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Abstract. Collaborative perception has received widespread attention
recently since it enhances the perception ability of autonomous vehicles
via inter-agent information sharing. However, the performance of exist-
ing systems is hindered by the unavoidable collaboration noises, which
induce feature-level spatial misalignment over the collaborator-shared in-
formation. In this paper, we propose a model-agnostic and lightweight
plugin to mitigate the feature-level misalignment issue, called dynamic
feature alignment (NEAT). The merits of the NEAT plugin are three-
fold. First, we introduce an importance-guided query proposal to pre-
dict potential foreground regions with space-channel semantics and ex-
clude environmental redundancies. On this basis, a deformable feature
alignment is presented to explicitly align the collaborator-shared features
through query-aware spatial associations, aggregating multi-grained vi-
sual clues with corrective mismatch properties. Ultimately, we perform a
region cross-attention reinforcement to facilitate aligned representation
diffusion and achieve global feature semantic enhancement. NEAT can
be readily inserted into existing collaborative perception procedures and
significantly improves the robustness of vanilla baselines against pose er-
rors and transmission delay. Extensive experiments on four collaborative
3D object detection datasets under noisy settings confirm that NEAT
provides consistent gains for most methods with distinct structures.
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1 Introduction

Perception is a fundamental capability of autonomous vehicles (AVs) to guaran-
tee road safety in sophisticated driving scenarios [22]. Previous single-agent per-
ception has been extensively explored in vision-oriented vehicular applications,
including driver monitoring [39], object detection [24,42], and instance segmen-
tation [21, 52]. Nevertheless, the single-agent perception paradigm is generally
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(a) Infrastructure side image (d) Aligned point cloud fusion 

with our NEAT aligner

(b) Non-aligned point cloud fusion

due to transmission delay

(c) Non-aligned point cloud fusion 

due to localization errors

Fig. 1: (a) shows the infrastructure side image where the ego vehicle is marked with the
orange circle. (b) and (c) show the point cloud fusion mismatches due to transmission
delay and pose errors, respectively. (d) Our NEAT plugin mitigates the feature spatial
misalignment issue and produces the well-aligned point cloud fusion.

vulnerable in realistic conditions due to limited sensor ranges [51] and viewpoint
occlusions [50]. To this end, collaborative perception has been proposed as a
promising solution to alleviate the inadequate observations of individual agents.
Based on the Vehicle-to-Vehicle/Everything (V2V/X) communication, existing
studies [4,7,8,13,27–29,34–37,45,47,49] effectively improve the perception capa-
bilities of the ego agent through information exchange and perspective comple-
mentation among heterogeneous agents (e.g., AVs and infrastructures), resulting
in a more holistic and precise understanding of surrounding environments.

Collaborative perception systems are categorized as early [4, 23], intermedi-
ate [13], and late [26, 33] fusion, where the feature-level intermediate fusion is
the most favored due to its superior trade-off between perception performance
and bandwidth cost. However, existing approaches [27, 34, 37] design interme-
diate collaboration schemes assuming that the spatial transformations between
agents are perfect, which are vulnerable to real-world collaboration noises, in-
cluding pose errors and transmission delay. Specifically, these realistic noises
induce spatial misalignment at the feature level, thereby obfuscating the object
locations and degrading the collaboration performance. Fig. 1 illustrates visual
examples of the feature misalignment issues. We also conduct a toy comparison
experiment on the OPV2V dataset [37] to evaluate the hazards posed by collab-
oration noises. From Fig. 2, the state-of-the-art (SOTA) methods CoBEVT [34],
Where2comm [7], AttFuse [37], and F-Cooper [3] exhibit respectable detection
precisions in the perfect setting regarding the Average Precision (AP)@IoU 0.7.
Nevertheless, when confronted with the noisy setting in realistic scenarios, the
potential feature misalignment results in unavoidable performance deterioration,
even worse than the No Fusion baseline without collaboration. These findings
confirm that the feature misalignment leads to severe performance bottlenecks
in existing models. Accordingly, how to effectively mitigate these feature mis-
matches becomes the core of achieving robust collaborative perception.

Several solutions are proposed to mitigate feature-level misalignment in noisy
conditions. For instance, some integrated frameworks leverage attention patterns
with larger perceptive fields [36,41,45], multi-scale collaborator features [7,8,27],
and historical information [28, 31, 48]. However, these approaches invariably
lead to more complicated computations and larger bandwidth costs. Also, these
model-specific solutions lack scalability and fail to be applied to other frame-
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Fig. 2: We conduct a toy comparison experiment on the OPV2V dataset to evaluate
the noise interference. The potential feature misalignment in the noisy setting cause the
inevitable performance degradation of existing methods compared to the perfect set-
ting. In this case, the NEAT plugin consistently improves the detection precision of the
vanilla baselines. Under the same noisy conditions, NEAT brings more significant per-
formance improvements for the baselines compared to SyncNet [11] and CoAlign [18].

works. In addition, various plugins enhance the robustness of existing approaches
to specific noises, such as SyncNet [11] for transmission delay and CoAlign [18] for
pose errors. Nevertheless, the history-based prediction module in SyncNet intro-
duces significant computation and communication overheads, and the alignment
module in CoAlign relies heavily on common visible objects between agents.
Moreover, these plugins fail to cope with transmission delay and pose errors si-
multaneously since these two types of noises induce distinct mismatch patterns.
From Fig. 1b, transmission delay causes temporal asynchrony and produces fea-
ture misalignment in the object motion directions, which are depicted by the
direction-invariant red arrows. Moreover, pose errors bring about more irregular
misalignment patterns due to random localization noises, as shown in Fig. 1c. To
this end, we propose a lightweight plugin, NEAT, that can be readily integrated
into existing frameworks and requires only the ego and collaborator features. As
Fig. 2 shows, NEAT achieves more significant performance improvements than
CoAlign [18] and SyncNet [11] under the same noisy conditions. Also, the extra
parameter number brought from NEAT is only about 1MB (see Table 1).

In summary, we propose a model-agnostic and lightweight plugin, NEAT, to
alleviate the feature misalignment dilemma and facilitate robust collaboration
of multi-agent perception systems. Given ego and mismatched collaborator fea-
tures, our NEAT plugin accomplishes dynamic feature alignment progressively
through three tailored components. Specifically, we present the importance-
guided query proposal (IQP) module to highlight potential foreground regions
in collaborator features. IQP estimates the perceptually critical level of each
location and introduces multi-scale views for robust query selection. Then, the
deformable feature alignment (DFA) component is devised to integrate valuable
visual clues for selected queries and facilitate local semantic enhancement in col-
laborator features. DFA introduces global context support for object-related to-
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ken generation, then leverages the deformable cross-attention to construct query-
aware spatial associations and aggregate semantically relevant representations.
Ultimately, we propose the region cross-attention reinforcement (RCR) module
to diffuse the locally enhanced features into the global representation, producing
refined collaborator features with aligned properties for the subsequent feature
fusion stage. Our contributions can be summarized as follows:

– The proposed NEAT model is the first dedicated plug-and-play design to
address the feature misalignment issues caused by two types of collabora-
tion noises, which can be readily integrated into most methods with diverse
architectures and bring significant performance gains consistently.

– The proposed customized components progressively enhance perceptually
critical semantics in collaborator-shared features and provide a universal
solution for achieving the robust multi-agent perception system.

– Extensive experiments are conducted on multiple collaborative 3D object de-
tection datasets. Comprehensive analysis in real-world and simulated scenar-
ios under noisy settings shows the applicability and effectiveness of NEAT.

2 Related Work

2.1 Collaborative Perception

Collaborative perception aims to incorporate sensor observations from heteroge-
neous agents to improve the detection capability of the ego agent. Several inter-
mediate collaboration efforts are presented to enhance robustness in noisy con-
ditions, which can be categorized into integrated frameworks and scalable plug-
ins. The former efforts employ framework-specific designs to mitigate noise. For
instance, various works utilize attention patterns with larger receptive fields, in-
cluding Swin Transformer in V2X-ViT [36], axial attention in CoBEVT [34], and
deformable attention in SCOPE [45]. Moreover, FFNet [48] and CoBEVFlow [31]
apply feature flow to predict the current frame to mitigate transmission delay.
These prediction designs introduce significant computation and storage over-
heads and cause excessive cumulative errors. Multiscale solutions [7,8,17,28,30]
employ multiscale collaborator features to overcome local noise interference.
However, these methods invariably require sending multiple BEV features and
depend on complicated feature fusion mechanisms. The latter efforts allevi-
ate specific noises in a plug-and-play manner. Specifically, SyncNet [11] intro-
duces historical information to predict features based on DiscoNet [13], and
CoAlign [18] utilizes co-visible objects to calibrate the inter-agent transfer ma-
trix. Nevertheless, these plugins lack scalability due to their dependence on
specific conditions and noises, e.g., SyncNet’s requirement for extensive stored
collaborator features and CoAlign’s dependence on co-visible objects. To sum-
marize, the framework-specific methods fail to provide a unified solution for
overcoming noise interference, and the existing plugins can only handle one spe-
cific noise. Accordingly, we propose the lightweight NEAT plugin to mitigate
transmission delay and pose errors in a model-agnostic manner simultaneously.



Mitigating Feature Misalignment for Robust Multi-Agent Perception 5

Importance-guided 
Query Proposal

Naive Fusion View

Ego Feature

Deformable  Cross-Attention

Region Cross-Attention

Filling

Collaborator Feature

Token Generation

Multi-scale 
Convolution

Query Proposals

Feature
Sampling

Type-dependent 
Projection

Fig. 3: NEAT plugin overview. Features Fe and F̃i are inputs. First, NEAT obtains the
multi-scale views {F̃ l

i }3l=1 and utilizes the IQP module to produce the query proposals
Pi. The naive fusion view F̃i is built via type-dependent projection and ffus(·) to
provide global object-related semantics. Afterward, we sample features from {F̃ , F̃i}
based on the selected 2D positions in Pi and generate the token embedding Ti. With
deformable cross-attention and Ti, NEAT enhances the selected queries and obtains
initial aligned feature Z̃i via the filling operation. Ultimately, we take a partitioned
region as an example to introduce region cross-attention, which generates globally
enhanced aligned feature Zi for the subsequent feature fusion stage.

2.2 Vision Attention for Object Detection

Benefiting from the development of learning-based technologies [38,40,43,44,46],
attention mechanisms are widely exploited in vision tasks due to their outstand-
ing contextual modeling capabilities, such as DETR [2] and AutoAlign [5] for
object detection. However, vanilla global-wise attention invariably brings heavy
computation and storage burdens. Numerous efforts are proposed to alleviate
this issue via efficient attention designs, including [1, 6, 12, 14, 19, 25, 32, 53]. For
instance, deformable DETR [32] leverages the advantages of sparse spatial sam-
pling. AutoAlignV2 [6] builds cross-modal correlations and accelerates feature
integration through a deformable attention model. For LiDAR-based object de-
tection, Centerformer [53] presents two sparse attention schemes to facilitate the
extraction of meaningful object representations, including window-aware cross-
attention and deformable cross-attention. In this paper, we focus on the collabo-
rative 3D object detection tasks in autonomous driving scenarios, which expose
more challenges due to real-world collaboration noises. Consequently, we design
a deformable attention-based feature alignment component to mitigate error-
prone feature associations between collaborators and the ego agent, improving
the robustness of existing collaborative perception systems against noises.

3 Methodology

In this section, we formulate the collaborative perception procedure to introduce
the working context of our NEAT plugin.
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Feature Extraction and Agent Communication. Consider a driving scene
with N agents, where e-th agent is identified as the ego agent, and Xi denotes
the local point cloud of i-th agent. Each agent utilizes a feature encoder Φenc(·)
to transform the point cloud Xi into Bird’s Eye View (BEV) features as follows:

Fi = Φenc(Xi) ∈ RC×H×W , (1)

where C, H, W stand for the channel, height, and width. To reduce the required
bandwidth cost of Fi, the i-th collaborator adopts the communication mechanism
Φcom(·) to obtain the compressed or sparse feature as F̃i = Φcom(Fi). Then, the
i-th collaborator transmits feature F̃i and local pose information pi to the ego
agent for subsequent feature fusion stage.
Coordinate Transformation and Feature Fusion. Upon receiving the shared
messages {F̃i, pi} from the i-th collaborator, the ego agent obtain relative poses
with {pe, pi} and transform F̃i into the ego coordinate system via the coordi-
nate transformation operator Γ (·) [36] as F̃i = Γ (F̃i; pe, pi). After that, the ego
agent produces the fused feature Fe for the final detection with the transformed
features as follows:

Fe = Φfus(Fe, {F̃i}Ni=1) ∈ RC×H×W , (2)

where Φfus(·) denotes the cross-agent feature fusion models, such as attention
schemes [7, 36, 37] or graph models [28, 29]. However, collaboration noises (e.g .,
transmission delay and pose errors) cause feature-level spatial misalignment
shown in Fig. 1 and hinder the feature fusion procedure, leading to the per-
formance bottlenecks of existing frameworks under noisy conditions (see Fig. 2).

3.1 NEAT Overview

Unlike previous works [18, 28, 36, 45, 48] that superficially temper noise inter-
ference via integrated frameworks or plugins, we develop a model-agnostic and
lightweight NEAT plugin to explicitly mitigate two types of collaboration noises
and break performance bottlenecks of existing systems. As Fig. 3 shows, our
NEAT plugin only requires the features Fe and F̃i as inputs. Then, three tai-
lored components are progressively executed to produce the aligned feature Zi

for replacing F̃i in feature fusion. The summarized procedure includes: (i) F̃i is
encoded into three scales with the same channel size using simple convolutions,
and F̃ l

i denotes the feature at l-th scale. With this basis, the importance-guided
query proposal component produces the query proposals Pi ∈ RNp×2 with fea-
tures {F̃ l

i }3l=1 and Fe, where Np is the proposal number. (ii) The deformable
feature alignment component first builds the naive fusion view F̃ to provide
global object-related information, then acquires the initial aligned feature Z̃i

via critical semantics aggregation. (iii) The region cross-attention reinforcement
component applies the features Z̃i and F̃i to perform feature refinement, gener-
ating the aligned feature Zi for feature fusion. We will detail the implementation
of the above three proposed components in Sections 3.2, 3.3, and 3.4.
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3.2 Importance-guided Query Proposal

The query proposal phase aims to predict potential foreground regions, which
will be queried in the feature alignment phase. We present an Importance-guided
Query Proposal (IQP) component, which generates the importance map with
space-channel semantics and applies multi-scale views to alleviate the noise in-
terference for query selection. Unlike Where2comm [7], which relies on trained
decoders for query selection, IQP employs space-channel saliency and multiscale
solutions to accurately predict foreground regions under noisy conditions.
Importance Map Generation. To highlight object-related foreground regions
within the features, we utilize a two-stage scheme to generate importance maps
by exploring inter-pixel spatial interactions and intra-pixel channel semantics.
First, a convolution-based decoder fdec(·) is used to capture informative regions
and yield the corresponding spatial confidence map Ms

i of F̃i. Meanwhile, the
channel-wise average pooling operation Ψm(·) integrates the visual semantics
of different channels and produces the salient activation map M c

i . The above
schemes are formulated as:

Ms
i = σ(fdec(F̃i)), M

c
i = σ(Ψm(F̃i)), (3)

where σ(·) is the sigmoid activation. The importance map is obtained by these
two maps as Mi = Ms

i ⊙ M c
i ∈ [0, 1]H×W , where ⊙ denotes the element-wise

multiplication. Mi reflects the perceptually critical level of each location within
the collaborator feature F̃i.
Query Proposal Selection. Since high-resolution perception views are sensi-
tive to feature spatial misalignment [28], the single-scale importance maps in-
evitably induce erroneous foreground region predictions. To tackle this issue,
we leverage multi-scale collaborator features to generate the importance maps
{M l

i}3l=1 with varying perception resolutions, which can correct initial impor-
tance estimations. Moreover, the corresponding importance map Me of the ego
feature Fe is also obtained to complement possible occlusions in collaborators’
local observations. Given the above four importance maps, we synchronize their
spatial dimensions by bilinear interpolation and obtain the corresponding pixel-
wise average as M̃i. Then, the heuristic selection approach fsel(·; δ) applies a
predefined threshold δ to select the top δ% of spatial locations from M̃i as query
proposals Pi, which is formulated as Pi = fsel(M̃i; δ) ∈ RNp×2.

3.3 Deformable Feature Alignment

After the query selection phase, we introduce a Deformable Feature Alignment
(DFA) component tailored for explicit feature alignment, which enhances the rep-
resentation of query proposals with contextual visual clues and provides aligned
properties. Considering the inability of static local attention [7,34] to cope with
irregular feature misalignment and sparse BEV features, the deformable atten-
tion is adopted to build query-aware spatial associations and efficiently aggregate
perceptually relevant semantics. DFA consists of the following two stages.
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Object-related Token Generation. Previous deformable operations [32, 53]
generate tokens with query features to learn sampling offsets and attention
scores, which is not applicable to collaborative perception scenarios since sin-
gle collaborator features fail to provide global context information. Accordingly,
we propose to build a naive fusion view to provide global object-related semantics
for token generation and mitigate feature misalignment in collaborators’ local
observations. Specifically, all features are first projected to the common space
via type-dependent linear layers LNt(·). The intuition is that agent discrepancies
in sensor characteristics worsen feature mismatch, whereas the type-dependent
projection can capture agent-specific attributes and bridge feature heterogene-
ity [36]. Then, we employ a general fusion operation ffus(·) (e.g ., convolution [27]
and attention [37]) to generate the naive fusion view F̃ as follows:

F̃ = ffus(LNt(Fe), LNt(F̃i)) ∈ RC×H×W . (4)

As Fig. 3 shows, we extract the corresponding features of the query proposals
Pi from F̃ and F̃i and concatenate them along the channel dimension. The
linear layer LN(·) fuses the concatenated features to augment the object-related
information within the tokens. The generation process of object-related tokens
Ti is formulated as follows:

Ti = LN(F̃(Pi) ∥ F̃i(Pi)) ∈ RNp×C , (5)

where ∥ denotes the concatenation operation. Ti integrates the global semantics
in the naive fusion view and the local context from the collaborators, facilitating
subsequent attention learning to produce more robust aligned views.
Deformable Feature Aggregation. We first project Ti as positional encoding
and obtain the token embedding as T̃i = LN(Ti) + Ti. To aggregate compre-
hensive and multi-grained perceptual information, the multi-scale collaborator
feature {F̃ l

i }3l=1 and naive fusion view F̃ are utilized as attending features. Sub-
sequently, the token embedding T̃i is passed into a linear layer to learn the
sampling offset map ∆Pi for each attending feature, providing the 2D spatial
offsets {∆pm |1 ≤ m ≤ Nm} for each query proposal p, where Nm denotes the
sampled key point number. We leverage the learned offset maps to sample key
points on the four attending features and extract these key points’ features as
{F̃ l

i (Pi+∆Pi)}3l=1 and F̃(Pi+∆Pi), providing alignment properties for queries
and alleviating local misalignment. The attention scores of the sampled key
points are obtained as ϕ(LN(T̃i)), where ϕ(·) denotes the softmax function.

Given the sampled features and learned attention scores, we formulate the
enhanced feature of each query proposal p as follows:

DFA(p) =

H∑
h=1

Wh[

4∑
l=1

Nm∑
m=1

ϕ(LN(T̃i(p)))F̃
l
i (p+∆pm)], (6)

where h indexes the attention head, Wh is the learnable weight, and F̃(p+∆pm)
is rewritten as F̃ 4

i (p+∆pm) only for formula simplification. From Fig. 3, to pro-
duce the aligned feature Z̃i, the augmented feature DFA(p) is filled into F̃i based
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on the 2D location of query proposal p. Previous deformable attention-based ef-
forts [41,45] learn offsets and attention scores only with the local information of
the ego agent, which inevitably leads to sub-optimal feature aggregation. In con-
trast, NEAT optimizes the offset and attention learning process through tokens
Z̃i with global semantics. Also, NEAT significantly alleviates the computation
overhead by reducing the sampled key point number Nm (from 15 to 5).

3.4 Region Cross-attention Reinforcement

To generate the aligned feature Zi through global representation refinement, we
introduce a novel Region Cross-attention Reinforcement (RCR) component to
diffuse locally-enhanced features in Z̃i to the surroundings and aggregate the rel-
evant semantics from F̃i. With the guidance of confidence priors, RCR filters out
the irrelevant regions through region-wise correlation computation, reducing the
attending range of global pixel-to-pixel attention adaptively. In contrast, global
attention leads to excessive computation cost, while per-location attention [37]
fails to achieve global feature refinement through a limited interaction range.

Specifically, the features Z̃i and F̃i are first concatenated as Zr
i = Z̃i∥F̃i ∈

RC×2H×W . Then, we partition Z̃i and Zr
i into non-overlapping regions with

size (Sh, Sw) and apply the 1 × 1 convolution ω1∗1(·) to obtain the query, key,
value embeddings as Qi = ω1∗1(Z̃i) ∈ Rhw×ShSw×C and Ki, Vi = ω1∗1(Z

r
i ) ∈

R2hw×ShSw×C , where h = H
Sh

and w = W
Sw

. The region-wise query and key
embeddings are produced with the per-region average pooling operation Ψa(·):

Qr
i = Ψa(Qi ⊙Ms

i ), Kr
i = Ψa(Ki ⊙Mr

i ), (7)

where the confidence maps Ms
i /M

r
i = σ(fdec(Z̃i/Z

r
i )) are employed as prior

information to introduce object-related semantics during region selection. To se-
lect semantically related regions, we compute the correlation matrix by matrix
multiplication between Qr

i and transposed Kr
i and apply the selection func-

tion fsel(·; δr) to select the top δr regions. After that, as Fig. 3 shows, the fea-
tures of the selected regions are gathered to form the key and value embeddings
{Kg

i , V
g
i }. The above process is summarized as follows:

Kg
i , V

g
i = gather(fsel(Qr

i (K
r
i )

T ; δr)) ∈ Rhw×δrShSw×C . (8)

Ultimately, we adopt region cross-attention to reinforce the representation of
each pixel within Z̃i and produce the aligned feature Zi as follows:

Zi = ϕ(
Qi(K

g
i )

T

√
C

)V g
i ∈ Rhw×ShSw×C . (9)

We replace F̃i with the reshaped feature Zi ∈ RC×H×W and pass Zi into the
subsequent feature fusion stage. With the above RCR component, Zi aggregates
perceptually relevant semantics from the global context and mitigates the local
spatial misalignment. Accordingly, Zi provides more comprehensive and accurate
spatial information and facilitates more robust feature fusion than feature F̃i.
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4 Experiments

4.1 Experimental Setup

Datasets and Evaluation Metrics. We conduct extensive experiments on four
collaborative perception benchmark datasets, including V2XSet [36], OPV2V [37],
OPV2V Culver City [37], and V2V4Real [35]. V2XSet is a large-scale simulation
dataset supporting multi-agent V2X perception. This dataset contains 11,447 la-
beled point cloud frames, split into training/validation/testing sets with 6,694,
1,920, and 2,833 frames. The simulation dataset OPV2V provides raw sensor
measurements from 2 to 7 autonomous vehicles in each scene. There are 10,914
frames of point clouds and RGB images, and the training, validation, and test-
ing splits include 6,764, 1,981, and 2,169 frames. The testing dataset OPV2V
Culver City contains approximately 600 point cloud frames with 3D annota-
tions. V2V4Real is the first real-world dataset for V2V collaborative percep-
tion, where two self-driving vehicles are configured to record the surrounding
environments with multi-modal sensors. To evaluate the object detection perfor-
mance, we adopt the Average Precision (AP) at Intersection-over-Union (IoU)
thresholds of 0.5 and 0.7 as experimental metrics following [10].
Implementation Details. The proposed models are implemented using Py-
torch toolbox [20] and trained with Nvidia Tesla V100 GPUs by Adam opti-
mizer [9]. We set the default noisy setting to simulate the realistic noise levels,
where the localization and heading errors are sampled from Gaussian distribu-
tions with a standard deviation of 0.2 m and 0.2◦, and the transmission delay
is 100 ms. The batch sizes on the V2XSet, OPV2V, and V2V4Real datasets are
{3, 3, 5}, and epoch numbers are {15, 15, 10}. The initial learning rate is 2e-3,
decaying every ten epochs with a factor of 0.1. We implement the regression
and classification decoders using two convolutional layers to produce predictions
and use smooth absolute error loss and focal loss [15] for objective optimization.
fdec(·) reuses the parameters of the classification decoder and utilizes a maximum
pooling operation to reduce the channel dimension. The selection thresholds δ
on the V2XSet, OPV2V, and V2V4Real datasets are {25, 25, 35}. We employ the
per-location attention [37] to implement the fusion method ffus(·). The sampled
key point number Nm is 5, and the attention head H is 8. The RCR component
sets the region size (Sh, Sw) and threshold δr as (4, 8) and 2, respectively. We
provide the evaluation results on the testing sets of the four datasets.
Model Zoo. To evaluate the effectiveness of NEAT, we select five represen-
tative models with distinct structures as the comparison baselines. Specifically,
F-Cooper [3] employs a heuristic max-out strategy to fuse collaborator fea-
tures. CORE [27] designs a feature-level reconstruction task to preserve crit-
ical semantics and designs an attention-aware collaboration component. Att-
Fuse [37] uses the per-location attention to learn the attention weights of cor-
responding pixels across different feature maps. Where2comm [7] presents a
confidence-aware per-location attention design to facilitate pragmatic collabo-
ration. CoBEVT [34] applies axial attention to aggregate meaningful object
representations from local windows and sparse global tokens.
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Table 1: Comparisons of space-time complexity and performance on the four datasets.
The complexity results are reported in the average parameter number (Para.) and
MACs across datasets. The detection results are reported in AP@0.5/0.7.

Models Para. (M) MACs (G) V2XSet OPV2V V2V4Real OPV2V Culver City
AP@0.5 AP@0.7 AP@0.5 AP@0.7 AP@0.5 AP@0.7 AP@0.5 AP@0.7

No Fusion 6.37 30.46 60.60 40.22 68.71 48.66 39.78 22.02 55.7 47.10
Late Fusion 6.37 31.19 54.93 30.74 76.24 56.14 49.41 22.05 60.18 39.23

When2com [16] 11.31 186.46 68.84 42.93 72.73 54.80 51.82 24.11 61.73 40.61
V2VNet [29] 14.45 435.62 79.11 49.28 77.58 62.27 57.16 26.73 71.46 51.50
DiscoNet [13] 9.63 147.85 79.83 54.16 80.66 63.82 55.94 26.61 70.62 50.36
V2X-ViT [36] 15.39 306.78 83.59 61.44 84.76 68.92 55.35 28.72 73.48 54.04
SCOPE [45] 19.71 355.45 84.26 62.17 85.02 71.13 56.28 28.04 72.27 53.66
FFNet [48] 13.74 251.02 78.76 55.49 83.26 65.58 57.02 28.55 70.51 52.83

CoBEVFlow [31] 15.56 295.27 82.94 58.35 85.18 69.24 59.37 30.63 74.06 54.37

F-Cooper [3] 8.21 160.25 71.47 46.92 79.28 58.46 53.19 25.93 68.68 48.02
F-Cooper + NEAT 9.50 165.41 83.03 60.94 86.91 67.81 56.25 32.70 74.91 53.28

CORE [27] 11.14 172.53 73.89 43.24 78.85 56.17 57.65 29.74 68.95 45.65
CORE + NEAT 12.51 178.08 76.35 48.06 81.14 60.45 60.91 34.19 70.63 48.48

AttFuse [37] 8.53 115.54 70.85 48.66 80.23 59.82 55.86 27.88 70.90 51.26
AttFuse + NEAT 9.85 120.98 80.30 55.97 84.37 68.19 60.60 34.24 75.22 55.21
Where2comm [7] 10.36 210.92 81.98 53.43 80.55 61.92 58.37 31.49 70.32 50.17

Where2comm + NEAT 11.64 216.67 83.42 58.72 82.06 64.84 59.28 35.43 73.57 53.29
CoBEVT [34] 12.03 238.14 81.12 54.30 81.32 63.19 58.20 28.72 71.54 52.33

CoBEVT + NEAT 13.37 244.75 85.07 65.16 90.01 75.41 60.55 34.97 78.82 58.10

4.2 Detection Performance Comparison

Table 1 presents the average space-time complexity and detection performance
comparison between various baselines and the NEAT-based models under de-
fault noisy settings across the four datasets. The complexity is measured by the
mainstream Parameter Number (M) and MACs (G). No Fusion represents the
ego-centered perception without collaboration. Late Fusion refers to aggregat-
ing all agents’ output boxes and producing the results by non-maximum sup-
pression. Moreover, we consider representative and reproducible state-of-the-art
(SOTA) methods, including When2com [16], V2VNet [29], V2X-ViT [36], Dis-
coNet [13], SCOPE [45], FFNet [48] and CoBEVFlow [31]. The key observations
are listed below. (i) NEAT significantly improves the five selected models on
all metrics with very slight complexity costs. For instance, the NEAT-based F-
Cooper, CORE, AttFuse, Where2comm, and CoBEVT achieve an average gain
of 8.85%, 4.10%, 6.50%, 3.81%, and 8.78% compared to their vanilla counterparts
across the four datasets concerning AP@0.7. (ii) Compared to V2X-ViT [36],
SCOPE [45] and FFNet [48] that implicitly mitigate the feature misalignment
by integrated frameworks, the models equipped with NEAT achieve better per-
formance. Specifically, the NEAT-based CoBEVT enables the method CoBEVT
to achieve SOTA performance on all four datasets with a slight extra com-
putation cost. The reasonable explanations include: (1) The importance-aware
NEAT alleviates misalignment conditions by aggregating semantically relevant
object representations, which is applicable to methods with diverse structures;
(2) our plugin can flexibly address varying feature mismatches in real-world (e.g .,
V2V4Real) and simulated scenes via global feature refinement.

4.3 Robustness to Localization Error

Evaluating the collaboration performance under diverse pose error levels is es-
sential in assessing the system robustness. Fig. 4 show the detection precision
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Fig. 4: Robustness assessment of the localization error on the three datasets.
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Fig. 5: Robustness assessment of the transmission delay on the three datasets.

of the four models before and after equipping the NEAT plugin under varying
pose noises. The localization error is sampled from Gaussian distributions with
a standard deviation of σxyz ∈ [0, 0.5] m. (i) Intuitively, due to the flawed inter-
agent spatial transformation caused by pose errors, the performance curves of all
intermediate fusion methods show an evident downward trend with increasing
error levels. In comparison, our NEAT plugin alleviates the performance degra-
dation and significantly improves the vanilla baselines at all error levels. (ii) For
instance, Where2comm [7] on V2XSet degrades to similar results as No Fusion
under severe localization errors. In this case, NEAT mitigates the feature mis-
alignment and enhances the corresponding performance favorably. These findings
verify that NEAT can empower existing models with robust resistance to noise
interference by aligning collaborator features.

4.4 Robustness to Transmission Delay

As Fig. 1b shows, temporal asynchrony caused by transmission delay also in-
duces deleterious feature misalignment, resulting in subsequent two-side fusion
errors among agents. Fig. 5 provides the robustness analysis of vanilla base-
lines and NEAT-based models against varying delays. Inevitably, performance
deterioration spreads across all vanilla methods as transmission delay contin-
uously increases. In particular, the AP@0.7 result of F-Cooper [3] on OPV2V
drops substantially, even lower than the baseline No Fusion (AP@0.7 = 48.66%)
when the delay exceeds 300 ms. Conversely, NEAT provides significant gains for
different models at all delay levels. That is, the NEAT-based models maintain
high detection precision compared to the vanilla counterparts, even under a se-
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(a) AttFuse (b) AttFuse + NEAT (c) CoBEVT (d) CoBEVT + NEAT

Fig. 6: Qualitative comparison results in real-world scenarios from the V2V4Real
dataset [35]. Green and red boxes denote ground truths and detection results, respec-
tively. Compared to the vanilla baselines, NEAT-based models significantly improve
the detection results.

vere delay (i.e., 400 ms). Our plugin’s merit stems from the query-aware spatial
associations to compensate for temporal asynchrony.

4.5 Qualitative Evaluation

To intuitively evaluate the merits of NEAT, we select two challenging scenar-
ios on V2V4Real to present the detection visualizations of vanilla baselines and
NEAT-based models. In Fig. 6, AttFuse [37] and CoBEVT [34] exhibit vulnerable
performance in noisy settings due to massive missing predicted bounding boxes.
Through the proposed plugin, the NEAT-based models produce more detection
results that are well aligned with the ground truths. These observations con-
firm that NEAT improves the detection robustness of collaborative perception
systems under noisy conditions.

4.6 Comparison of Plugin Methods

We compare the existing plugins SyncNet [11] and CoAlign [18] on V2XSet,
OPV2V, and V2V4Real datasets to explore the effectiveness of NEAT. As shown
in Table 2, four models are selected as baselines to observe the detection per-
formance changes, including CoBEVT [34], AttFuse [37], F-Cooper [3], and
CORE [27]. NEAT provides more significant and consistent performance gains
across different baselines by jointly addressing the pose errors and transmission
delay. In contrast, CoAlign and SyncNet offer sub-optimal solutions due to their
noise-specific designs and inadequate improvements. In practice, our NEAT in-
troduces extremely low spatio-temporal complexity overhead (i.e., Para. = 1.31
M and MACs = 5.11 G) compared to the existing plugins, including CoAlign
and SyncNet. Specifically, these two plugins bring average parameter numbers
of 2.94/3.80M and MACs of 26.51/31.02G across datasets, respectively.
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Table 2: Comparison results of plugin
methods on the V2XSet, OPV2V, and
V2V4Real datasets. We provide four
models for different plugins as baselines
for use in assembly, including CoBEVT,
AttFuse, F-Cooper, and CORE. NEAT
brings more significant gains to vanilla
models on all metrics.

Models V2XSet OPV2V V2V4Real

CoBEVT 81.12/54.30 81.32/63.19 58.20/28.72
CoBEVT + SyncNet 82.28/57.75 83.77/67.42 58.74/31.75
CoBEVT + CoAlign 83.15/60.20 85.65/69.21 59.05/31.22
CoBEVT + NEAT 85.07/65.16 90.01/75.41 60.55/34.97

AttFuse 70.85/48.66 80.23/59.82 55.86/27.88
AttFuse + SyncNet 75.07/52.34 81.92/62.77 58.14/30.79
AttFuse + CoAlign 76.82/51.90 82.53/64.03 57.32/31.37
AttFuse + NEAT 80.30/55.97 84.37/68.19 60.60/34.24

F-Cooper 71.47/46.92 79.28/58.46 53.19/25.93
F-Cooper + SyncNet 77.29/52.76 83.16/62.45 54.78/27.76
F-Cooper + CoAlign 76.73/53.42 82.83/63.16 55.02/29.64
F-Cooper + NEAT 83.03/60.94 86.91/67.81 56.25/32.70

CORE 73.89/43.24 78.85/56.17 57.65/29.74
CORE + SyncNet 75.23/45.53 79.82/56.96 58.37/31.82
CORE + CoAlign 74.41/45.77 80.07/57.54 58.56/31.41
CORE + NEAT 76.35/48.06 81.14/60.45 60.91/34.19

Table 3: Ablation study results of the
proposed components on the V2XSet,
OPV2V, and V2V4Real datasets. FA:
deformable feature aggregation; TG:
object-related token generation; MG:
importance map generation; PS: query
proposal selection; RCR: region cross-
attention reinforcement.

CoBEVT [34] + NEAT V2XSet OPV2V V2V4RealFA TG MG PS RCR

81.12/54.30 81.32/63.19 58.20/28.72
" 82.69/58.24 84.41/67.05 58.95/31.81
" " 83.10/59.97 85.74/69.30 59.43/32.45
" " " 83.56/62.08 87.26/72.16 59.87/33.50
" " " " 83.94/63.25 88.33/73.58 60.02/34.33
" " " " " 85.07/65.16 90.01/75.41 60.55/34.97

AttFuse [37] + NEAT V2XSet OPV2V V2V4RealFA TG MG PS RCR

70.85/48.66 80.23/59.82 55.86/27.88
" 74.24/51.48 81.95/62.66 57.44/29.96
" " 76.27/52.41 82.36/64.05 58.35/31.47
" " " 77.35/54.02 82.95/65.51 59.23/32.64
" " " " 78.64/54.63 83.14/66.38 59.82/33.22
" " " " " 80.30/55.97 84.37/68.19 60.60/34.24

4.7 Ablation Studies

We select two representative models to perform thorough ablation studies on
V2XSet, OPV2V, and V2V4Real to verify the necessity of the proposed compo-
nents. As Table 3 shows, the vanilla baselines without any components in NEAT
are employed as the performance reference. On this basis, we progressively add
(1) FA, (2) TG, (3) MG, (4) PS, and (5) RCR and present the correspond-
ing AP@0.5/0.7 results. (i) The continuously improved detection performance
over the three datasets reveals that each component provides indispensable con-
tributions. (ii) Particularly, deformable feature aggregation brings noteworthy
gains by aggregating vital context semantics with corrective mismatch attributes,
while object-related token generation facilitates attention learning by introduc-
ing global object-related semantics. (iii) Furthermore, region cross-attention re-
inforcement efficiently diffuses the locally enhanced representations with region-
wise attention, achieving global feature refinement and significant improvements.

5 Conclusion

This paper proposes NEAT, a lightweight plugin, to address the feature misalign-
ment issue induced by collaboration noises in multi-agent perception systems.
NEAT accomplishes the explicit alignment of collaborator-shared features with
customized components, ensuring subsequent high-quality collaboration and per-
ception. Extensive experiments show that NEAT can be readily integrated into
existing methods to provide a generic solution for improving system robustness.
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