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Fig. 1: The registration model converts the sparse point descriptors of the source and
target frames into an equivariant graph feature representation, respectively. Then the
SE(3) equivariant graph features are used for the similarity score calculation. The
matched features are then decoded into the relative transform to align the two scans.

Abstract. Point cloud registration is a foundational task for 3D align-
ment and reconstruction applications. While both traditional and learning-
based registration approaches have succeeded, leveraging the intrinsic
symmetry of point cloud data, including rotation equivariance, has re-
ceived insufficient attention. This prohibits the model from learning ef-
fectively, resulting in a requirement for more training data and increased
model complexity. To address these challenges, we propose a graph neural
network model embedded with a local Spherical Euclidean 3D equivari-
ance property through SE(3) message passing based propagation. Our
model is composed mainly of a descriptor module, equivariant graph
layers, match similarity, and the final regression layers. Such modular
design enables us to utilize sparsely sampled input points and initialize
the descriptor by self-trained or pre-trained geometric feature descrip-
tors easily. Experiments conducted on the 3DMatch and KITTI datasets
exhibit the compelling and robust performance of our model compared
to state-of-the-art approaches, while the model complexity remains rel-
atively low at the same time.
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1 Introduction

The registration of point clouds typically involves formulating robust geometric
feature descriptors and a subsequent complex matching process to predict feature
correspondences [8]. However, these correspondences established from raw point
cloud often exhibit a high outlier-to-inlier ratio, leading to significant registration
errors or complete failures. To enhance the robustness of registration processes,
PointDSC [2] explicitly calculates local feature spatial consistency and evaluates
pairwise 3D geometric feature descriptor similarity across two frames [10,46] to
eliminate outliers from the alignment optimization process. Other approaches
like Deep Global Registration (DGR) [9] treat correspondence prediction as a
classification problem, utilizing concatenated coordinates of input point cloud
pairs and employing a differentiable optimizer for pose refinement. Despite the
effectiveness of these models on public datasets, their training requires accu-
rate correspondence supervision, necessitating a complex point-to-point search
process that is particularly vulnerable to numerous outliers.

Geometric feature descriptors, derived from keypoint neighborhoods of a
specified range, often overlook the underlying geometric topology of the data,
such as the global connectivity among points. This oversight results in feature
descriptors lacking SE(3) rotation equivariance, thereby impeding efficient and
robust learning of rotation-equivariant and invariant features. The recently intro-
duced RoReg [|44] model employs a rotation-guided detector to enhance rotation
coherence matching and integrates it with RANSAC for pose estimation. How-
ever, it suffers from high computational demand and reduced processing speed.
This highlights the need for more efficient rotation-equivariant model architec-
tures to significantly enhance registration performance.

To address these challenges, we introduce a novel approach that leverages a
graph convolution-based model to jointly learn SE(3) equivariant features, start-
ing with feature descriptors extracted from sparsely sampled points across two
frames. Our proposed SE(3) equivariant graph network model, aimed at sparse
point cloud registration, is depicted in Fig. [ Unlike Transformer and CNN-
based models, our graph architecture captures both the topology and geometric
features of point clouds, similar to other proposed geometric descriptors [40}[53],
facilitating the learning of fine-grained rigid rotation-equivariant feature repre-
sentations for more robust and coherent point cloud registration through data
symmetry. The primary contributions of our study are the following:

— Introduction of an equivariant graph model to facilitate neighbor feature
aggregation and SE(3) equivariant coordinate embedding from either learned
geometric descriptors for point cloud registration.

— Implementation of a novel matching approach within the implicit feature
space, based on similarity evaluation and Low-Rank Feature Transformation
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(LRFT), eliminating the need for explicit point correspondence supervision
and exhausting search.

— Development of a specific matrix rank-based regularizer to enable the model
to automatically identify and mitigate the impact of correspondence outliers,
enhancing the robustness of the registration process.

2 Related Work

The concept of equivariant properties can be embedded in the layers of Con-
volutional Neural Networks (CNNs) to depict SO(2) group characteristics, as
initially proposed by Cohen [11], and later extended to encompass arbitrary
continuous input [16]. Another area of study focuses on equivariance represen-
tation by employing steerable kernel filters |12}[27}|41}|47-49] for equivariance
learning. For more intricate tasks involving SO(3), techniques such as Vector
Neurons [13] and Tensor Field Networks [42] can be viewed as implementations
of the capsule network model [50], transitioning from scalar values to vectors.
Following the introduction of the Transformer model, Lie-group-based Trans-
former models |18}19}/26] have been developed to capture equivariance through
attention mechanisms. Moreover, to address the intricate equivariance inherent
in the input data, equivariant(n) graph neural networks [14128|/38] are utilized to
learn equivariant features for dynamic and complex issues. As SE(3) features are
maintained through message passing [5] within the graph model, these equivari-
ant models exhibit considerable potential in addressing many longstanding chal-
lenges, such as predicting molecule structures [39] or quantum structures |21],
as well as particle dynamic flow physics [4,29]. Some studies have explored the
application of equivariant models in various point cloud tasks, including 3D de-
tection 40|, 3D point classification [53], point cloud-based place recognition |30],
3D shape point registration [7,/55], and 3D shape reconstruction [6]. These ap-
plications underscore the learning efficiency gained from the leveraging of the
intrinsic symmetries in input data.

Despite the prevalence of equivariant models in the microscopic realm [18}/39],
the application of such models for tasks like multi-view 3D reconstruction [23]
or other intricate 3D challenges remains under-explored. A fundamental compo-
nent of 3D reconstruction involves point cloud registration. Many conventional
methods employ linear-algebra-based optimization techniques for iterative point
cloud registration, such as point-to-plane registration [33}34], LOAM [45|, and
its variation F-LOAM [45]. In recent years, there has been a rise in deep learn-
ing models for registration purposes, relying on representative feature descrip-
tors |10,/46] or precise correspondence establishment between descriptors, like
deep global registration [9]. To enhance registration accuracy, some studies fo-
cus on developing more resilient descriptors like rotation-equivariant descrip-
tors [31/43}/44] for subsequent correspondence matching or incorporating SO(2)
rotation equivariance into the registration framework using cylindrical convolu-
tion, as in Spinnet [1]. Other research works concentrate on optimizing corre-
spondence search explicitly, for instance, Stickypillars utilizes optimal transport
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for matching, and PointDSC |2] employs spectral matching to eliminate outliers
from raw correspondences. In contrast to conventional models, works in [36}54]
excel in rapid registration performance. Moreover, some end-to-end models im-
prove overall performance from feature descriptor learning to feature association
in a differentiable way, like 3D RegNet [32], or correspondence-free registration
aimed at streamlining the 3D point cloud registration [56]. Notably, Banani et
al. [15] introduce an unsupervised model for point cloud registration using dif-
ferentiable rendering, while Predator [25] demonstrates registration capabilities
even in applications with low input point cloud overlap and numerous outliers.

3 Method

Our registration process begins by extracting feature descriptors from downsam-
pled point clouds. Equivariance is integrated into the features through equivari-
ant graph convolution layers. Subsequently, the number of features in the pair-
wise graph is aggregated to a smaller number via Low-Rank based constraint.
Finally, the similarity between the pairwise features of the two frames is calcu-
lated for relative transform prediction. A detailed illustration of the model is
shown in Fig. 2| The input to our model consists of N points X = [x1, ...,z y]
€ N x R? from the source frame, and N points Y = [y1,...,yn] € N x R?
from the target frame, where z; € R? and y; € R? form a correspondence (i, 5).
It is important to note, for ease of subsequent similarity search, that the coor-
dinates of points in each frame are rearranged in descending order based on the
ray length ||r(¢)||? from the point position to the sensor frame center og. For
numerical stability during training, the source scan is normalized to a canonical
frame, and the target scan is transformed relative to the source frame, allowing
the model to predict the relative transformation from source to target.

3.1 Feature Descriptor

We incorporate geometric details of nearby interest points into our graph model
using feature descriptors. To extract these descriptors, we can reuse available pre-
trained point-based descriptors or train a shallow Multi-Layer Perceptron (MLP)
module with [; layers prior to the model in an end-to-end manner, inspired by
PointNet++ [35]. The feature representation of point ¢ in the next layer [ + 1
is calculated by averaging the output of the mapping function h(-) applied to
the relative positional coordinates of point ¢ and neighboring point k& € N'(i) (n
points), along with the hidden feature hﬁcl from the prior layer [;.

1
hl-1+1 — = Iy —x).
i — > by zp — ) (1)
keEN (7)
3.2 Equivariant Graph Network Model

By utilizing the equivariant graph representation (lo layers) as introduced by
Satorras et al. [38], we can enhance the receptive field and representation for



Equi-GSPR 5

@ Concatenation —=> Node && Edge Features
N S —  Node Features
® Matrix Multiplication Edg Features
4 ¥ :
N x 1x32 — —
[ ] O
° Feature Equivariant
®— Descriptor + SE(3) ¢
Extraction | | Graph
CNNs
i Rt
I ol
|
A5
Feature Equivariant
— | Descriptor b SEG) E>
Extraction | | Graph

Nx3

Encoder LRFT and Similarity Estimation of Features Decoder Regressor

Fig. 2: The registration model consists of an encoder, a feature match block, and a
decoder. Pointwise feature descriptors are extracted from the source and target scan
points, passed through equivariant graph layers, and combined with coordinate embed-
dings to form a row-major order matrix. Next, the feature matrices from the source
and target frames are compressed using MLPs-based Low-Rank Feature Transforma-
tion (LRFT). The aggregated features are used to create a similarity map through
dot product of feature descriptors. In the decoder, features are weighted by similarity
scores, then concatenated, and processed through pooling and fully connected layers
to predict relative translation t; and quaternion q;

feature descriptors of interest points by incorporating SE(3) equivariant proper-
ties via graph feature aggregation. Our method leverages graph-based message
passing techniques to propagate SE(3) equi-features. For the construction of
the graph G = (V, &) with vertices V and & edges. The individual hidden point
descriptors h'2 € R32 and the point coordinate embedding 2 € R? at layer I
are treated as the node and edge features, respectively. The graph convolutional
layer updates the edge equi-message m;;, € R3*3, node hidden feature h? € R*?,
and coordinate embedding :cé2 € R3 at each equivariant layer.

1
2

M = ¢ (R, B, |2 — 22| ), (2)

Pt =@+ C ) exp(a — ) a(projx,, mi), (3)
kEN (2)

R = gu(h, Y (projz, mik)), (4)
keN (2)

where ¢,,, ¢, and ¢y represent 1D convolutional layers for the message, co-
ordinate embedding, and hidden feature update, respectively. The normalizing
factor C'is applied to the exponentially weighted sum of mapped equi-message
in Eq. . Additionally, a neighbouring search of :cé2 within a specific radius
is conducted to find the N () neighbouring feature descriptors for edge estab-
lishments, and this is used to prevent information overflow by confining the
exchange of information within a local context, thereby reducing the complexity
of the graph feature adjacency matrix from O(n?) to approximately O(n). In
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Eq. , the projection of m;; onto a locally equivariant frame (proj,, (-)) helps
to preserve the SO(3) feature invariance. The frame F;; is constructed using
pairwise coordinate embeddings as outlined in ClofNet [14],

Fir = (@i, bik, Cirp), (5)

l l l
); (6)

—x T; X T

Ll ;= aill [zt x|
Consequently, the projection of m;j into 1 is formulated into the linear com-
bination of axes of the local equi-frame scaled by the coefficients (z% 2% ,2%.),

: ~ a b c
Projx,, Mix = My = Qi + T bix + TG Cik- (7)

The projection of edge message m;; in Eq. is performed in the local equi-
frame (within bracket of Eq. @), to obtain projected message 1, while the
scalar coefficients in Eq. remain SO(3) invariant. Consequently, the sum of
equi-projected message in Eq. is still a vector-based sum, maintaining the
equivariance upon integration into the hidden layer ¢y,.

3.3 Low-Rank Feature Transformation

Inspired by LoRA of language model [24], our approach diverges by not requir-
ing pre-trained weights for fine-tuning. We employ two stacked linear forward
layers with low-rank constraints in the middle of model (Fig. to map fea-
ture descriptors to aggregated descriptors. We name it as Low-Rank Feature
Transformation (LRFT). This design enhances similarity match reliability and
computational efficiency by performing matches on aggregated descriptors with
integrated neighboring information. Specifically, The motivation for employing
LRFT is twofold: 1) Theoretically, low-rank constraints in linear layers cap-
ture essential feature correlations within descriptors, as demonstrated by the
matrix low-rank theorem (refer to Appendix Sec.1.2), leading to more reliable
similarity matches; 2) Practically, our LRFT improves computational efficiency
by aggregating feature descriptors prior to similarity matching, and It also en-
hances low-rank learning efficiency by training parameters during the forward
pass, eliminating the need for pre-trained weights.

After the final layer ((I3)th) of the equivariant graph module, the output
graph features consist of both node* and edge features. During this stage, we
preserve each graph node feature hﬁz ,¢ € N from the source frame and feature
h;; ,j € N from the target frame of the last graph layer. Next, the node feature
is combined with the mean coordinate embeddings 93? = % Y oke NG) a:?, where

a:? € R3 is obtained from the edge embeddings (Eq. ) connected to the node

RNX35

feature :céz. Consequently, matrices for the source frame H,,.. € and

target frame H,,, € RV*3% are created by stacking of node features (hi2 , :i?)
and coordinate embeddings along the column respectively. Before computing
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the feature similarity, the Low-Rank Feature Transformation (LRFT) technique

is applied to compress the features into Hg.. € RN *35 and H,,, € RN'*35
utilizing parameters of A and B mapping layers.

(a) Feature number reduction by (b) Zoomed-in submatrix (35 X 35) from full similarity
Low-Rank Feature Transformation. score matrix S (N’ x N').

Fig. 3: Reducing the feature number through low-rank using MLP layers (a), and
examining the similarity score matrix with submatrices for rank verification at bottom
right (5 x 5) and center (7 x 7) of yellow dashed region as illustrated in subfigure (b).

ﬂsrcaﬂtar = (AB)T(HST‘C,Hta’I")3 (8)

where A is a N X r matrix and B is r X N’ matrix, and rank » < min(N, N'), so
that the number of node features are compressed into N’ dimension after LRFT
module mapping via multiplication AB, as depicted in the left of Fig. [3a] A is
initialized from Gaussian distribution with standard deviation 6 = /r, while B
is initialized with small constant close to zero.

The LRFT layers extract spatial context from neighboring feature descriptors
through linear mapping, efficiently aggregating local information for decoder.

3.4 Similarity Calculation

Subsequently, we calculate the feature similarity score matrix (refer to Fig.
for feature correspondence establishments using the compressed number of fea-
tures after the LRFT module. This is achieved by computing the dot product
< - > of features as an element. Prior to the multiplication, the respective el-
ement features h; from H,,. € RV %35 and h; from H,, € RV %35 are first

normalized to ilz and ij.

~

Sij =< ill . hj >, (9)
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which forms a square similarity matrix § € RY "N’ then subsequently normal-
ized along each row to produce S e RV *N' We compute the determinant of S
by calculating trace to indicate whether the matrix rank has deficiency, which
may arise from the presence of ambiguous correspondences. Accordingly, as per
the match assignment rule, each row of the similarity matrix S should contain a
singular value close to one, depicted as a light-colored square in Fig. Subse-
quently, the similarity matrix is employed to project the feature matrices H,,.

and H,, through multiplication by S’Tﬁsrc € RV'*35 and SH,, € RV X35,
respectively. The resulting matrices are concatenated to facilitate subsequent
pooling and mapping through fully-connected layers. Furthermore, a regqlarizer
is used to enforce the rank of S close to 35, ensuring that a submatrix S’ with
rank 35 out of S can be found,

Loy = |(Trace(8" §))% — 35/ (10)

Additionally, to eliminate outlier feature correspondences, each matched pair
element S;; undergoes verification through a submatrix full-rank check. This
involves evaluating the determinant of a 7 x 7 submatrix centered at the fea-
ture element S’Z-j or a 5 x 5 submatrix at the border element of the S matrix
(highlighted by the red dashed box in Fig. . This verification process ensures
local consistency in feature similarity matches, aiding in the identification of
globally consistent and reliable match pattern search from the similarity matrix.
Following verification, the final valid rank of the similarity matrix S is estab-
lished as r < 35, with any invalid assignment row S;. zeroed out to mask the
corresponding feature for subsequent computations. The upper limit of 35 for
rank 7 is derived from the Theorem: Rank(AB) < min(Rank(A), Rank(B)).
Please refer to the supplementary part for detailed proof the rank theorem.

3.5 Training Loss
The final layer predicts translation ¢ and rotation matrix R in quaternion form.
The ground-truth translation and rotation are denoted by t* and R* respectively.
Etotal = Lrot + Etrans + 5£Reg7 (11)
B for regularizer is set to 0.05. The translation error (TE) and rotation error
(RE) losses can be formulated as follows,
AT %
Trace(R R") —1
2 )
R S 2
Ltrans(t) = ||t —t H . (13>

Lot(R) = arccos (12)

The rotation error term L,,; and translation error term L.qns are measured in
radians and meters, respectively. Given that the predicted transform is relative,
from source to target frame, the scale of these transforms is typically in normal
scale to avoid numerical stability issues in training.
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4 Experiments

We evaluate the performance of the proposed model for point cloud registration
in both indoor and outdoor environments. For indoor scenes, we utilize 3DMatch
introduced by Zeng et al. [52]. The raw point clouds are uniformly downsam-
pled to 1024 points through a voxel filter. For the outdoor evaluation, we select
the KITTI dataset [20] with the same dataset split from the creators and fol-
low the same downsampling process as in Choy et al., [10]. We report both the
qualitative and quantitative results of the proposed model. Furthermore, we of-
fer an in-depth analysis of the effect of varying parameter configurations and
the contribution of each component to enhancing the model’s performance. The
computational efficiency of each model is presented in the metric table below.

Implementation Details. The key parameters of our model include the dimen-
sion of graph-relevant features and LRFT layers. Initially, the extracted feature
descriptor dimension is 32 for subsequent graph learning. A critical aspect is the
number of nearest neighbors for each node feature in the graph, set to 16 for con-
structing the graph using ball query for 3DMatch (ball radius at 0.3m), while for
KITTI, we employ kNN, selecting the nearest 16 points of query point to form a
graph with 1024 nodes and 1024 x 16 edges. In graph learning, the node feature
dimension is 32, and the edge embedding feature is 3, comprising coefficients
projected onto the locally constructed coordinate frame as shown in Eq. @
We use 4 equi-graph layers throughout the tests. The LRFT module consists of
3 parameters: input dimension N, internal rank r, and N’. Our model adopts
a configuration of 1024/(32 + 3)/128, where rank r is the sum of graph node
feature dimension (32) and coordinate embedding dimension 3. The submatrix
determinant check for similarity score matrix Sis5x5 along the borders and
7 x 7 within the matrix. A performance analysis comparing different parameter
configurations is presented in the subsequent ablation section. All training and
inference tasks are conducted on a single RTX 3090 GPU.

Evaluation Metrics. We employ the average Relative Error (RE) and Trans-
lation Error (TE) metrics from PointDSC |2] to assess the accuracy of predicted
pose errors in successful registration. Additionally, we incorporate Registration
Recall (RR) and FI score as performance evaluation measures. To evaluate these
metrics, we establish potential corresponding point pairs (x;,y;) € {2 using
input points from two frames, following the correspondence establishment ap-
proach outlined in PointDSC [2|. We apply the predicted transformation to the
source frame point x;, recording a pairwise registration success only when the
average Root Mean Square Error (RMSE) falls below a predefined threshold 7.
The registration recall value § is calculated as:

1 N .
o= N2 Z L[| Rz; +t —y > < 7], (14)
(zi,y;)€0
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where N (£2) denotes the total number of ground truth correspondences in set
£2. The symbol 1 functions as an indicator for condition satisfaction. Removing
the conditional check within the indicator brackets on the equation’s right side
transforms it into a standard Root Mean Square Error (RMSE),

\/ N D (i gseq [Bxi + £ — yj[2. This RMSE metric is utilized in ablation

Precision X Recall

experiments for parameter analysis. The FI score is defined as 2 =222 T Recall

Baseline Methods 1) For the 3DMatch [52| benchmark, we compare our model
with vanilla RANSAC implementations using various iterations and optimiza-
tion refinements. We also include Go-ICP [51] and Super4PCS [31], which op-
erate on raw points. Among learning-based methods, we compare with DGR [9]
and PointDSC [2] combined with FCGF descriptors [10]. Additionally, we select
D3Feat [3], SpinNet |1], and RoReg [|44], which incorporate rotation invariance
or equivariance. These learning methods do not support descriptor replacement,
denoted by *. 2) For KITTT sequences |20]|, we implement the hand-crafted fea-
ture descriptor FPHF [37] due to performance saturation issues with FCGF [10]
descriptors, as noted in PointDSC |[2]. RoReg [44] is replaced with the registra-
tion model from the FCGF paper |10| (denoted as FCGF-Reg) due to public
code limitations for KITTI dataset.

4.1 Indoor Fragments/Scans Registration

Point clouds are initially downsampled using a 5cm voxel size to generate 1024
sampled points. Registration success is evaluated using thresholds of 30cm for
translational error (TE) and 15° for rotational error (RE). The correspondence
distance threshold 7 in Eq. is set at 10cm. Comparative results between
our proposed model and baseline approaches are presented in Tab. [Il Our model
outperforms all comparison methods, despite slightly slower latency compared
to RANSAC with 1k iterations. RoReg and SpinNet, ranking second and third,
demonstrate minimal registration errors and maximal registration scores, high-
lighting the advantages of incorporating rotation features. While our model can
integrate the FCGF descriptor, we present evaluation results using the Point-
Net++ learning descriptor for end-to-end training.

4.2 Outdoor Scenes Registration

The input point cloud from the KITTI sequences [20] is downsampled using a
voxel size of 30 cm to generate 1024 sparse points for the experiments. We set the
registration thresholds at 60cm for Translation Error and 5° for Rotation Error.
To measure Registration Recall (RR), we establish a threshold 7 of 60cm. Tab.
presents the quantitative results for comparison. Our proposed model demon-
strates plausible performance compared to other methods, exhibiting minimal
rotation and translation errors, and achieving the highest registration recall rate
of 94.60% when compared to RoReg, the second-best model. However, RoReg
has a remarkable weakness in its real-time performance, registering in over 30
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Table 1: Evaluation results of registration methods on 3DMatch show non-learning-
based approaches at the top and deep-learning registration models below. The learning-
based feature descriptor FCGF [10] is tested with various learning baseline approaches.
The symbol * indicates the original model implementation on 3D Match due to the
lack of support for this feature descriptor replacement.

RE(°) | TE(cm) | RR(%) 1 F1(%) 1 Time(s) |

RANSAC-1k [17] 3.16 967  86.57 76.62  0.08
RANSAC-10k 2.69 825  90.70 80.76  0.58
RANSAC-100k 2.49 754 9150 8143 5.0

RANSAC-100k + refine 2.17  6.76  92.30  81.43  5.51
Go-ICP [51] 538 1470 2295 20.08 7710
SuperdPCS [31] 525  14.10  21.6  19.86 455
DGR [9] 1 2.40 748 9130 89.76  1.36
D3Feat” [3] 257 816  89.79 87.40  0.14
SpinNet™ [1] 1.93 6.24 9374 9207  2.84
PointDSC [2] 2.06 6.55 9328 89.35  0.09
RoReg”™ [44] | 1.84 6.28 9370 91.60 2226
Ours 1.67 568 9460 9435  0.12

Table 2: Registration methods for evaluation on the KITTI dataset |20| involve testing
the hand-crafted FPHF descriptor [37] in conjunction with different learning strategies.
The symbol * indicates the lack of support for replacing the feature descriptor, as per
the original implementations on KITTI.

RE(°) | TE(em) | RR(%) 1 F1(%) 1+ Time(s) |

RANSAC-1k [17] 251 3823  11.89 1413  0.20
RANSAC-10k 1.90 3717 4865 4235  1.23
RANSAC-100k 132 2588  74.37 73.13  13.7

RANSAC-100k + refine 1.28 1842  77.20 74.07  15.65
Go-ICP [51] 562 4215  9.63  12.93 802
SuperdPCS [31] 483 3227  21.04 2372  6.29
FCGF-Reg® 10| |  1.95 1851 7086 68.90  0.09
DGR [9] 1.45 146 7662 73.84  0.86
D3Feat” [3] 207 1892  70.06 6531  0.23
SpinNet* [1] 108 1075  82.83 80.91  3.46
PointDSC* [2] 1.63 1231 7441 7008  0.31
Ours 092 874 8383 8509 0.4

minutes. Additionally, we visually display the registration sample outcomes of
our proposed model on 3DMatch and KITTI below. For a more comprehensive
visual comparison to baselines, please refer to the supplementary section.

To verify the proposed model performance under the different numbers of sam-
pled input points, we also implement the sparse tests in Tab. [3| by comparing
with FCGF registration, D3Feat with or without PointDSC combination, and
SpinNet. Our model has a consistent performance on 3DMatch over the com-
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Fig. 4: The visual registration results of the proposed model on 3DMatch and
KITTI are illustrated in the registration samples. Points from the target frame
are represented in blue, whereas points converted from the source frame to the target
frame by the predicted transform are visualized in yellow.

parison methods. In addition, using more points can boost the proposed model
registration performance with a marginal gain. Considering a good trade-off be-
tween accuracy and computational efficiency, 1024 is chosen as the input point
number in our final implemented model, because there is only a small perfor-
mance gap within 1% compared to the 2048 and 4096 number of points.

Table 3: RR results on 3DMatch with a different number of sampled points.

#Sampled Points 4096 2048 1024 512 256 Average

FCGF-Reg [17] 91.7 90.3 89.5 85.7 80.5 87.5
D3Feat [3] 91.9 904 89.8 86.0 82.5 88.1
D3Feat [3|+PointDSC [2] 92.1 925 90.8 87.4 83.6 89.3
SpinNet [1] 93.8 93.6 93.7 89.5 85.7 913

Ours 953 948 946 913885 929

4.3 Ablation Study

Firstly, we present a table (Tab. [4) displaying different configurations and com-
binations of module blocks in the proposed model. Table analysis reveals sig-
nificant accuracy enhancements with our model’s learning-based descriptor over
pre-trained FCGF and FPHF descriptors, as shown in rows 1 and 2, across mul-
tiple metrics. The descriptor learning layers (row 3) and equivariant graph CNN
layers (row 4) are key to performance improvements. Replacing the equivariant
with standard graph CNN layers (row 5) impairs rotation convergence, while
omitting the LRFT module (row 6) marginally reduces performance. Ball query
graph initialization (rows 8) outperforms KNN search (row 7) in efficiency and



methods of graph construction, and examining the impact of regularizers.
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Table 4: An ablation study was conducted on our model design, using 3DMatch [52]
as the test dataset. The study involved comparing various descriptor combinations,
exploring different combinations of layers for equi-feature learning, analyzing different

13

RE(°) | TE(cm) | RR(%) 1 F1(%) 1 Time(s) |

1. FCGF Descriptor + Ours 1.62 6.24 93.87  94.28 0.15
2. FPHF Descriptor + Ours 1.83 6.49 83.62 73.06 0.12
3. w/o Feature Descriptor Layers 10.26 9.02 61.39 60.04 0.08
4. w/o Equi-graph Layers 9.64 8.37 62.45 60.03 0.06
5. Replacing by normal GCNN 8.32 5.94 68.52 67.54 0.10
6. w/o LRFT layers 2.76 6.47 83.09  81.78 0.09
7. KNN Graph Construction 1.72 5.31 92.37  93.74 0.16
8. Ball Query Graph Construction 1.67 5.68 94.60 94.35 0.12
9. w/o Rank Regularizer 6.41 7.92 76.45 78.09 0.10
10. w/o Sub-matrix Rank Verification 2.58 6.93 87.76 88.36 0.07
11. Descriptor Layers + GCNN 8.32 5.94 68.52 67.54 0.10
12. w/o Descriptor Layers + Equi-GCNN  10.26 9.02 61.39 60.04 0.08
13. SpinNet + Equi-GCNN 2.93 5.97 82.16  83.74 3.62
14. Ours 1.67 5.68 94.60  94.35 0.12

real-time outcomes on 3DMatch. Additionally, integrating rank regularizers (row
9) and sub-matrix rank verification (row 10) enhances model performance. Al-
though equivariant layers introduce a slight computational delay (around 60ms),
the overall performance gain is significant. Lastly, experiments of row 12-13 show
that directly applying E-GCNN layers on the input or replacing the descriptor
layers with equivariant structures such as SpinNet does not yield performance
on par with our proposed method. Additionally, replacing E-GCNN layers with
normal GCNN (row 11) results in significant performance degradation. These
findings highlight the tailored effectiveness of our equi-approach.

Input

Rotated Input GCNN SpinNet

Fig. 5: The t-SNE comparisons of equi-features outputs.

For a more intuitive understanding of our model capability of learning equi-
features, we provide t-SNE plots below for different encoder network outputs,
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showing that our Equi-Graph CNN produces features that are equivariant to
rotated input. In comparison, features extracted by the conventional Graph CNN
(GCNN) and SpinNet (SO(2) equivariant) as baselines do not exhibit rotation
equivariance. To further elucidate the visual relationship between the rank of
the feature similarity score matrix S and point correspondences with or without
equivariant features, please refer to the supplementary section.

54
16 —— /1024
14 = e 521
r/128
12 g 50 4
£10 T
o (% 18
g 8 3
o T 46
154
6 =
4 a4 |
2 424
o 100 Raﬁﬁor Dirig_?]siogoo 500 131/1024 259/512 131/256 35/128
Rank r/ Output Dimension Confiauration
(a) RMSE results under the different rank r con- (b) Model size under the four best-chosen
figurations, with four output dimension choices. rank/output dimension configurations.

Fig. 6: The left is the RMSE results plot of four output feature sizes of the LRFT
module under the various rank dimensions, and the model size of the best r/output
dimension configuration of each curve in the left plot is presented at right.

Moreover, we provide the parameter configuration comparison of LRFT lay-
ers as well. It can be observed that varying the LRFT output feature number
shows that increasing the middle-rank dimension enhances accuracy, yet beyond
200 ranks, error climbs a bit as depicted by the red curve. The relationship
among the input feature number N, rank r, and the output number N’ is de-
fined as r < N’ < N, indicating that N’ should be at least twice the size of r,
as evidenced by the termination position of curves in Fig. [} Additionally, the
optimal model size with the lowest RMSE is achieved with the 35/128 (r/N’)
LRFT configuration, corresponding to the yellow curve on the left.

5 Conclusion

We introduce an end-to-end model that leverages pre-trained feature descriptors
or learns directly from raw scan points across two frames, incorporating equivari-
ance embedding through graph layers, Low-Rank Feature Transformation and
similarity score computation. Validation in both indoor and outdoor datasets
confirms the superior performance of our proposed model. Ablation studies fur-
ther substantiate the model design. Notably, the model’s latency demonstrates
its potential applicability in visual odometry. Future work could explore gener-
alizing this framework to be input-order permutation invariant through graph
attention layers or pooling, potentially integrating additional sensor modalities
to address dynamic challenges.
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