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1 Equivariant Graph Network Model

We provide a detailed view of the proposed model structure for transforming the
stacked N × (32 + 3) tensors from the sparsely sampled input points, including
the respective feature shape dimensions as indicated below.

Fig. 1: Initially, the process involves sparse input points from two frames, followed by
the extraction of point-wise feature descriptors. Subsequently, a graph is constructed
based on these descriptor features. The feature descriptor graphs then pass through
individual equi-graph layers. The resulting graph node features are combined with the
average edge embedding features to form tensors of dimensions N × (32 + 3) for the
decoder.

The descriptor is generated point-wise from the sparsely sampled points in
both the source and target frames. Subsequently, this descriptor, combined with
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the SO(3) edge coordinate embeddings discussed in the main body document,
is used to create the feature graph. This graph is then inputted into graph con-
volution network layers. Following the equivariant graph layers, the resulting
aggregated graph node features, combined with the average of neighbouring co-
ordinate feature embeddings, are reorganized into a 2D tensor sized N × (32+3)
before entering the Low-Rank Feature Transformation (LRFT) module.

1.1 Graph Equivariance Proof

Let’s start by clarifying what equivariance means. Consider a graph G = (V,E)
with node features represented as xv ∈ Rd for each node v ∈ V , and a collection
of transformations G that act on the graph. A Graph Neural Network (GNN)
layer is considered equivariant to G if it meets the following criterion:

h′
v = ρG((g · xv, g · eu→v) | u ∈ N (v)) (1)
= g · ρG(xu, eu→v | u ∈ N (v)) (2)

where h′
v represents the updated node feature for node v, ρG denotes the

equivariant graph convolution operation, N (v) indicates the set of neighbours
of node v, eu→v is the edge feature from node u to node v, and g ∈ G represents
a group transformation that operates on the node and edge features. To ensure
equivariance, it is essential that the graph convolution operation ρG is formulated
to preserve the group structure of G. For instance, if G represents the permutation
group that influences the node indices, ρG needs to remain unchanged when nodes
are permuted.

Now, let’s further discuss the concept of invariance. A Graph Neural Network
(GNN) model is considered invariant to G if its final output, such as the graph
prediction of a node, remains unchanged when subjected to group transforma-
tions G. This can be mathematically represented as:

y = ρinv(hv | v ∈ V ) = ρinv(g · hv | v ∈ V ) (3)

where y is the final output, ρinv is an invariant pooling operation (e.g., sum,
max, or invariant multi-head attention), and hv | v ∈ V are the node represen-
tations obtained after applying equivariant graph CNN layers.

To maintain invariance, the pooling operation ρinv needs to be constructed in
a way that remains unchanged when subjected to group transformations within
G. For instance, if G represents the permutation group, ρinv should exhibit invari-
ance towards permutations of nodes. By combining equivariance and invariance,
a Graph Neural Network (GNN) can be formulated as follows,

Apply equivariant GNN layers to update node representations:

h(l+1)
v = ρ

(l)
G (h(l)

u , eu→v | u ∈ N (v)) (4)

Apply an invariant pooling operation to obtain the final output:

y = ρinv(h
(L)
v | v ∈ V )
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where l is the layer index, and L is the total number of GNN layers.
This framework enables Graph Neural Networks (GNNs) to utilize group

symmetries existing in the data, enhancing the efficiency and robustness of the
learning process. The accurate configurations of the equivariant graph convolu-
tion operations denoted as ρ

(l)
G and the invariant pooling operation denoted as

ρinv are determined by the selected group G and the architecture of the GNN,
here we use the sum and pooling operation to learn the invariance.

1.2 Matrix Multiplication Rank Theorem Proof

Theorem 1. Let A be an N × r matrix, and B be an r ×N ′ matrix. We want
to prove that:

Rank(AB) ≤ min(Rank(A),Rank(B)) (5)

The proof relies on the following concepts, the rank of a matrix is equal to the
dimension of its column space:

Proof: Let A be an N × r matrix and B be an r×N ′ matrix. The rank of a
matrix is the maximum number of linearly independent columns (or rows) in the
matrix. Let us denote the columns of A as [a1,a2, . . . ,ar], and the rows of B as
[b1,b2, . . . ,br]

T . The results of AB are dot products of the columns of A and the
rows of B. Therefore, the maximum number of linearly independent columns in
AB is bounded by the minimum of the number of linearly independent columns
in matrix A or independent rows of B.

To be noted, When the ratio of inliers to outliers in the feature correspon-
dence is low, it can cause the feature similarity score matrix Ŝ in main body of
paper to become rank-deficient with rank r ≪ 35. This can result in difficulty for
the training loss to converge due to uncertainty in the feature space. To tackle
this issue, we adopt an iterative approach to seek a viable full-rank solution
r′ that is smaller than r. This approach aims to minimize the overall training
loss by ensuring that the full-rank condition of the submatrix is satisfied. The
minimum value for the rank r′ is set at 16; any rank lower than this threshold
may lead to a significant increase in registration errors through our experiments,
consequently causing the registration process to fail.

2 t-SNE Visualization of Equivariant Feature

As illustrated in Fig. 2, The process includes mapping the graph feature through
Low-Rank constrained MLP layers onto the input point coordinates.

Initially, a feature similarity search is conducted by computing the dot prod-
uct between feature vectors arranged along the row dimension, both pre- and
post-LRFT, resulting in matrix shapes of N × 35 and N ′ × 35 respectively.
The similarity matrix is then obtained through the Kronecker product, yield-
ing an N ×N ′ matrix. An argmax operation is applied to each row to identify
the most similar pre-LRFT feature descriptor. The resulting index retrieves the
corresponding input point coordinate, preserving feature descriptor association
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Fig. 2: The pipeline uses t-SNE [6] to map the sparse feature after the Low-Rank
Feature Transformation (LRFT) module into the color map, then superimposed with
the input points for visualization.

at the point cloud level. Notably, equi-graph layers maintain the original num-
ber and sequence of input points. These mapping stages establish a link between
post-LRFT feature vectors and input points. Finally, 35-dimensional feature vec-
tors are transformed into scalar color values using t-SNE [6] and superimposed
onto input point coordinates for visualization. Fig. 3 displays the descriptor fea-
ture output from the pipeline illustrated in Fig. 2. These features correspond to
scalar values associated with input point coordinates of the initial input scan.

The mapped features are uniformly distributed throughout the scan, with
notable concentrations along edges and corners (as evident on furniture surfaces
in the first and second rows of Fig. 3) (zoomed-in for better view). This visual-
ization demonstrates that the equivariant features, post-equivariant graph lay-
ers, effectively represent distinctive geometric features in the input scan points.
Furthermore, comparing the left and right column results reveals similar color
and positional distributions of feature points between source and target frames,
indicating a favorable correspondence distribution.

3 Experiment Results

We present additional visual comparison results of our model against baseline
models, focusing on the top three quantitative performers from the main paper.
For 3DMatch, the best baseline models include SpinNet [1], RoReg [7], and
PointDSC [2]. For the KITTI dataset, we compare our model with DGR [4],
SpinNet [1], and PointDSC [2], which represent the top three baseline models.

Our proposed model demonstrates robust registration capabilities and high
accuracy across diverse scenarios, contrasting with some learning models that
exhibit performance degradation when transitioning from indoor to outdoor.
This discrepancy is particularly evident in PointDSC’s performance gap between
3DMatch (1st column of Fig. 4) and KITTI (2nd column), where registration
failure occurs in the initial KITTI case due to significant rotation errors.
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Fig. 3: The left and right sides represent the source and target frame outcomes, re-
spectively. Colored points (zoomed-in for better view) indicate mapped t-SNE feature
values, while grey meshes depict raw input scans for visualization. The feature mapping
pipeline employs t-SNE [6] to map the output descriptors of post-Low-Rank Feature
Transformation into a scalar color map. These are then superimposed onto respective
input points from source and target frames to facilitate visualization.

3.1 Generalization on Unseen Datasets

To demonstrate the robust generalization capabilities of our graph-based repre-
sentation, we conduct a generalization test by directly evaluating the 3DMatch
pre-trained model on the KITTI dataset, as detailed in Tab. 1. Each evaluation
approach was repeated 10 times to report average performance and standard
deviation of errors. Notably, our model consistently achieves a high registration
recall rate of 82.31%, accompanied by minimal rotation and translation errors.
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PointDSC [2] RoReg [7] SpinNet [1] Ours Ground Truth

Fig. 4: Visual comparisons on 3DMatch, the three models with top performance in
the main paper are presented. Points from the target frame are represented in blue,
whereas points converted from the source frame by the predicted transform are depicted
in yellow.

DGR [4] PointDSC [2] SpinNet [1] Ours Ground Truth

Fig. 5: Visual comparison results on KITTI, the three models with top performance in
the main paper are selected for visualization. Points from the target frame are colored
in blue, whereas points converted from the source frame by the predicted transform
are illustrated in yellow.
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Table 1: All the models are pre-trained on 3DMatch, and tested directly on KITTI.

RE(◦) ↓ TE(cm) ↓ RR(%) ↑AVG STD AVG STD
FCGF [5] 1.61 1.51 27.1 5.58 24.19

D3Feat(rand) [3] 1.44 1.35 31.6 10.1 36.76
SpinNet [1] 0.98 0.63 15.6 1.89 81.44

Ours 0.86 0.68 10.7 1.23 82.31

4 Ablation Study

Fig. 6: This figure illustrates the comparison between correspondence results with and
w/o equivariant features in graph layers horizontally, and the relationship vertically
between the feature similarity score matrix and point correspondence. The top row
displays the visualization of point correspondence linked to feature similarity below.

To demonstrate the relationship between the rank of the feature similarity
score matrix Ŝ and point correspondence, we specifically examine the model with
normal graph CNN layers or equi-graph CNN layers. This analysis includes cases
both with and without incorporating equivariance into graph layers to facilitate a
comparative visualization of equivariance impact for registration. We extract the
top 35 similarity score values from each case to identify pairwise features. These
pairwise features are then linked with the feature descriptor before the LRFT
module by selecting the maximum descriptor similarity in each row of similarity
score matrix. Subsequently, this process allows us to retrieve the input point
coordinates. By following these procedures, the feature pair after LRFT module
can be correlated with the input point for visualization. The bottom row of Fig. 6
indicates that the adoption of equivariant features significantly enhances feature
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distinctiveness. This enhancement facilitates the generation of valid, unique rank
values within the similarity score matrix, as illustrated on the left side matrix
rank. In contrast, the application of non-equivariant features tends to increase
ambiguity in match score computations. Moreover, a binary indicator ωi for
visual assessment of point correspondences requires the comparison of distance
errors against the inlier threshold τ as below,

ωi = 1[∥R̂xi + t̂− yj∥ < τ ], (6)

The label one is depicted as a green line while the zero is represented by the red
line in the top row of Fig. 6.

Finally, we evaluated the impact of neighboring node count on feature graph
initialization and accuracy performance, as measured by the RMSE metric (please
refer to Fig. 7).

Fig. 7: RMSE plot as a function of graph neighbouring feature node count.

Performance improves as the number of neighboring nodes used for graph
creation increases to 24. However, a significant performance deterioration occurs
when the node count exceeds 200. This decline suggests that an excessive num-
ber of neighboring feature nodes can cause overflow of information for the whole
graph feature learning, dispersing attention during feature aggregation and con-
sequently reducing performance due to ambiguous neighboring features. While
the plot displays a graph node count limit of 512, the actual limit is 1024, which
unfortunately triggers out-of-memory issues during model computations in our
hardware settings.
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