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Abstract. We present Sapiens, a family of models for four fundamental
human-centric vision tasks – 2D pose estimation, body-part segmenta-
tion, depth estimation, and surface normal prediction. Our models na-
tively support 1K high-resolution inference and are extremely easy to
adapt for individual tasks by simply fine-tuning foundation models pre-
trained on over 300 million in-the-wild human images. We observe that,
given the same computational budget, self-supervised pretraining on a
curated dataset of human images significantly boosts the performance
for a diverse set of human-centric tasks. The resulting models exhibit
remarkable generalization to in-the-wild data, even when labeled data is
scarce or entirely synthetic. Our simple model design also brings scal-
ability – model performance across tasks significantly improves as we
scale the number of parameters from 0.3 to 2 billion. Sapiens consis-
tently surpasses existing complex baselines across various human-centric
benchmarks. Specifically, we achieve significant improvements over the
prior state-of-the-art on Humans-5K (pose) by 7.6 mAP, Humans-2K
(part-seg) by 17.1 mIoU, Hi4D (depth) by 22.4% relative RMSE, and
THuman2 (normal) by 53.5% relative angular error.

Keywords: Human-centric, Large-scale pretraining, In-the-wild

“Sapiens—pertaining to, or resembling modern humans.”

1 Introduction
Recent years have witnessed remarkable strides towards generating photorealistic
humans in 2D [17, 28, 50, 118] and 3D [69, 89, 102, 109]. The success of these
methods is greatly attributed to the robust estimation of various assets such as
2D keypoints [14,67], fine-grained body-part segmentation [119], depth [113], and
surface normals [89,108]. However, robust and accurate estimation of these assets
is still an active research area, and complicated systems to boost performance
for individual tasks often hinder wider adoption. Moreover, obtaining accurate
ground-truth annotation in-the-wild is notoriously difficult to scale. Our goal is
to provide a unified framework and models to infer these assets in-the-wild to
unlock a wide range of human-centric applications for everybody.

We argue that such human-centric models should satisfy three criteria: gener-
alization, broad applicability, and high fidelity. Generalization ensures robustness
to unseen conditions, enabling the model to perform consistently across varied
environments. Broad applicability indicates the versatility of the model, making
it suitable for a wide range of tasks with minimal modifications. High fidelity
denotes the ability of the model to produce precise, high-resolution outputs,
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Fig. 1: Sapiens models are finetuned for four human tasks - 2D pose estimation, body-
part segmentation, depth prediction and normal prediction. Our models generalize
across a variety of in-the-wild face, upper-body, full-body and multi-person images.

essential for faithful human generation tasks such as 2D to 3D lifting. This pa-
per details the development of models that embody these attributes, collectively
referred to as Sapiens.

Following the insights from [34, 79, 91], leveraging large datasets and scal-
able model architectures is key for generalization. For broader applicability, we
adopt the pretrain-then-finetune approach, enabling post-pretraining adaptation
to specific tasks with minimal adjustments. This approach raises a critical ques-
tion: What type of data is most effective for pretraining? Given computational
limits, should the emphasis be on collecting as many human images as possible,
or is it preferable to pretrain on a less curated set to better reflect real-world
variability? Existing methods often overlook the pretraining data distribution
in the context of downstream tasks. To study the influence of pretraining data
distribution on human-specific tasks, we collect the Humans-300M dataset, fea-
turing 300 million diverse human images. These unlabelled images are used to
pretrain a family of vision transformers [27] from scratch, with parameter counts
ranging from 300M to 2B.
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Among various self-supervision methods for learning general-purpose visual
features from large datasets [5,19,34,45,46,121], we choose the masked-autoencoder
(MAE) approach [45] for its simplicity and efficiency in pretraining. MAE, having
a single-pass inference model compared to contrastive or multi-inference strate-
gies, allows processing a larger volume of images with the same computational
resources. For higher-fidelity, in contrast to prior methods, we increase the native
input resolution of our pretraining to 1024 pixels, resulting in a ∼4× increase
in FLOPs compared to the largest existing vision backbone [91]. Each model
is pretrained on 1.2 trillion tokens. Table 1 outlines a comparison with earlier
approaches. For finetuning on human-centric tasks [15, 101, 113, 119], we use a
consistent encoder-decoder architecture. The encoder is initialized with weights
from pretraining, while the decoder, a lightweight and task-specific head, is ini-
tialized randomly. Both components are then finetuned in an end-to-end manner.
We focus on four key tasks - 2D pose estimation, body-part segmentation, depth,
and normal estimation, as shown in Fig. 1.

Consistently with prior studies [56,122], we affirm the critical impact of label
quality on the model’s in-the-wild performance. Public benchmarks [23,41,55] of-
ten contain noisy labels, providing inconsistent supervisory signals during model
fine-tuning. At the same time, it is important to utilize fine-grained and precise
annotations to align closely with our primary goal of 3D human digitization.
To this end, we propose a substantially denser set of 2D whole body keypoints
for pose estimation and a detailed class vocabulary for body part segmentation,
surpassing the scope of previous datasets (please refer to Fig. 1). Specifically, we
introduce a comprehensive collection of 308 keypoints encompassing the body,
hands, feet, surface, and face. Additionally, we expand the segmentation class
vocabulary to 28 classes, covering body parts such as the hair, tongue, teeth,
upper/lower lip, and torso. To guarantee the quality and consistency of annota-
tions and a high degree of automation, we utilize a multi-view capture setup to
collect pose and segmentation annotations. We also utilize human-centric syn-
thetic data for depth and normal estimation, leveraging 600 detailed scans from
RenderPeople [82] to generate high-resolution depth maps and surface normals.

We show that the combination of domain-specific large-scale pretraining with
limited, yet high-quality annotations leads to robust in-the-wild generalization.
Overall, our method demonstrates an effective strategy for developing highly pre-
cise discriminative models capable of performing in real-world scenarios without
the need for collecting a costly and diverse set of annotations.

Method Dataset #Params GFLOPs Image size Domain

DINO [16] ImageNet1k 86 M 17.6 224 General
iBOT [121] ImageNet21k 307 M 61.6 224 General
DINOv2 [79] LVD-142M 1 B 291.0 224 General
ViT-6.5B [91] IG-3B 6.5 B 1657.0 224 General
AIM [34] DFN-2B 6.5 B 1657.0 224 General

Sapiens (Ours) Humans-300M 2 B 8709.0 1024 Human

Table 1: Comparison of state-of-the-art pretrained vision models. Sapiens adopts a
higher resolution backbone on a large dataset of in-the-wild human images.
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Our contributions are summarized as follows.

– We introduce Sapiens, a family of vision transformers pretrained on a large-
scale, curated dataset of diverse human images.

– This study shows that simple data curation and large-scale pretraining signif-
icantly boost the model’s performance with the same computational budget.

– Our models, fine-tuned with high-quality annotations or even synthetic data,
demonstrate robust in-the-wild generalization.

– The first 1K high-resolution model that natively supports high-fidelity in-
ference essential for human-centric tasks, achieving state-of-the-art perfor-
mance on benchmarks for 2D pose estimation, body-part segmentation, depth,
and normal estimation.

2 Related Work

Our work explores the limits of training large architectures on a large num-
ber of in-the-wild human images. We build on prior work from different areas:
pretraining at scale, human vision tasks, and large vision transformers.

Pretraining at Scale. The remarkable success of large-scale pretraining [26,95]
followed by task-specific finetuning for language modeling [2, 13, 53, 96, 99, 100]
has established this approach as a standard practice. Similarly, computer vi-
sion methods [1, 4, 33, 34, 42, 79, 83, 85, 87, 120] are progressively embracing ex-
tensive data scales for pretraining. The emergence of large datasets, such as
LAION-5B [90], Instagram-3.5B [77], JFT-300M [92], LVD-142M [79], Visual
Genome [60], and YFCC100M [97], has enabled the exploration of a data cor-
pus well beyond the scope of traditional benchmarks [61,67,86]. Salient work in
this domain includes DINOv2 [79], MAWS [91], and AIM [34]. DINOv2 achieves
state-of-the-art performance in generating self-supervised features by scaling the
contrastive iBot [121] method on the LDV-142M dataset [79]. MAWS [91] stud-
ies the scaling of masked-autoencoders (MAE) [45] on billion images. AIM [34]
explores the scalability of autoregressive visual pretraining similar to BERT [26]
for vision transformers [27]. In contrast to these methods which mainly focus on
general image pretraining or zero-shot image classification, we take a distinctly
human-centric approach: our models leverage a vast collection of human images
for pretraining, subsequently fine-tuning for a range of human-related tasks.

Human Vision Tasks. The pursuit of large-scale 3D human digitization [8,
44, 64, 74] remains a pivotal goal in computer vision [12]. Significant progress
has been made within controlled or studio environments [3, 59,63,69,70,76,89],
yet challenges persist in extending these methods to unconstrained environ-
ments [29]. To address these challenges, developing versatile models capable of
multiple fundamental tasks such as keypoint estimation [21,36, 47, 51, 57, 78, 80,
93,106], body-part segmentation [35,40,40,41,75,104,105], depth estimation [9,
10,32,43,52,66,84,113], and surface normal prediction [6,7,31,39,62,88,101,108]
from images in natural settings is crucial. In this work, we aim to develop models
for these essential human vision tasks which generalize to in-the-wild settings.
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Scaling Architectures. Currently, the largest publicly-accessible language mod-
els contain upwards of 100B parameters [49], while the more commonly used
language models [94, 100] contain around 7B parameters. In contrast, Vision
Transformers (ViT) [27], despite sharing a similar architecture, have not been
scaled to this extent successfully. While there are notable endeavors in this di-
rection, including the development of a dense ViT-4B [20] trained on both text
and images, and the formulation of techniques for the stable training of a ViT-
22B [25], commonly utilized vision backbones still range between 300M to 600M
parameters [24,38,48,68] and are primarily pretrained at an image resolution of
about 224 pixels. Similarly, existing transformer-based image generation mod-
els, such as DiT [81] use less than 700M parameters, and operate on a highly
compressed latent space. To address this gap, we introduce Sapiens - a collection
of large, high-resolution ViT models that are pretrained natively at a 1024 pixel
image resolution on millions of human images.

3 Method
3.1 Humans-300M Dataset

N=1 
17%

N=2
14%

N=3
13%

N>=4
56%

Number of Humans (N)

Fig. 2: Overview of number
of humans per image in the
Humans-300M dataset.

We utilize a large proprietary dataset for pretraining
of approximately 1 billion in-the-wild images, focusing
exclusively on human images. The preprocessing in-
volves discarding images with watermarks, text, artis-
tic depictions, or unnatural elements. Subsequently,
we use an off-the-shelf person bounding-box detec-
tor [103] to filter images, retaining those with a de-
tection score above 0.9 and bounding box dimensions
exceeding 300 pixels. Fig. 2 provides an overview of
the distribution of the number of people per image in our dataset, noting that
over 248 million images contain multiple subjects.

3.2 Pretraining

We follow the masked-autoencoder [45] (MAE) approach for pretraining. Our
model is trained to reconstruct the original human image given its partial obser-
vation. Like all autoencoders, our model has an encoder that maps the visible
image to a latent representation and a decoder that reconstructs the original
image from this latent representation. Our pretraining dataset consists of both
single and multi-human images; each image is resized to a fixed size with a square
aspect ratio. Similar to ViT [27], we divide an image into regular non-overlapping
patches with a fixed patch size. A subset of these patches is randomly selected
and masked, leaving the rest visible. The proportion of masked patches to visible
ones is defined as the masking ratio, which remains fixed throughout training.
We refer to MAE [45] for more details. Fig. 3 (Top) shows the reconstruction of
our pretrained model on unseen human images. Our models exhibit generaliza-
tion across a variety of image characteristics including scales, crops, the age and
ethnicity of subjects, and number of subjects. Each patch token in our model
accounts for 0.02% of the image area compared to 0.4% in standard ViTs, a 16×
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Ground Truth Mask Ratio 75% Mask Ratio 80% Mask Ratio 85% Mask Ratio 90% Mask Ratio 95%

Fig. 3: In-the-wild generalization of Sapiens on unseen images. Top: Each triplet illus-
trates the ground truth (left), the masked image (center), and the MAE reconstruction
(right), with a masking ratio of 75%, a patch size of 16, and an image size of 1024.
Bottom: Varying the mask ratio between [0.75, 0.95] during inference reveals a minimal
reduction in quality, underscoring the model’s robust understanding of human images.

reduction - this provides a fine-grained inter-token reasoning for our models.
Fig.3 (Bottom) shows that even with an increased mask ratio of 95%, our model
achieves a plausible reconstruction of human anatomy on held-out samples.

3.3 2D Pose Estimation

We follow the top-down 2D pose estimation paradigm, which aims to detect the
locations of K keypoints from an input image I ∈ RH×W×3. Most methods pose
this problem as heatmap prediction, where each of K heatmaps represents the
probability of the corresponding keypoint being at any spatial location. Similar
to [111], we define a pose estimation transformer, P, for keypoint detection. The
bounding box at training and inference is scaled to H ×W and is provided as
an input to P. Let y ∈ RH×W×K denote the K heatmaps corresponding to
the ground truth keypoints for a given input I. The pose estimator transforms
input I to a set of predicted heatmaps, ŷ ∈ RH×W×K , such that ŷ = P(I). P is
trained to minimize the mean squared loss Lpose = MSE(y, ŷ). During finetuning,
the encoder of P is initialized with the weights from pretaining, and the decoder
is initialized randomly. The aspect ratio H : W is set to be 4 : 3, with the
pretrained positional embedding being interpolated accordingly [58]. We use
lightweight decoders with deconvolution and convolution operations.

We finetune both the encoder and the decoder in P across multiple skeleton
formats, including K = 17 [67], K = 133 [55] and a new highly-detailed skeleton
format, with K = 308, as shown in Fig. 4 (Left). Compared to existing formats
with at most 68 facial keypoints, our annotations consist of 243 facial keypoints,
including representative points around the eyes, eyebrows, lips, nose, and ears.
This design is tailored to meticulously capture the nuanced details of facial
expressions in the real world. With these keypoints, we manually annotated 1
million images at 4K resolution from an indoor capture setup.
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a) Full-Body – 308 kps

b) Hands – 40 kps

c) Face – 243 kps d) Body-Part Segmentation: 28 Classes

Fig. 4: Ground-truth annotations for 2D pose estimation and body-part segmentation.

3.4 Body-Part Segmentation

Commonly referred to as human parsing, body-part segmentation aims to clas-
sify pixels in the input image I into C classes. Most methods [41] transform this
problem to estimating per-pixel class probabilities to create a probability map
p̂ ∈ RH×W×C such that p̂ = S(I), where S is the segmentation model. As out-
lined previously, we adopt the same encoder-decoder architecture and initializa-
tion scheme for S. S is finetuned to minimize the weighted cross-entropy loss be-
tween the actual p and predicted p̂ probability maps, Lseg = WeightedCE(p, p̂).

We finetune S across two part-segmentation vocabularies: a standard set
with C = 20 [41] and a new larger vocabulary with C = 28, as illustrated
in Fig.4 (Right). Our proposed vocabulary goes beyond previous datasets in
important ways. It distinguishes between the upper and lower halves of limbs
and incorporates more detailed classifications such as upper/lower lips, teeth,
and tongue. To this end, we manually annotate 100K images at 4K resolution
with this vocabulary.

3.5 Depth Estimation

For depth estimation, we adopt the architecture used for segmentation, with the
modification that the decoder output channel is set to 1 for regression. We denote
the ground-truth depth map of image I by d ∈ RH×W , the depth estimator by
D, where d̂ = D(I), and M as the number of human pixels in the image. For the
relative depth estimation, we normalize d to the range [0, 1] using max and min
depths in the image. The Ldepth loss [32] for D is defined as follows:

∆d = log(d)− log(d̂), (1)

∆d =
1

M

M∑
i=1

∆di, (∆d)2 =
1

M

M∑
i=1

(∆di)
2, (2)

Ldepth =

√
(∆d)2 − 1

2
(∆d)2. (3)

We render 500, 000 synthetic images using 600 high-resolution photogram-
metry human scans as shown in Fig. 5 to obtain a robust monocular depth
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estimation model with high-fidelity. A random background is selected from a
100 HDRI environment map collection. We place a virtual camera within the
scene, randomly adjusting its focal length, rotation, and translation to capture
images and their associated ground-truth depth maps at 4K resolution.

Fig. 5: Ground-truth synthetic annotations for depth and surface normal estimation.

3.6 Surface Normal Estimation

Similar to previous tasks, we set the decoder output channels of the normal
estimator N to be 3, corresponding to the xyz components of the normal vector
at each pixel. The generated synthetic data is also used as supervision for surface
normal estimation. Let n be the ground-truth normal map for image I and
n̂ = N (I). Similar to depth, the loss Lnormal is only computed for human pixels
in the image and is defined as follows:

Lnormal = ||n− n̂||1 + (1− n · n̂) (4)

4 Experiments

In this section, we initially provide an overview of the implementation details.
Subsequently, we conduct comprehensive benchmarking across four tasks: pose
estimation, part segmentation, depth estimation, and normal estimation.

4.1 Implementation Details

Our largest model, Sapiens-2B, is pretrained using 1024 A100 GPUs for 18 days
using PyTorch. We use the AdamW [73] optimizer for all our experiments. The
learning schedule includes a brief linear warm-up, followed by cosine anneal-
ing [72] for pretraining and linear decay [65] for finetuning. All models are pre-
trained from scratch at a resolution of 1024× 1024 with a patch size of 16. For
finetuning, the input image is resized to a 4:3 ratio, i.e. 1024 × 768. We use
standard augmentations like cropping, scaling, flipping, and photometric distor-
tions. A random background from non-human COCO [67] images is added for
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Model #Params FLOPs Hidden size Layers Heads Batch size

Sapiens-0.3B 0.336 B 1.242 T 1024 24 16 98,304
Sapiens-0.6B 0.664 B 2.583 T 1280 32 16 65,536
Sapiens-1B 1.169 B 4.647 T 1536 40 24 40,960
Sapiens-2B 2.163 B 8.709 T 1920 48 32 20,480

Table 2: Sapiens encoder specifications for pretraining on Human-300M dataset.

segmentation, depth, and normal prediction tasks. Importantly, we use differen-
tial learning rates [115] to preserve generalization i.e. lower learning rates for
initial layers and progressively higher rates for subsequent layers. The layer-wise
learning rate decay is set to 0.85 with a weight decay of 0.1 for the encoder.
We detail the design specifications of Sapiens in Table. 2. Following [34, 100],
we prioritize scaling models by width rather than depth. Note that the Sapiens-
0.3B model, while architecturally similar to the traditional ViT-Large, consists
of twentyfold more FLOPs due to its higher resolution.

4.2 2D Pose Estimation
We finetune Sapiens for face, body, feet, and hand (K = 308) pose estimation
on our high-fidelity annotations. For training, we use the train set with 1M
images and for evaluation, we use the test set, named Humans-5K, with 5K
images. Our evaluation is top-down [111] i.e. we use an off-the-shelf detector [37]
for bounding-box and conduct single human pose inference. Table 3 shows a
comparison of our models with existing methods for whole-body pose estima-
tion. We evaluate all methods on 114 common keypoints between our 308 key-
point vocabulary and the 133 keypoint vocabulary from COCO-WholeBody [55].
Sapiens-0.6B surpasses the current state-of-the-art, DWPose-l [114] by +2.8 AP.
Contrary to DWPose [114], which utilizes a complex student-teacher framework
with feature distillation tailored for the task, Sapiens adopts a general encoder-
decoder architecture with large human-centric pretraining.

Interestingly, even with the same parameter count, our models demonstrate
superior performance compared to their counterparts. For instance, Sapiens-0.3B
exceeds VitPose+-L by +5.6 AP, and Sapiens-0.6B outperforms VitPose+-H by
+7.9 AP. Within the Sapiens family, our results indicate a direct correlation be-
tween model size and performance. Sapiens-2B sets a state-of-the-art with 61.1
AP, a significant improvement of +7.6 AP to the prior art. Despite fine-tuning

Model Input Size Body Foot Face Hand Whole-body
AP AR AP AR AP AR AP AR AP AR

DeepPose [98] 384× 288 32.1 43.5 25.3 41.2 37.8 53.9 15.7 31.6 23.9 37.2
SimpleBaseline [106] 384× 288 52.3 60.1 49.8 62.5 59.6 67.3 41.4 51.8 44.6 53.7
HRNet [93] 384× 288 55.8 62.6 45.2 55.4 58.9 64.5 39.3 47.6 45.7 53.9
ZoomNAS [110] 384× 288 59.7 66.3 48.1 57.9 74.5 79.2 49.8 60.6 52.1 60.7
ViTPose+-L [112] 256× 192 61.0 66.8 62.4 68.2 50.1 55.7 41.5 47.3 47.8 53.6
ViTPose+-H [112] 256× 192 61.6 67.4 63.2 69.0 50.7 56.3 42.0 47.8 48.3 54.1
RTMPose-x [54] 384× 288 57.1 63.7 55.3 66.8 74.4 78.5 46.3 55.0 51.9 59.6
DWPose-m [114] 256× 192 54.2 61.4 49.9 63.0 68.5 74.2 40.1 50.0 47.7 55.8
DWPose-l [114] 384× 288 57.9 64.2 56.5 67.4 74.3 78.4 49.3 57.4 53.1 60.6

Sapiens-0.3B (Ours) 1024× 768 58.1 64.5 56.8 67.7 74.5 78.6 49.6 57.7 53.4 (+0.3) 60.9 (+0.3)

Sapiens-0.6B (Ours) 1024× 768 59.8 65.5 64.7 72.3 75.2 79.0 52.1 60.3 56.2 (+2.8) 62.4 (+2.1)

Sapiens-1B (Ours) 1024× 768 62.9 68.2 68.3 75.1 76.4 79.7 55.9 63.4 59.4 (+5.9) 65.3 (+5.1)

Sapiens-2B (Ours) 1024× 768 64.7 69.9 69.4 76.2 76.9 79.9 57.1 64.4 61.1(+7.6) 67.1(+7.0)

Table 3: Pose estimation results on Humans-5K test set. Flip test is used.
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Fig. 6: Pose estimation with Sapiens-1B for 308 keypoints on in-the-wild images.

with annotations from a indoor capture studio, Sapiens demonstrate robust gen-
eralization to real-world, as shown in Fig. 6.

4.3 Body-Part Segmentation Model mIoU(%) mAcc(%)

FCN* [71] 48.2 57.6
SegFormer* [107] 53.5 62.9
Mask2Former* [22] 58.7 68.3
DeepLabV3+* [18] 64.1 74.8

Sapiens-0.3B (Ours) 76.7 86.1

Sapiens-0.6B (Ours) 77.8 86.3

Sapiens-1B (Ours) 79.9 89.1

Sapiens-2B (Ours) 81.2 89.4

Table 4: We report mIoU and
mAcc on Humans-2K test set.
Methods with * are trained by us.

We fine-tune and evaluate our annotations
with a segmentation vocabulary of 28 classes.
Our train set consists of 100K images, and
the test set, Humans-2K, consists of 2K im-
ages. We compare Sapiens with existing body-
part segmentation methods fine-tuned on our
train set. Importantly, we use suggested pre-
trained checkpoints by each method as initial-
ization. Similar to pose, we observe generaliza-
tion to segmentation as shown in Table 4.

Interestingly, our smallest model, Sapiens-0.3B outperforms existing state-
of-the-art segmentation methods like Mask2Former [22] and DeepLabV3+ [18]
by 12.6 mIoU due to its higher resolution and large human-centric pretrain-
ing. Furthermore, increasing the model size improves segmentation performance.
Sapiens-2B achieves the best performance of 81.2 mIoU and 89.4 mAcc on the
test set. Fig. 7 shows the qualitative results of our models.

4.4 Depth Estimation

We evaluate our models on THuman2.0 [117] and Hi4D [116] datasets for depth
estimation. THuman2.0 consists of 526 high-quality human scans, from which
we derive three sets of images for testing: a) face, b) upper body, and c) full
body using a virtual camera. THuman2.0 with 1578 images thus enables the
evaluation of our models’ performance on single-human images across multiple
scales. Conversely, the Hi4D dataset focuses on multi-human scenarios, with each
sequence showcasing two subjects engaged in activities involving human-human

Fig. 7: Human segmentation with Sapiens-1B for 28 categories on in-the-wild images.
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Method TH2.0-Face TH2.0-UprBody TH2.0-FullBody Hi4D
RMSE ↓ AbsRel ↓ δ1 ↑ RMSE AbsRel δ1 RMSE AbsRel δ1 RMSE AbsRel δ1

MiDaS-L [11] 0.114 0.097 0.925 0.398 0.271 0.868 0.701 0.689 0.782 0.261 0.082 0.975
MiDaS-Swin2 [11] 0.050 0.036 0.995 0.122 0.081 0.948 0.292 0.171 0.862 0.209 0.063 0.997
DepthAny-B [113] 0.039 0.026 0.999 0.048 0.028 0.999 0.061 0.030 0.999 0.143 0.034 0.997
DepthAny-L [113] 0.039 0.027 0.999 0.048 0.027 0.999 0.060 0.030 0.999 0.147 0.035 0.997

Sapiens-0.3B (Ours) 0.012 0.008 1.000 0.015 0.009 1.000 0.021 0.010 1.000 0.148 0.046 1.000
Sapiens-0.6B (Ours) 0.011 0.008 1.000 0.015 0.009 1.000 0.021 0.010 1.000 0.142 0.044 1.000
Sapiens-1B (Ours) 0.009 0.006 1.000 0.012 0.007 1.000 0.019 0.009 1.000 0.125 0.039 1.000
Sapiens-2B (Ours) 0.008 0.005 1.000 0.010 0.006 1.000 0.016 0.008 1.000 0.114 0.036 1.000

Table 5: Comparison of Sapiens for monocular depth estimation on human images.

interactions. We select sequences from pair 28, pair 32, and pair 37, featuring
6 unique subjects from camera 4, totaling 1195 multi-human real images for
testing. We follow the relative-depth evaluation protocols established by MiDaS-
v3.1 [11], reporting standard metrics such as AbsRel and δ1. In addition, we
also report RMSE as our primary metric since δ1 does not effectively reflect
performance in human scenes characterized by subtle depth variations.

Table 5 compares our models with existing state-of-the-art monocular depth
estimators. Sapiens-2B, finetuned solely on synthetic data, remarkably outper-
forms prior art across all single-human scales and multi-human scenarios. We ob-
serve a 20% RMSE reduction compared to the top-performing Depth-Anything
model on Hi4D images. It is important to highlight that while baseline models
are trained on a variety of scenes, Sapiens specializes in human-centric depth es-
timation. Fig. 8 presents a qualitative comparison of depth estimation between
Sapiens-1B and DepthAnything-L. To ensure a fair comparison, the predicted
depth is renormalized using the human mask in the baseline visualizations.

Image DepthAnything-L (Depth, ∇Depth) Sapiens-1B (Depth, ∇Depth)

Fig. 8: We compare our depth prediction with DepthAnything [113]. To showcase the
consistency of predicted depth, we also visualize the ∇depth as pseudo surface normals.
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4.5 Surface Normal Estimation
The datasets for surface normal evaluation are identical to those used for depth
estimation. Following [30], we report the mean and median angular error, along
with the percentage of pixels within t◦ error for t ∈ {11.25◦, 22.5◦, 30◦}. Table
6 compares our models with existing human-specific surface normal estimators.
All our models outperform existing methods by a significant margin. Sapiens-
2B achieves a mean error of around 12◦ on the THuman2.0 (single-human) and
Hi4D (multi-human) datasets. We qualitatively compare Sapiens-1B with PI-
FuHD [89] and ECON [108] for surface normal estimation in Figure 9. Note that
PIFuHD [89] is trained with the identical set of 3D scans as ours, and ECON [108]
is trained with 4000 scans that are a super set of our 3D scan data.

Method
THuman2.0 [117] Hi4D [116]

Angular Error◦ % Within t◦ Angular Error◦ % Within t◦

Mean Median 11.25◦ 22.5◦ 30◦ Mean Median 11.25◦ 22.5◦ 30◦

PIFuHD [89] 30.51 27.13 15.81 42.97 58.86 22.39 19.26 22.98 60.14 77.02
HDNet [52] 34.82 30.60 17.44 39.26 54.51 28.60 26.85 19.08 57.93 70.14
ICON [109] 28.74 25.52 22.81 47.83 63.73 20.18 17.52 26.81 66.34 82.73
ECON [108] 25.45 23.67 32.95 55.86 69.03 18.46 16.47 29.35 68.12 84.88

Sapiens-0.3B 13.02 10.33 57.37 86.20 92.7 15.04 12.22 47.07 81.49 90.70
Sapiens-0.6B 12.86 10.23 57.85 86.68 93.30 14.06 11.47 50.59 84.37 92.54
Sapiens-1B 12.11 9.40 61.97 88.03 93.84 12.18 9.59 60.36 88.62 94.44
Sapiens-2B 11.84 9.16 63.16 88.60 94.18 12.14 9.62 60.22 89.08 94.74

Table 6: Comparison of Sapiens for surface normal estimation on human images.
Image PIFuHD Sapiens-1BECON

Fig. 9: Qualitative comparison of Sapiens-1B with PIFuHD [89] and ECON [108] for
monocular surface normal estimation on challenging in-the-wild images.



Sapiens 13

4.6 Discussion

Importance of Pretraining Data Source. The feature quality is closely
linked to the pretraining data quality. We assess the importance of pretraining
on various data sources for human-centric tasks by pretraining Sapiens-0.3B on
each dataset under identical training schedules and number of iterations. We
fine-tune the model on each task and select early checkpoints for evaluation,
reasoning that early-stage fine-tuning better reflects the model’s generalization
capability. We investigate the impact of pretraining at scale on general images
(which may include humans) versus exclusively human images using Sapiens. We
randomly select 100 million and 300 million general images from our 1 billion im-
age corpus to create the General-100M and General-300M datasets, respectively.
Table 7 showcases the comparison of pretraining outcomes. We report mAP for
pose on Humans-5K, mIoU for segmentation on Humans-2K, RMSE for depth
on THuman2.0, and mean angular error in degrees for normal estimation on
Hi4D. Aligned with findings from [112], our results show that pretraining with
Human300M leads to superior performance across all metrics, highlighting the
benefits of human-centric pretraining within a fixed computational budget.
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Fig. 10: Sapiens-0.3B’s normal estima-
tion performance with unique human
images seen during pretraining.

We also study the effect of number
of unique human images seen during pre-
training with normal estimation perfor-
mance. We report % within 30◦. Again, we
maintain identical conditions for Sapiens-
0.3B pretraining and finetuning. Fig.10
shows a steady improvement in perfor-
mance as the pretraining data size in-
creases without saturation. In summary,
the diversity of human images during pre-
training directly correlates with improved
generalization to down-stream tasks.

Zero-Shot Generalization. Our models
exhibit broad generalization to a variety
of settings. For instance, in segmentation,
Sapiens are finetuned on single-human im-
ages with limited subject diversity, minimal background variation, and solely
third-person views (see Fig. 4). Nevertheless, our large-scale pretraining enables
generalization across number of subjects, varying ages, and egocentric views, as
shown in Fig. 11. These observations similarly hold for other tasks.

Pretraining Source #Images Pose (↑) Seg(↑) Depth(↓) Normal(↓)

Random Initialization - 30.2 40.3 0.720 35.4
General-100M 100M 35.7 50.1 0.351 27.5
General-300M 300M 37.3 52.8 0.347 26.8
Humans-100M 100M 43.6 61.2 0.316 24.0
Humans-300M (Full) 300M 47.0 66.5 0.288 21.8

Table 7: Comparison of Sapiens-0.3B pretrained on various data sources. A domain-
specific pretraining yields superior results compared to general data sources.
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Multi-Human Generalization Age Generalization Viewpoint Generalization

Fig. 11: Sapiens achieve broad generalization via large human-centric pretraining.

Applications. Accurately predicting pose, body-part segmentation, depth and
surface-normals for in-the-wild human images enables a wide range of applica-
tions, such as 3D human scans and the generation of controllable images. We
adapt ControlNet [118] to integrate keypoints for faces and hands predicted by
Sapiens, and train this modified model on a subset of the Humans-300M dataset,
as shown in Fig. 12. This grants more precise control over image generation, pro-
ducing anatomically consistent human images.

Image Predicted Pose Pose-conditioned Human Image Synthesis

Fig. 12: Image synthesis using ControlNet [118] trained on Sapiens pose predictions.

Limitations. While our models generally perform well, they are not perfect.
Human images with complex/rare poses, crowding, and severe occlusion are
challenging (see supplemental for details). Although aggressive data augmenta-
tion and a detect-and-crop strategy could mitigate these issues, we envision our
models as a tool for acquiring large-scale, real-world supervision with human-in-
the-loop to develop the next generations of human vision models.

5 Conclusion

Sapiens represents a significant step toward elevating human-centric vision mod-
els into the realm of foundation models. Our models demonstrate strong gen-
eralization capabilities on a variety of human-centric tasks. We attribute the
state-of-the-art performance of our models to: (i) large-scale pretraining on a
large curated dataset, which is specifically tailored to understanding humans,
(ii) scaled high-resolution and high-capacity vision transformer backbones, and
(iii) high-quality annotations on augmented studio and synthetic data. We be-
lieve that these models can become a key building block for a multitude of
downstream tasks, and provide access to high-quality vision backbones to a sig-
nificantly wider part of the community. A potential direction for future work
would be extending Sapiens to 3D and multi-modal datasets.
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