.587



4 B. Li et al.

Cross-frame Pattern Affinity
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Fig. 3: Visualization of the heat maps from our proposed Cross-frame Pattern Affinity
(CPA) and the original cosine similarity.

Fig. 4: Visualization results of BEV detection on the nuScenes validation set.

4 Additional Ablation Studies

We conduct additional ablation studies on the Multi-group Context Generation
and the Multi-level Deformable Block, as presented in Table 3. As introduced in
the main paper, we employ multiple groups of contextual features to facilitate
diverse independent similarity learning. The results in Table 3 demonstrate that
leveraging 3 contextual groups yields a significant performance improvement,
while employing more groups (5 groups) leads to a relatively slight improve-
ment. Similarly, the enhancement of utilizing more feature levels (5 levels) in
the Multi-level Deformable Block is also relatively minor. Therefore, considering
the time consumption and parameter efficiency, we adopt 3 contextual groups
in the Multi-group Context Generation and 3 feature levels in the Multi-level
Deformable Block as the default settings.
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Table 3: Ablation studies on the Multi-group Context Generation and the Multi-level
Deformable Block.

Multi-group Context Generation Multi-level Deformable Block mIoU (%) Time (s)1 Group 3 Groups 5 Groups 1 Level 3 Levels 5 Levels

✓ ✓ 15.26 0.283
✓ ✓ 17.21 0.312

✓ ✓ 16.51 0.286
✓ ✓ 17.18 0.309

✓ ✓ 17.13 0.297

5 Loss Function

PoseNet implementation We implement the PoseNet following previous video
depth estimation methods [4,12]. To reduce the learning burden, we pre-train the
PoseNet and freeze it for temporal semantic occupancy learning. The PoseNet
is trained without ground truth in a self-supervised manner. At the pre-training
stage, the training objective of the PoseNet is:

Lpose = min
n

PE (It, It+n→t) + λ ∗ Lsmooth. (1)

where PE is a combination of SSIM and L1 losses between reference image It and
source image It+n. Lsmooth is the smoothness loss for pixel-level regularization
from [4, 12]. λ is the balance coefficient. We will add the details in Section 7
(Network Training) of the supplementary material.
Network Training. We follow the basic learning objective of MonoScene [3] for
semantic scene completion. Standard semantic loss Lsem and geometry loss Lgeo
are leveraged for semantic and geometry supervision, while an extra class weight-
ing loss Lce is also added. To further enforce the ensembled volume, we adopt a
binary cross entropy loss Ldepth to encourage the sparse depth distribution. The
overall learning objective of this framework is formulated as:

L = Ldepth + λceLce. (2)

where several λs are balancing coefficients.

6 Limitation and Potential Negative Impact

The running speed of our model could be further enhanced as more lightweight
networks are more practical for real-world applications. We leave this to our
future work. While the promising semantic scene completion results of the pro-
posed method could promote the development of autonomous driving, the legal
challenges, as well as the privacy and data security risks of autonomous driving
remain subjects of debate.
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