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Abstract. This paper introduces an approach to linearly controllable
generative adversarial networks (LC-GAN) driven by unsupervised learn-
ing. Departing from traditional methods relying on supervision signals
or post-processing for latent feature disentanglement, our proposed tech-
nique enables unsupervised learning using only image data through con-
trastive feature categorization and spectral regularization. In our frame-
work, the discriminator constructs geometry- and appearance-related
feature spaces using a combination of image augmentation and con-
trastive representation learning. Leveraging these feature spaces, the gen-
erator autonomously categorizes input latent codes into geometry- and
appearance-related features. Subsequently, the categorized features un-
dergo projection into a subspace via our proposed spectral regularization,
with each component controlling a distinct aspect of the generated image.
Beyond providing fine-grained control over the generative model, our ap-
proach achieves state-of-the-art image generation quality on benchmark
datasets, including FFHQ, CelebA-HQ, and AFHQ-V2.

Keywords: Controllable GAN · Unsupervised learning · Generative model

1 Introduction

Generative Adversarial Networks (GAN) have emerged as powerful tools for im-
age generation, with the StyleGAN series standing out as prominent models in
this domain [16–18]. These models leverage latent codes to shape the generative
process; however, interpreting these codes remains a challenging task. Numerous
studies have delved into the StyleGAN latent space to enhance controllability.
Yet, many controllable StyleGAN-based models necessitate pre-trained classi-
fiers [32], supervision information [31], or reliance on 3D morphable face models
(3DMM) [7, 34]. Such dependencies can limit generalizability and introduce ad-
ditional labeling efforts when applied to novel datasets.

An alternative approach involves examining the trained model parameters
using subspace projection techniques like Principal Component Analysis (PCA)
or integrating additional regularization terms during neural network training,
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Fig. 1: Illustrative outcomes from LC-GAN trained on CelebA-HQ dataset.
The method autonomously learns significant semantics and relates them to input latent
codes in a fully unsupervised manner. Leveraging linear control over latent codes, the
model generates diverse and customizable outputs with fine-grained adjustments.

such as Hessian penalty [25] and OroJaR [36], to encourage feature disentangle-
ment. However, subspace analysis-based methods [10, 29, 30] often require pre-
processing steps for projecting model parameters during image generation and
post-processing steps for identifying interpretable directions after model training.
This multi-step process can be cumbersome and time-consuming and potentially
lead to a distortion of the original distribution of the training data. Moreover,
orthogonal regularizer-based methods employ a stochastic estimator to approxi-
mate the first- or second-order finite difference, which necessarily requires many
samples for accurate estimation. This increased demand for samples poses com-
putational challenges, especially in scenarios with very high-dimensional latent
codes, potentially affecting the scalability of these regularization techniques and
leading to instability in GAN training. Another drawback of approaches such
as [11, 25, 33, 36], jointly optimizing orthogonal constraints with GAN, is the
potential generation of less diverse and natural images, reflected in much higher
Fréchet Inception Distance (FID) scores.

To overcome these limitations, we introduce Linearly Controllable GAN (LC-
GAN), a novel approach that employs end-to-end learning for high-quality im-
age synthesis, eliminating the need for pre-trained classifiers, supervision infor-
mation, or stochastic estimations of first-/second-order finite differences. Our
method begins by decomposing the input noise vector, sampled from a Gaussian
distribution, into distinct geometry and appearance codes. Initially, the discrimi-
nator is trained to construct geometry and appearance embedding feature spaces
by clustering training and augmented images through a combination of image
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augmentation and contrastive feature clustering. Subsequently, the generator
utilizes these embedding feature spaces to ensure the consistency of its condi-
tionally generated images by partially resampling the noise, facilitating geome-
try or appearance feature changes. Additionally, the features, initially separated
into geometry and appearance codes, undergo further decomposition into more
fine-grained subcategories through a feature selection mechanism. This process
directly maps semantic changes in the generated images to changes in the input
noise vector, enabling each subcategory to linearly and independently activate
semantically meaningful features. This fine-grained control provides the ability
to make specific changes, such as variations in appearance or viewpoint, while
preserving other essential properties.

In this work, we make the following contributions to the field of controllable
image generation: (1) We introduce an unsupervised method that categorizes
input latent codes into distinct geometry and appearance codes. (2) We present
a mechanism for further decomposing features separated into geometry and ap-
pearance codes into more fine-grained subcategories. This approach not only
enables control over semantically meaningful features during the image gener-
ation process but also enhances the interpretability of the input latent code.
(3) We demonstrate higher quality of the generated images compared to ex-
isting state-of-the-art (SOTA) generative models. Our evaluation results show
that LC-GAN outperforms other models in terms of both visual quality and
feature controllability. We believe that these contributions advance the field
of controllable image generation and provide a useful tool for various appli-
cations, such as image editing and synthesis. The source code can be found at
https://github.com/rakutentech/lcgan.

2 Related work

GAN [9] is widely used for image generation, but achieving precise control over
specific image features remains challenging. To address this limitation, recent
approaches have introduced additional data as supervision signals, including
segmentation maps [31], image attributes [7,21,28], and text descriptions [22,27,
42]. The primary goal of these methods is to disentangle latent features, enabling
more accurate control over the generated images. For instance, [31] uses semantic
segmentation masks to guide the generation process, controlling object class and
location in the resulting images.

Another approach to generating images involves the use of pre-trained models
or synthetic data instead of supervision signals. For instance, [2,32] present GAN
models that leverage pre-trained classifiers to verify if the generated images
are correctly labeled into the target class. Attempts have also been made to
learn 3D pose information from 2D GANs by disentangling pose in the latent
space, but these efforts require additional 3D supervision, such as synthetic face
datasets [21] or 3D morphable models [7, 34,40].

On the other hand, several post-processing techniques [4, 10, 29, 30, 37] have
been proposed to discover the semantic information encoded in the trained

https://github.com/rakutentech/lcgan
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model’s latent space through subspace projections. These methods show that la-
tent codes can be disentangled without supervision, but the learned subspace still
requires interpretation by visual inspection after training. However, these meth-
ods have some limitations, including the inconvenience of the post-processing and
pre-processing steps required to identify the important directions and subspace
projection. Moreover, this process may also result in some images being ignored
due to being deemed unimportant through the subspace projections, potentially
leading to a distortion of the original distribution of the training data.

Orthogonal regularizers such as HessianPenalty [25] and OroJaR [36] have
been proposed as a means to encourage feature disentanglement and control in
the training of neural networks. These regularizers operate by penalizing fea-
ture changes based on orthogonal constraints, which can facilitate the learning
of more interpretable and independent features. The regularization term en-
courages the model to map input variations in specific directions, promoting
the separation of different factors of variation in the latent space. Despite their
potential benefits, orthogonal regularizers have limitations. Estimating first- or
second-order finite differences, a key component of these methods, can incur a
higher computational cost. This computational demand may impose constraints
on training models with high-resolution images or large-scale architectures, lim-
iting the applicability of these regularizers in such scenarios.

3 Linearly Controllable Generative Adversarial Network

The proposed method, LC-GAN, adopts an unsupervised approach to acquire
an embedding feature space by integrating conditional feature clustering with
real/fake image classification tasks. The discriminator network D outputs both
real/fake classification scores and cluster assignments, facilitating the aggrega-
tion of features originating from diverse image augmentations. Throughout train-
ing, a contrastive loss is employed to encourage closer proximity within the same
cluster and greater separation between different clusters, enabling the discrimi-
nator to learn a feature space that encapsulates desired image properties, thus
enabling controllable image generation through input vector manipulation.

3.1 Embedding Feature Space for Feature Categorization

In this approach, the feature space is constructed by combining basic image
augmentations with feature clustering techniques. The discriminator is extended
with two projection heads, hg and ha, which map images into distinct embedding
spaces: geometric change and appearance change. These feature spaces validate
the consistency of generated images with intended feature changes. Figure 2
provides an overview of the training procedure. To construct individual feature
spaces, a set of augmentations is applied, including random perspective transfor-
mation and random image erasing/color jittering. Augmented images simulating
variations in geometry and appearance serve as positive and negative samples in
corresponding and opposite projection heads to capture desired image changes.
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Fig. 2: Overview of geometry and appearance feature space construction
and latent code categorization. The discriminator learns embedding feature spaces
through contrastive feature clustering with samples generated from geometric and ap-
pearance augmentations. By clustering these features, the discriminator associates an-
chor and positive samples while separating negative samples in the feature space. The
learned feature space is used to confirm the relationship between generated images G(z)
and re-generated images G(zg) and G(za), created by partially resampling the noise
of the drawn sample z. This allows the generator to understand the desired feature
changes with specific latent code resampling.

For instance, in the geometry feature space, positive samples are generated by
applying the viewpoint change augmentation to an anchor image, while negative
samples undergo appearance augmentation, introducing alterations unrelated to
viewpoint changes. Subsequently, both the anchor image and augmented images
undergo projection onto an L2 normalized feature space using the corresponding
projection head. The projection head associated with viewpoint change aug-
mentation extracts features capturing changes in viewpoint. To enhance feature
space learning, the discriminator employs contrastive feature clustering, aiming
to bring positive samples of the same change type closer together in the feature
space.

The contrastive loss for each training image is calculated using the following
equation:

LD
cl = C(hg(x), hg(xg), hg(xa)) + C(ha(x), ha(xa), ha(xg)). (1)

Here, hg and ha are the projection heads projecting the images into the geometry
and appearance feature spaces, and x, xg, and xa are the training and augmented
images by the geometry and appearance changes. The contrastive loss quantifies
the dissimilarity between the feature representation of the anchor image and the
positively augmented image, while considering the similarity between the feature
representation of the anchor image and the negatively augmented image. The
negative logarithm of the fraction is used as the loss function to be minimized
during training.
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Fig. 3: Generator architecture. The generator comprises mapping networks and
image synthesis networks. It begins with input vectors sampled from a Gaussian dis-
tribution, which are then divided into geometry and appearance latent codes, wg and
wa, by the corresponding mapping networks. These latent codes are subsequently used
to produce images at an m×m resolution. The synthesis networks utilize these latent
codes to create flowfields and generate feature maps, enabling precise control over the
image synthesis process.

C(f , f+, f−) = − log
exp(fT f+/τ)

exp(fT f+/τ) + exp(fT f−/τ)
, (2)

where f , f+, and f− are the feature vectors of the training image, and positively
and negatively augmented images, calculated by a projection head h of the dis-
criminator, and the temperature parameter τ = 0.05 controls the strength of the
penalties applied to the positive and negative samples during the contrastive loss
calculation.

The discriminator is trained using both contrastive loss and standard adver-
sarial loss. Note that for the real vs. fake image classification, it does not utilize
the augmented samples that are employed to construct the embedding feature
space. The adversarial loss is computed as follows:

LD
adv = E

x∼pdata(x)
[logD(x)] + E

z∼pz(z)
[log(1−D(G(z)))] (3)

where pdata and pz are the distributions of training data and noise samples, re-
spectively, and z denotes random noise drawn from a Gaussian distribution with
zero mean and unit variance, serving as the latent codes input to the generator
network G. Additionally, we incorporate R1 regularization [23] during discrimi-
nator training, defined as:

LD
R1

= ∥∇D(x)∥2 . (4)

This term encourages the discriminator to be more consistent in its predictions
for real images, resulting in more stable training and better performance. The
complete loss function for training the discriminator is the sum of the adversarial
loss, the contrastive loss, and the regularization term: LD = LD

adv + λclLD
cl +

λR1
LD
R1

, where λcl = 0.5 and λR1
= 10 are experimentally set hyperparameters

to balance the relative importance of different loss functions.
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3.2 Linearly Controllable Generator

In Figure 3, we present an overview of the generator architecture, characterized
by two fundamental components: the mapping and synthesis networks. In this
architecture, the generator strategically divides the input latent code z into two
distinctive vectors. These vectors then undergo a linear mapping process inde-
pendently through dedicated networks, resulting in intermediate latent codes.
Subsequently, these codes play a crucial role within the image synthesis block
to linearly control the desired output. Here, the geometry latent code takes the
lead in orchestrating the creation of flowfields, dynamically shaping the feature
maps generated based on the appearance latent code. The generator’s training
loss function is intricately composed of three essential terms: 1) a penalty for
adversarial loss, 2) a emphasis on latent code categorization into geometry and
appearance codes, and 3) decomposition of categorized features into more refined
semantics.
Latent Code Categorization: Firstly, the adversarial loss, defined as

LG
adv = E

z∼pz(z)
[logD(G(z))] , (5)

penalizes the generator for failing to effectively deceive the discriminator. In
addition, a conditional resampling is employed to enhance the generator’s un-
derstanding of input vector alterations. As shown in figure 2, the generator’s
input z undergoes conditional resampling to yield zg and za, where the noise
in the designated segment is resampled while retaining the other segments un-
changed. This approach enables controlled modifications within specific feature
spaces of the generated images. Notably, zg is derived by resampling the seg-
ment associated with geometry augmentation, while za is obtained by resampling
the segment correlated with appearance augmentation. Such conditioning estab-
lishes a direct relationship between the generated images and the alterations in
the latent code. The generated images G(z), G(zg), and G(za) are evaluated as
following

LG
cl = C(hg(G(z)), hg(G(zg)), hg(G(za))) + C(ha(G(z)), ha(G(za)), ha(G(zg))).

(6)
This loss function validates whether the generated output contains the desired
property changes by conditionally modifying the sampled latent vector based on
the constructed embedding feature spaces of the discriminator.
Spectral Regularization for Feature Selection and Mapping: Drawing
upon the formulation in Equation 6, the generator gains an understanding of the
semantics encoded within the latent code segment. To enable more fine-grained
control by disentangling the appearance and geometry latent codes into finer
semantics in a fully unsupervised manner, we introduce a spectral regularization
approach leveraging covariance matrix parameterization.

Our approach focuses on learning an anisotropic Gaussian distribution by
parameterizing the covariance matrix. By doing so, we enable the model to au-
tomatically select important features while minimizing the number of representa-
tion dimensions through the application of L1 regularization on its eigen-values.
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Fig. 4: Spectral regularization. To enable fine-grained control, the geometry and
appearance features, categorized through contrastive feature learning, undergo further
analysis and decomposition via a feature selection mechanism. This involves applying
L1 regularization to the eigen-values of the covariance matrix, allowing for the auto-
matic selection of important features and achieving more semantic control over the
generative process.

We draw input noise from a Gaussian distribution N (0,Σ) with a learnable
covariance matrix Σ. This adaptive covariance matrix, being symmetric, can
be decomposed into Σ = UDUT according to the eigen-decomposition, where
U consists of orthonormal vectors and D is a diagonal matrix containing the
eigen-values of the covariance matrix.

To learn these matrices, as shown in figure 4, we initialize learning pa-
rameters determining the basis vectors and lengths of the axes, denoted as
V = {v1, ...,vk}, where vk = {v1k, ..., vkk}, and d = {d1, ..., dk} at the first layer
of the mapping network. These parameters are then transformed into square and
diagonal matrices, V ∈ Rk×k and D1/2 ∈ Rk×k. Subsequently, V is converted
into U using the Gram–Schmidt process. The transformed vectors are input into
mapping networks consisting of 12 fully connected layers, generating the geom-
etry and appearance latent codes. It is noteworthy that no non-linear activation
functions are applied in the mapping networks to maintain the linearity of the
Gaussian distribution.

The spectral regularizer is defined as the L1 regularization of the eigen-values
of the covariance matrix, aiming to suppress behavior associated with small
eigen-values:

LG
s = ||dg||1 + ||da||1. (7)

Here, ||dg||1 and ||da||1 represent the L1 norms of the vectors corresponding
to the mapping networks for geometry and appearance latent codes. Applying
L1 regularization to the eigen-values of the covariance matrix encourages some
eigen-values to become zero, promoting sparsity in the representation. This can
lead to simpler and more interpretable representation learning in each geometry
and appearance latent code by reducing the number of non-zero eigen-values,
and consequently, the important features are autonomously selected.

The entire training loss function for the generator is calculated as the combi-
nation of the explained three terms: LG = LG

adv+λclLG
cl+λsLG

s . Here, λs = 1e−7

is experimentally set to control the importance of the sparsity term in the overall



LC-GAN 9

loss function. This value is determined through empirical testing and tuning to
achieve the desired balance between adversarial, contrastive, and spectral regu-
larization losses during training.

4 Experiments

Datasets: We trained our model using three public datasets: FFHQ (FF) [17],
CelebA-HQ (CA) [14], and AFHQ-V2 (AF) [5]. FF contains 70K high-quality
human faces with variations in pose, expression, and lighting. CA includes 30K
celebrity faces with diverse appearances, and AF comprises 15,803 animal faces
with a wide range of visual characteristics. To adapt to different image sizes, we
used eight, seven, and six residual blocks for 10242, 5122, and 2562 resolutions,
respectively. The datasets were resized as follows: AF images to 5122 and 2562,
and FFHQ and CelebA-HQ images to all three resolutions.
Training and Implementation Details: The model was trained using the Py-
Torch framework, with Albumentations used to apply image augmentations [3].
The Adam optimizer [20] was used with a learning rate of 0.002 for the 2562

and 5122 resolution datasets, and 0.001 for the 10242 resolution dataset, with
β1 = 0.0 and β2 = 0.99. A batch size of B = 32 was used, and the model was
trained for 450K, 700K, and 900K epochs for the AF, CA, and FF datasets. To
improve the quality of generated images, the exponential moving average of the
generator parameters [39] was employed with a decay rate of 0.9999, starting
from the 5K-th training iteration. Additionally, FreezeD [24], which freezes the
weight parameters of the discriminator layers until a spatial resolution of 642,
was applied from the 150K-th iteration for the AF dataset, and from the 300K-th
and 500K-th iteration for the CA and FF datasets. The projection heads of the
discriminator consist of three fully connected layers, producing a 256-dimensional
output vector. The length of the input latent vector z is 128, which is divided into
two 64-dimensional vectors. Each latent code is then transformed into the geome-
try and appearance latent codes, wg and wa, using mapping networks composed
of subspace transformation and fully connected layers. To accelerate training, we
employed a lazy regularization strategy, applying contrastive loss and spectral
regularization every other iteration, and only adversarial loss otherwise. This
approach sped up training while maintaining image quality. We trained the net-
works on 2562, 5122, and 10242 resolution images using four, four, and eight
NVIDIA-H100 GPUs, respectively, with training times of approximately 8, 17,
and 19 hours for 100K iterations.

4.1 High-quality Image Generation: Comparison with SOTAs

We compared the performance of our method with SOTA image generation
methods using the FF, CA, and AF datasets. The quality of the generated
images was evaluated using the FID metric [12], which measures the similarity
between the distribution of real and generated images in the feature space of an
Inception-v3 network. Lower FID scores indicate better image quality. To ensure
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Table 1: FID evaluation results on FFHQ (FF), CelebA-HQ (CA), and AFHQ-V2
(AF) datasets at different image resolutions (2562:L, 5122:M, and 10242:H).

Method FF-L CA-L AF-L FF-M CA-M AF-M FF-H CA-H controllability
StyleGAN2 [15] - - - - - 4.62 2.70 - ✗
StyleGAN3 [16] - - - - - 4.40 3.07 - ✗
SWAGAN-Bi [8] 5.22 - - - - - 4.06 - ✗
StyleNAT [35] 2.05 - - - - - 4.17 - ✗
MSG-GAN [13] - - - - - - 5.80 6.37 ✗

CIPS [1] 4.38 - - 6.18 - - 10.07 - ✗
StyleSwin [41] 2.81 3.25 - - - - 5.07 4.43 ✗

HiT-B [43] 2.95 3.39 - - - - 6.37 8.83 ✗
WaveDiff [26] - 5.94 - - 6.40 - - - ✗
DDGAN [38] - 7.64 - - 8.43 - - - ✗

SeFa [30] 6.87 6.43 9.48 4.21 4.52 5.98 9.36 5.83 ✓
EigenGAN [11] 13.90 14.05 - 13.99 11.07 - 18.51 16.31 ✓

LC-GAN 3.65 3.72 5.77 3.36 3.49 4.74 3.32 3.46 ✓

Fig. 5: Examples of images generated by the trained models. From left to right,
the image sets show generated images by models trained on the FFHQ, CelebA-HQ,
and AFHQ-V2 datasets at different image resolutions.

a fair comparison, we followed the testing protocols used in other papers, such
as [1, 8, 13,15,16,26,35,38,41,43].

For the FF dataset, we randomly sampled 50K images from the training
dataset and generated 50K images using our trained generator, then calculated
the FID between them. For the CA and AF datasets, we calculated FIDs between
30K and 15,803 generated images, respectively, and the entire training images.
The compared algorithms were chosen among the SOTA methods that followed
the same FID measurement protocols. Additionally, we trained SeFa [30] and
EigenGAN [11] on all training datasets to ensure a comprehensive comparative
analysis. However, attempts to apply EigenGAN on the AF dataset with different
settings were unsuccessful due to mode collapse.

Table 1 provides the quantitative evaluation results, demonstrating the supe-
riority of our proposed method in terms of FID scores. Particularly noteworthy
are the excellent FID scores for FF and CA, comparable to StyleGAN3 and
StyleSWIN, which prioritize high-quality and high-resolution image generation
without emphasizing control ability. Figure 5 presents a selection of represen-
tative images generated by our LC-GAN, illustrating its capability to produce
realistic and diverse images.
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Fig. 6: Demonstration of semantic control in generated images. The image
pairs from top to bottom are generated using LC-GAN, SeFa, and EigenGAN, where
the image pairs were created by controlling the same semantic aspect (yaw change).

4.2 Ablation Study of Image Property Controllability

Evaluation Criteria: To evaluate the effectiveness of our proposed method
in controlling image properties, we conducted an experiment to generate pairs
of images. One image was generated randomly, while the other was generated
by resampling one of the latent codes. Our goal was to ensure that the model
was properly trained and that the generated image pairs had similar seman-
tics, while the resampled image properties were updated. We used the Arcface-
ResNet100 [6] to calculate the feature distance between the pairs of generated
images. This measure indicates the semantic similarity between human faces,
with a decision boundary trained to distinguish between the same and different
identities using a threshold of 1. The feature distance between images of the
same person should be less than 1, while the feature distance between images
of different people should be greater than 1. In addition, we used MediaPipe’s
face mesh model [19] to obtain facial landmarks, enabling us to visually assess
the geometric consistency of the generated faces across different identities. We
calculated the distance between corresponding landmarks of the image pairs to
evaluate the consistency of the generated faces. Overall, this experiment allowed
us to demonstrate the effectiveness of our proposed method in controlling image
properties while maintaining appearance similarity and geometric consistency.
Identity-Preserving Image Generation: In our experiments, we focused on
generating human face images while preserving their identity. We generated 1,000
pairs of images using generators trained on the CA and FF datasets by resam-
pling only the viewpoint component. Additionally, we used SeFa and EigenGAN
to generate other sets of image pairs, manually exploring the control direction
associated with the viewpoint in the latent space. To evaluate the quality of the
generated image pairs, we plotted the distance distributions in Figure 7. The
distances for our method were consistently lower compared to those obtained
using SeFa and EigenGAN. To further assess identity similarity, we tested Ar-
cface on randomly selected image pairs from the training dataset, and no false
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Table 2: Perceptual distance between image pairs using Arcface-ResNet100.

Method CA-L FF-L CA-M FF-M CA-H FF-H
Random pairs 1.41 1.41 1.41 1.41 1.41 1.41
SeFa [30] 0.91 0.85 1.01 0.94 1.09 1.13
EigenGAN [11] 0.99 0.98 1.03 0.91 0.97 0.99

LC-GAN 0.71 0.64 0.78 0.74 0.71 0.61
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Fig. 7: Image pair similarity using Arcface feature distances. The results show
that image pairs generated by our method have lower mean distances.

positive results were observed. This demonstrated the precise measurement of
identity similarity by Arcface. Notably, Arcface consistently identified a signif-
icant majority of the image pairs generated by our method as depicting the
same person, highlighting the robustness of our approach in preserving iden-
tity information. In contrast, the image pairs generated by SeFa and EigenGAN
exhibited larger distance values, primarily due to variations introduced in both
facial pose and appearance through principal direction changes. This impact was
particularly notable in the CA-H and FF-H tests, where even slight changes in
high-resolution images had a significant effect on the results. The results demon-
strate the superior accuracy of our approach in maintaining identity consistency
in the generated image pairs.
Viewpoint-Preserving Image Generation: In this experiment, our goal was
to generate images that preserve viewpoints by controlling the appearance, re-
sulting in 1,000 pairs of images. To assess the effectiveness of our method, we
measured the distance between facial landmarks for each image pair. The re-
sults, summarized in Table 3, compare the facial landmark consistency of our
approach with random pairs, SeFa, and EigenGAN across datasets with vary-
ing resolutions. Our approach consistently outperformed SeFa and EigenGAN,
achieving the lowest facial landmark distances across all datasets, demonstrating
superior preservation of viewpoints in generated images. SeFa and EigenGAN
often compromised viewpoint preservation by slightly altering facial poses when
regenerating images with appearance changes. Specifically, LC-GAN excels in
learning features related to controlling mouth movements and subtle facial ex-
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Fig. 8: Demonstration of semantic control in generated images. Image pairs
from top to bottom are generated using LC-GAN, SeFa, and EigenGAN, illustrating
controlled changes in the same semantic aspect (identity), along with face landmarks
estimated by MediaPipe’s face mesh model.

Table 3: Landmark distance between image pairs using MediaPipe’s face mesh.

Method CA-L FF-L CA-M FF-M CA-H FF-H
Random pairs 7.63 8.70 15.17 17.08 30.15 34.71
SeFa [30] 2.41 2.64 5.63 6.49 10.42 11.34
EigenGAN [11] 2.97 2.61 5.86 4.93 13.46 13.99

LC-GAN 1.65 1.97 3.66 4.19 5.83 9.09

pressions independently of identity changes. In contrast, SeFa and EigenGAN
often exhibit entanglement of these features with changes in identity. Visual ex-
amples illustrating the effectiveness of our method in preserving viewpoints are
available in Figure 8.
Effectiveness of Contrastive Loss and Spectral Regularization: To val-
idate the effectiveness of contrastive loss (CL) and spectral regularization (SR),
we conducted ablation experiments by training the model with and without these
terms. Focusing on the CA-L and FF-L datasets, we found that removing both
terms led to entangled features solely within the appearance latent code. The top
images in Figure 9 demonstrate the lack of disentanglement when both CL and
SR are removed. In contrast, applying CL without SR resulted in more uniformly
distributed features across dimensions. When controlling a target attribute, it
required editing multiple dimensions to achieve similar changes to the full model,
as the target features were spread across more dimensions. The middle images
in Figure 9 illustrate the increased need for manipulating multiple dimensions
to achieve similar variation compared to the full model. Regarding FID scores,
no significant differences were observed, although there was a slight degradation
when each component was applied individually: 3.54 and 3.66 for CA-L, and
3.30 and 3.45 for FF-L, without CL and SR, and only with CL, respectively.
Visual Analysis: Our exploration of the learned semantics revealed that the
proposed method excels in capturing both global features and intricate, specific
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Fig. 9: Comparison of ablated models controlling a dimension for yaw changes: without
CL and SR (top), with CL only (middle), and full model (bottom).

Texture

Class Mouth

Pitch

Hair

GenderZoom-in/out

Yaw Race

Fig. 10: Exploring the latent space: Our approach facilitates the exploration of
semantically meaningful features controlling various image properties.

attributes. Notably, the model can independently manipulate detailed behaviors
such as zoom-in/out and mouth movements, as shown in Figure 10. The gener-
ated results highlight the model’s enhanced controllability over these attributes.
For a more comprehensive exploration of the diverse set of discovered semantic
attributes, we recommend referring to the provided source code.

5 Conclusion and Limitations

We presented LC-GAN, a novel GAN framework for controllable image gener-
ation. By integrating unsupervised disentanglement techniques with the Style-
GAN architecture, LC-GAN produces high-quality images with control over im-
age properties. Extensive experiments on multiple datasets, including FF, CA,
and AF at different resolutions, demonstrated that LC-GAN outperforms SOTA
models in terms of FID scores and controllability in image synthesis. However,
LC-GAN has some limitations. The training process is time-consuming and re-
quires larger GPU memory, especially when incorporating contrastive loss. Addi-
tionally, achieving precise metric-level control, such as a 20-degree rotation, can
be challenging due to the unsupervised nature of the method. Future research
should focus on addressing these limitations and improving the efficiency and
precision of controllable image generation methods.
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