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Abstract. Implicit representation of an image can map arbitrary co-
ordinates in the continuous domain to their corresponding color values,
presenting a powerful capability for image reconstruction. Nevertheless,
existing implicit representation approaches only focus on building con-
tinuous appearance mapping, ignoring the continuities of the semantic
information across pixels. Consequently, achieving the desired reconstruc-
tion results becomes challenging when the semantic information within
input image is corrupted, such as when a large region is missing. To
address the issue, we suggest learning semantic-aware implicit represen-
tation (SAIR), that is, we make the implicit representation of each pixel
rely on both its appearance and semantic information (e.g ., which object
does the pixel belong to). To this end, we propose a framework with two
modules: (1) a semantic implicit representation (SIR) for a corrupted
image. Given an arbitrary coordinate in the continuous domain, we can
obtain its respective text-aligned embedding indicating the object the
pixel belongs. (2) an appearance implicit representation (AIR) based on
the SIR. Given an arbitrary coordinate in the continuous domain, we can
reconstruct its color whether or not the pixel is missed in the input. We
validate the novel semantic-aware implicit representation method on the
image inpainting task, and the extensive experiments demonstrate that
our method surpasses state-of-the-art approaches by a significant margin.

Keywords: Image inpainting · Semantic-aware implicit representation ·
Visual language model

1 Introduction

Implicit neural representation has demonstrated surprising performance in the 2D
image [5, 10], video [4] and novel view [29,40,49] reconstruction. They achieve
this by extracting appearance features from 2D images using an encoder and
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Fig. 1: Semantic-aware implicit representation (SAIR) is composed of semantic implicit
representation (SIR) and appearance implicit representation (AIR). SIR processes the
corrupted image and obtains its text-aligned embedding. AIR reconstructs the color.

then associating continuous coordinates with corresponding appearance features
through a neural network, ultimately translating them into the RGB color space.
However, these methods tend to neglect the semantic meaning of individual
pixels. Reconstructed images may contain noticeable artifacts or lose crucial
semantic information, especially when dealing with degraded input images, such
as those with large missing regions. As shown in Fig. 1, when the local appearance
information is missing around the woman’s eye, previous implicit representation
methods like LIIF [5] fall short in accurately reconstructing the missing pixels.

To address this issue, we propose a novel approach called Semantic-Aware
Implicit Representation (SAIR). In SAIR, each pixel’s implicit representation
depends on both its appearance and semantic context (e.g., the object it belongs
to). This integration of continuous semantic mapping mitigates the limitations of
only employing appearance implicit representation. Consequently, even in cases of
degraded appearance information, the network can produce high-quality outputs
with the aid of semantic information. This enhancement benefits various image
processing tasks, including image generation, inpainting, editing, and semantic
segmentation. As illustrated in Fig. 1, our method surpasses the existing implicit
neural representation approaches that rely solely on appearance mapping on the
image inpainting task. Remarkably, even when confronted with severely degraded
input images, e.g ., a large region misses, our approach still can accurately fill in
the missing pixels, yielding a natural and realistic result.

The proposed semantic-aware implicit representation involved two modules:
(1) a semantic implicit representation (SIR) for a corrupted image whose large
regions miss. Given an arbitrary coordinate in the continuous domain, the
SIR can obtain its respective text-aligned embedding indicating the object the
pixel belongs to. (2) an appearance implicit representation (AIR) based on
the SIR. Given an arbitrary coordinate in the continuous domain, AIR can
reconstruct its color whether or not the pixel is missed in the input. Specifically,
to implement the SIR, we first use the modified CLIP [32] encoder to extract
the text-aligned embedding from the input image. This specific modification
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(see Section 4.2) allows CLIP to output a spatial-aware embedding without
introducing additional parameters and altering the feature space of CLIP. The
text-aligned embedding can effectively reflect the pixel-level semantic information.
However, this embedding has a smaller dimension compared to the input image.
Moreover, when the input image is significantly degraded, the quality of the
extracted embedding deteriorates considerably. To address those problems, we
utilize the semantic implicit representation within the text-align embedding. This
process not only expands the feature dimensions but also compensates for missing
information when the input image is severely degraded.

To implement AIR, we utilize a separate implicit representation function that
takes three inputs: the appearance embedding extracted from the input image
using a CNN-based network, the enhanced text-aligned embedding by SIR (see
Section 4.3), and the pixel coordinates which indicating the location information.
This allows AIR to leverage both appearance and semantic information simul-
taneously. We validate the novel semantic-aware implicit representation (SAIR)
method on the image inpainting task and conducted comprehensive experiments
on the widely utilized CelebAHQ [26] and ADE20K [50] datasets. The extensive
experiments demonstrate that our method surpasses state-of-the-art approaches
by a significant margin.

In summary, our main contributions are listed as follows:

– We acknowledge the limitation of existing implicit representation methods
that rely solely on building continuous appearance mapping, hindering their
effectiveness in handling severely degraded images. To address this limitation,
we introduce Semantic-Aware Implicit Representation (SAIR).

– We propose a novel framework to implement SAIR which involves two mod-
ules:(1) Semantic implicit representation (SIR) for enhancing semantic embed-
ding, and (2) Appearance implicit representation (AIR), which builds upon
SIR to leverage both semantic and appearance information simultaneously.

– Comprehensive experiments on the widely utilized CelebAHQ [26] and
ADE20K [50] datasets demonstrate that our proposed method surpasses
previous implicit representation approaches by a significant margin across
four commonly used image quality evaluation metrics, i.e., PSNR, SSIM, L1,
and LPIPS.

2 Related Work

Implicit neural representation. Implicit neural functions find applications
across a wide spectrum of domains, encompassing sound signals [36], 2D images [2,
5, 11,15], videos [4], and 3D shapes [8, 12,43,44]. These functions offer a means
to continuously parameterize signals, enabling the handling of diverse data types,
such as point clouds in IM-NET [6] or video frames in NERV [3]. Implicit
neural functions have demonstrated their ability to generate novel views, as
exemplified by Nerf [29], which leverages an implicit neural field to synthesize
new perspectives. Within the domain of image processing, methods like LIIF [5]



4 Canyu Zhang, Xiaoguang Li, Qing Guo, Song Wang

establish a connection between pixel features and RGB color, facilitating arbitrary-
sized image super-resolution. LTE [15], a modification of LIIF, extends this
concept by incorporating additional high-frequency information in Fourier space to
address the limitations of a standalone MLP. Recently, However, these approaches
lack explicit consideration of semantic information during training, which can
result in potential inconsistencies at the semantic level.

Image inpainting. Image inpainting techniques [1, 7, 16, 17, 27, 31, 39, 45] are
designed to restore corrupted image regions by leveraging information from non-
missing portions, which can benefit many downstream tasks [18,19]. Established
methods such as [22, 30, 34] employ edge information or smoothed images to
guide the restoration process. Another noteworthy approach, as introduced by
[25], relies on valid pixels to infer the missing ones. Furthermore, [9] incorporates
an element-wise convolution block to reconstruct missing regions around the
mask boundary while utilizing a generative network to address other missing
areas. Extending upon these techniques, [20] advances the inpainting process by
implementing element-wise filtering at both feature and image levels. Feature-
level filtering is tailored for substantial missing regions, while image-level filtering
refines local details. However, contemporary inpainting models face challenges
when confronted with substantial missing regions, as reliable neighborhood
features are often lacking. In such scenarios, text prompts prove invaluable as a
robust guidance mechanism, enhancing the inpainting process.

Image-text cross-model learning. Cross-model networks have gained
substantial attention across various image processing domains, including image
semantic segmentation [28, 41, 52], image generation [21, 33, 38, 53], and visual
question answering (VQA) [42, 48]. For instance, DF-GAN [38] represents a
one-stage text-to-image backbone capable of directly synthesizing high-resolution
images. In the realm of image segmentation, [28] leverages latent diffusion
models (LDMs) to segment text-based real and AI-generated images. In VQA,
[24] incorporates explicit object region information into the answering model.
Furthermore, [46] harnesses text to assist the model in generating missing
regions within images, thereby pushing the boundaries of image inpainting
tasks. Additionally, language models like CLIP [32] have emerged to bridge
the gap between image and semantic features. In this paper, we explore the
influence of semantic information within the implicit neural function on the
image inpainting task. Through the integration of semantic information, our
objective is to endow the model with a more profound comprehension of the
semantic meaning associated with specific image coordinates.

3 Preliminary: Local Image Implicit Representation

Given an image I, an implicit representation for the image is to map coordinates
in the continuous domain to corresponding color values; that is, we have

cp =
∑
q∈Np

ωqfθ(z
app
q , dist(p,q)), (1)
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Fig. 2: Pipeline of our semantic-aware implicit representation (SAIR). The semantic
implicit representation (SIR) is used to complete the missing semantic information. The
appearance implicit representation (AIR) is used to complete missing details

where p is the continuous coordinates, the output cp is the color of the pixel
p, Np contains all neighboring pixels of p within the image I, fθ(·) is an MLP
for coordinate-color mapping, ωq is the weight of q, and zapp

q is the appearance
feature of pixel q. Note that, all pixels in Np are sampled from the input image I
and their features {zapp

q } are extracted through an encoder network for handling I.
Intuitively, the MLP is to transform the appearance embedding of a neighboring
pixel to the color of the pixel p based on their spatial distance. Recent works
have demonstrated that training above implicit representation via image quality
loss (e.g ., L1 loss) could remove noise or perform super-resolution [6, 11, 15].
However, when the neighboring pixels in Np miss, the implicit representation via
Equation 1 is affected. As shown in Fig. 3, the existing implicit representation
approaches cannot properly reconstruct the pixels within missing regions.

4 Semantic-aware Implicit Representation (SAIR)

4.1 Overview

To address the issue, we propose the semantic-aware implicit representation
(SAIR), which contains two key modules, i.e., semantic implicit representation
(SIR) and appearance implicit representation (AIR). The first objective is to
create a continuous semantic representation that enables us to fill in the missing
semantic information within the input image. The second objective is to develop
a continuous appearance representation that allows us to restore missing details.

Specifically, given an input image I ∈ RH×W×3 that may contain some missing
regions indicated by a mask M ∈ RH×W , we aim to build the semantic implicit
representation (SIR) to predict semantic embedding of an arbitrary given pixel
whose coordinates could be non-integer values. The embedding could indicate
the object the pixel belongs to. We formulate the process as

zsem
p = SIR(I,M,p), (2)
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where zsem
p denotes the semantic embedding of the pixel p. Intuitively, we require

the SIR to have three properties: ❶ The predicted semantic embedding should be
well aligned with the extract category of the object the pixel belongs to. ❷ If the
given coordinate (i.e., p) is within unlost regions but with non-integer values, SIR
could estimate its semantic embedding accurately. This requires SIR to have the
capability of interpolation. ❸ If the specified coordinate is within missing regions,
SIR could complete the semantic embedding properly. We extend the local image
implicit representation to the embedding level with text-aligned embeddings and
propose the SIR in Section 4.2 to achieve the above three properties.

After getting the semantic embedding of the desired pixel, we further estimate
the appearance (e.g ., color) of the pixel via the appearance implicit representation;
that is, we have

cp = AIR(I, SIR,p), (3)

where cp denotes the color of the desired pixel p. Intuitively, AIR is to predict
the color of p according to the built semantic implicit representation (SIR) and
input appearance. We detail the process in Section 4.3.

4.2 Semantic Implicit Representation (SIR)

We first use the modified CLIP model to extract the text-aligned embedding as
the semantic embedding. Specifically, inspired by the recent work MaskCLIP
[51], we remove the query and key embedding layers of the raw CLIP model and
restructured the value-embedding and final linear layers into two separate 1× 1
convolutional layers. This adjustment is made without introducing additional
parameters or altering the feature space of CLIP, allowing the CLIP output a
spatial-aware embedding tensor. Given the input image I ∈ RH×W×3, we feed it
into the modified image encoder of CLIP and output a tensor Zsem ∈ Rh×w×c

where h, w, and c are the height, width, and channel numbers. Note that Zsem

is not pixel-wise embedding with h ≪ H and w ≪ W , which have much lower
resolution than I. MaskCLIP employs the naive resize operation to map the Zsem

to the same size as the input image, which cannot complete the missing semantic
information. Instead, we propose to extend local image implicit representation to
the text-aligned embedding and formulate the SIR as

zsem
p = SIR(I,M,p) =

∑
q∈Np

ωqfθ([z
sem
q ,M[q]],dist(p,q)), (4)

where zsem
q = Zsem[q] is the embedding of the q location at Zsem, and Np denotes

the set of neighboring coordinates around p. dist(p,q) measures the distance
between p and q. fθ(·) is a MLP with the θ being the weights. Intuitively, fθ(·)
is to estimate the text-aligned embedding of the location p according to the
known embedding of q and the spatial relationship between p and q. Finally, all
estimations based on different q are weightly combined through ωq that is also
set as the area ratio of p-q-made rectangle in the whole neighboring area.
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4.3 Appearance Implicit Representation (AIR)

With the built SIR, we aim to build the appearance implicit representation
(AIR) that can estimate the colors of arbitrarily specified coordinates. In first
step, we use a CNN-based appearance encoder to generate appearance feature
Zapp = AppEncoder(I,M), and Zapp ∈ RH×W×C . Given a pixel’s coordinates
p, we predict its color by

cp = AIR(I,M, SIR,p) =
∑
q∈Np

ωqfβ([z
app
q ,SIR(I,M,q)], dist(p,q)), (5)

where zapp
q = Zapp[q] is the appearance embedding of q-th pixel. The function

fβ is a MLP with the β being its weights. Intuitively, we estimate the color
of the p-th pixel according to the appearance and semantic information of the
neighboring pixels by jointly considering the spatial distance. For example, if a
pixel p misses, the appearance feature of p (i.e., zapp

p ) is affected and tends to
zero while the semantic information could be inferred from contexts. As shown in
Fig. 2, even though the pixels around the left eye miss, we still know the missed
pixels belong to the left eye category.

4.4 Implementation Details

Network architecture. We utilize and modify the pre-trained ViT-B/16 image
encoder of CLIP model to extract the semantic embedding. And we set the
AppEncoder as a convolutional neural network and detail the architecture in
Table 1, which is capable of generating features of the same size as the input image.

Table 1: Architecture of AppEncoder.
H × W is the resolution of the input.

Output size Operation

H × W Conv(4, 64, 7, 1, 3), ReLU
H/2 × W/2 Conv(64, 128, 4, 2, 1), ReLU
H/4 × W/4 Conv(128, 256, 4, 2, 1), ReLU

Resnet × 8
H/4 × W/4 Conv(256, 256, 3, 1, 1), ReLU
H/4 × W/4 Conv(256, 256, 3, 1, 1), ReLU

H/2 × W/2 Conv(256, 128, 4, 2, 1), ReLU
H × W Conv(128, 64, 4, 2, 1), ReLU

Our MLP modules fα(·) and fβ(·)
are four-layer MLP with ReLU acti-
vation layers, and the hidden dimen-
sion is 256. Loss functions. During
the training phase, we employ the L1
loss to measure the discrepancy be-
tween the predicted pixel color and
the ground truth pixel color, which
is utilized for calculating the recon-
struction loss L1. To guarantee the fea-
ture after SIR remains in text-aligned
feature space, we choose L1 loss to
quantify the dissimilarity between the unmasked image’s text-aligned feature
Zsem

unmask ∈ Rh×w×c, and the SIR reconstructed feature Zreconstructed
LR ∈ Rh×w×c

without changing the resolution. The final loss function is L = L1 + αL2.
Hyperparameters. We employ the Adam optimizer with parameters (β1 =

0.9, β2 = 0.999). The learning rate is set to 0.0001 and is halved every 100 epochs.
Our models are trained for 200 epochs on two NVIDIA Tesla V100 GPUs, and
the batch size is set to 16.
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Table 2: Comparison results on the CelebAHQ dataset across varied mask ratios.

Method
0%-20% 20%-40% 40%-60%

PSNR↑ SSIM↑ L1 ↓ LPIPS↓ PSNR↑ SSIM↑ L1 ↓ LPIPS↓ PSNR↑ SSIM↑ L1 ↓ LPIPS↓

EdgeConnect 34.53 0.964 0.005 0.038 27.30 0.889 0.025 0.104 22.32 0.771 0.035 0.195
RFRNet 34.93 0.966 0.005 0.035 27.50 0.890 0.024 0.100 22.77 0.775 0.033 0.185
JPGNet 35.86 0.972 0.004 0.040 28.18 0.909 0.023 0.119 22.32 0.771 0.035 0.195
LAMA 36.04 0.973 0.008 0.024 29.14 0.932 0.020 0.029 22.94 0.854 0.033 0.152
MISF 36.32 0.976 0.012 0.019 29.85 0.932 0.021 0.055 23.91 0.868 0.042 0.133
LIIF 35.27 0.969 0.012 0.023 28.80 0.923 0.026 0.043 23.30 0.830 0.051 0.136

SAIR 37.97 0.977 0.010 0.016 31.49 0.944 0.019 0.025 24.87 0.870 0.031 0.124

5 Experimental Results

5.1 Setups

Datasets. We validate the effectiveness of proposed method through compre-
hensive experiments conducted on two widely used datasets: CelebAHQ [14]
and ADE20K [50]. CelebAHQ is a large-scale dataset consisting of 30,000 high-
resolution human face images, selected from the CelebA dataset [26]. These face
images are categorized into 19 classes, and for our experiments, we use 25,000
images for training and 5,000 images for testing purposes. ADE20K, on the other
hand, is a vast dataset comprising both outdoor and indoor scenes. It consists of
25,684 annotated training images, covering 150 semantic categories. We leverage
this dataset to evaluate our method’s performance on scene inpainting tasks.
To create masked images for our experiments, we utilize the mask dataset [25]
similar as the previous works [20]. This dataset offers over 9,000 irregular binary
masks with varying mask ratios, spanning from 0% to 20%, 20% to 40%, and 40%
to 60%. These masks are instrumental in generating realistic inpainting scenarios
for evaluation purposes.

Baselines. We enhance our approach by incorporating semantic representa-
tions based on previous implicit neural function model LIIF [5]. By modifying
image encoder and integrating semantic information, we obtain the semantic-
aware implicit function, denoted as SAIR. For comparative analysis, we select
state-of-the-art inpainting methods StructFlow [34], EdgeConnect [30], RFR-
Net [16], JPGNet [9], LAMA [37], MISF [20], and the implicit neural function
without semantic information LIIF [5] as our baselines.

Evaluation metrics. To assess the performance of all methods, we utilize
four commonly employed image quality evaluation metrics: peak signal-to-noise
ratio (PSNR), structural similarity index (SSIM), L1 loss, and learned perceptual
image patch similarity (LPIPS) [47]. PSNR, SSIM, and L1 offer insights into the
quality of the generated image, while LPIPS quantifies the perceptual distance
between the restored image and the ground truth.
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Table 3: Comparison results on the ADE20K dataset across varied mask ratios.

Method
0%-20% 20%-40% 40%-60%

PSNR↑ SSIM↑ L1 ↓ LPIPS↓ PSNR↑ SSIM↑ L1 ↓ LPIPS↓ PSNR↑ SSIM↑ L1 ↓ LPIPS↓

EdgeConnect 30.91 0.948 0.007 0.049 24.18 0.841 0.022 0.139 20.07 0.694 0.048 0.259
RFRNet 30.36 0.937 0.008 0.073 23.42 0.807 0.027 0.199 19.21 0.638 0.060 0.340
JPGNet 31.65 0.952 0.007 0.074 24.72 0.851 0.022 0.202 20.46 0.713 0.048 0.342
LAMA 31.07 0.956 0.009 0.036 24.15 0.859 0.025 0.116 20.15 0.713 0.048 0.257
MISF 31.45 0.954 0.006 0.032 24.97 0.859 0.020 0.117 20.59 0.717 0.044 0.233
LIIF 30.96 0.946 0.010 0.038 24.57 0.846 0.026 0.120 19.79 0.708 0.049 0.274

SAIR 31.01 0.964 0.005 0.034 26.44 0.866 0.023 0.110 21.88 0.722 0.042 0.193

5.2 Comparison Results

The results obtained on the CelebAHQ dataset are presented in Table 2, demon-
strating a significant performance improvement achieved by incorporating seman-
tic information into the models. For instance, SAIR outperforms MISF by 1.74
in PSNR for the 0–20% mask ratio. Moreover, SAIR surpasses LAMA by 2.35
in PSNR and 1.2% in SSIM for 20–40% ratio. In the 20–40% mask ratio, SAIR
exhibits enhancements of 2.69 in PSNR and 7.1% in SSIM compared to LIIF.
The results on the ADE20K dataset, as shown in Table 3, also reveal the effec-
tiveness of incorporating semantic information. SAIR achieves a lowered LPIPS
of 0.193 for the 40–60% mask ratio. And SAIR improves PSNR to 26.44 and
SSIM to 86.6% in 20–40% ratio range. Notably, SAIR attains the best PSNR and
SSIM performance for all mask ratios. These results demonstrate that semantic
information aids in processing degraded images. Our approach overcomes the
limitations imposed by noise in masked area appearance features by leveraging
the guidance of semantic information.

Qualitative results from different models are presented in Fig. 3, showcasing sig-
nificant enhancements achieved by our proposed method.

Fig. 4: From left to right, we show the in-
put masked image, masked semantic feature
after CLIP encoder, and semantic feature
after SIR.

Fig. 3 unmistakably illustrates that
the implicit neural function models
lacking semantic guidance tend to pro-
duce blurry reconstructions in the af-
fected regions, often displaying a no-
ticeable boundary between masked
and unmasked areas. In contrast, mod-
els enriched with semantic information
yield more visually coherent and pleas-
ing results. As observed in the first
row, it becomes apparent that tradi-
tional implicit neural functions like LIIF struggle to recover the ’eye’ category
when it is entirely masked. In such cases, the neighboring appearance features
can only provide information about the ’face.’ However, SAIR demonstrates its
ability to reconstruct the ’eye’ category effectively, benefitting from the restored
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     Input                  LIIF                  LAMA               MISF               SAIR                    GT

Fig. 3: Visual comparison with competitors: the first two cases are from the CelebAHQ
dataset, while the last two are from the ADE20K dataset.

semantic features. Furthermore, in the last row of Fig. 3, the original implicit
neural function generates unexpected regions prominently.

In Fig. 4, we present a visual representation of the image features be-
fore and after the application of our SIR module. The pre-trained CLIP en-
coder cannot handle the masked regions ideally. And it becomes evident that
our proposed SIR module effectively reconstructs the corrupted image feature.
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vs Epoch.

To assess the impact of semantic infor-
mation during the training process, we
visually analyze the training progress
of both LIIF and SAIR. The training
loss curves depicted in Fig. 5 demon-
strate that both models converge at
a similar point. This observation sug-
gests that the inclusion of semantic
information can facilitate loss con-
vergence without necessitating an ex-
tended training duration. Moreover, as seen in Fig. 5, the PSNR curve illustrates
that the model enriched with semantic information consistently outperforms the
original implicit representation model right from the outset.
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5.3 Ablation Study

Study on using different image encoders. To demonstrate the compatibility
of our semantic feature embedding with various image encoders,

Table 4: Ablation study
results on different image
encoders and different im-
plicit neural function mod-
els on CelebAHQ dataset.

Variant All mask ratios
PSNR↑ SSIM↑

EDSR(wo) 30.26 0.892
EDSR(w) 31.48 0.913

LTE 30.60 0.931
SemLTE 31.97 0.939

we conducted an ablation study in which we replaced
our image encoder with the original LIIF encoder
EDSR [23]. As indicated in Table 4, when compared
to a model without the inclusion of semantic features
(EDSR(wo)), the model that incorporates semantic
features (EDSR(w)) also exhibited improvements, in-
creasing the PSNR by 1.12 and the SSIM by 2.1%.
These experiments provide compelling evidence that
semantic information has the potential to enhance per-
formance across different appearance feature spaces.
Study on using different implicit neural func-
tions. In order to demonstrate the versatility of our
semantic feature integration with various implicit neu-
ral functions, we conducted an ablation study using another implicit neural
function known as LTE [15], which is specifically designed for image super-
resolution tasks. In this study, we seamlessly incorporated semantic features into
LTE, creating what we refer to as SemLTE. The resulting performance metrics
are presented in Table 4, where SemLTE achieved significant improvements,
elevating the PSNR to 31.97 and the SSIM to 93.9%. These outcomes affirm
the adaptability of our proposed semantic implicit representation, showcasing its
effectiveness when applied to different implicit neural functions.

Study on the models with/without SIR block. To further assess the
effectiveness of SIR module, we conducted performance tests on the CLIP
encoder, both with and without the SIR in the semantic segmentation task.

Table 5: Semantic seg-
mentation results from the
models with/without SIR
on ADE20K dataset.
Variant mIoU

CLIP Encoder 0.17
CLIP Encoder+ SIR 0.45

We use masked images as inputs to generate the seg-
mentation results, which are compared with ground
truth. In the setting ’without SIR’, we initially em-
ployed the CLIP text encoder to produce category
features CLIP_T ∈ RL×C for all categories in the
dataset, where L represents the number of categories.
Subsequently, we used CLIP_T to filter the semantic
feature CLIP_I, yielding a pixel-wise segmentation
map S ∈ RH×W×L. In the setting ’with SIR’, we use the SIR block to reconstruct
the CLIP semantic feature CLIP_I, the reconstructed feature is used for seg-
mentation. The results presented in Table 5 indicate that the inclusion of the SIR
block leads to a notable increase in mIoU by 0.28, demonstrating the effective
capacity of the SIR model to reconstruct semantic features.

Study on not filling the semantic feature (NFS). In the preceding
section, we employed SIR to reconstruct the semantic feature of masked im-
ages. Here, we delve into an alternative scenario where we do not to fill in
the masked semantic feature. In our experiments, we introduced masked se-
mantic features into the implicit neural function alongside the appearance fea-
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ture. However, as evident in the results presented in Table 6 under the label
NFS, this approach yields suboptimal performance when compared to SAIR.

Table 6: Ablation study on
Not filling semantic feature
(NFS), Only using semantic
feature (OUS), and SAM en-
coder on CelebAHQ dataset.

Variant All mask ratios
PSNR↑ SSIM↑

NFS 30.32 0.923
OUS 31.11 0.929
SAM Encoder 31.72 0.935

SAIR 32.36 0.944

Specifically, it leads to a noticeable decrease of 2.04
in PSNR and a 2.1% reduction in SSIM. The pres-
ence of meaningless semantic information within
the masked region exerts an adverse influence on
the construction of the implicit representation.
Study on only using semantic feature to
build implicit representation (OUS). In this
section, we explore the possibility of constructing a
continuous representation using only semantic fea-
tures, meaning that we exclusively input semantic
information into the implicit neural function. The
results is shown in Table 6 as the OUS. It’s worth
noting that the CLIP image encoder is trained to
produce features that align with textual information. In essence, this experi-
ment underscores the significance of integrating both semantic and image-level
information to attain favorable outcomes in image generation tasks.

Using other semantic embeddings. As an alternative to employing our
Semantic Implicit Representation (SIR), we can also utilize existing models
designed for semantic embeddings, such as the previously introduced semantic
segmentation model SAM [13]. To demonstrate this, we replaced our CLIP
encoder with the pre-trained SAM image encoder, and the results are presented
in Table 6. Notably, it becomes evident that the CLIP encoder outperforms
traditional semantic segmentation encoders in this context. This superiority is
attributed to the CLIP encoder’s capacity to capture rich textual information,
further enhancing the inpainting task’s performance.

Study on using SAIR for image superresolution. Our approach extends
beyond its primary application and is equally effective for image super-resolution
tasks (mask ratio is 0). SIR block can significantly enhance the resolution of
semantic maps to various higher levels. In comparison to existing method LIIF,
our proposed technique demonstrates superior super-resolution capabilities, as
evidenced by the PSNR/SSIM results presented in Table 8 across different
upsample ratios on CelebAHQ dataset. All models are trained under × 4 setting.
SAIR outperforms LIIF across all mask ratios, leveraging the wealth of semantic
information embedded within the images.

Importance of implicit neural function (INF). We design three vari-
ants of SAIR to validate the necessity of leveraging INR: ❶ We remove the
INR from SIR by replacing Equation 4 with a bilinear operation, i.e., zsem

p =
SIRwoINR(I,q) =

∑
q∈Np

Wqz
sem
q , where {Wq} is the set of bilinear weights.

❷ We remove the INR from AIR by replacing Equation 5 with a convolu-
tional layer and a bilinear operation, i.e., cp = AIRwoINR(I,M, SIR,p) =∑

q∈Np
Wqfcnn([z

app
q ,SIR(I,M,q)]). Note that, SIR remains the same.
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Table 8: Ablation study results on using SAIR for image superresolution.

PSNR ↑ /SSIM ↑ Upscale ratio
× 2 × 4 × 6 × 8

LIIF 34.32/0.963 30.98/0.882 30.13/0.838 29.83/0.819
SAIR 34.61/0.972 31.24/0.881 30.39/0.840 30.03/0.825

Table 7: Ablation study results on INF.
Variants SIR w. INR AIR w. INR PSNR↑ SSIM↑

❶ ✔ 27.29 0.912
❷ ✔ 29.77 0.921
❸ 26.09 0.893

SAIR ✔ ✔ 30.97 0.962

❸ We remove INR from both SIR and
AIR by performing the above replace-
ments at the same time. The exper-
iments are conducted on CelebAHQ
dataset. As shown in Table 7, once
we remove INR from SIR or AIR, the performance decreases, demonstrating its
superior capability compared to alternatives such as bilinear operations and CNN
layers.

5.4 Discussion

Comparison with diffusion based inpainting methods. The diffusion model
is a popular topic and has been widely used in image inpainting tasks. However,
our proposed method surpasses diffusion-based approaches in three key aspects.
First, inference speed. The inference speed of our method (0.043s/image) is
faster than that of the diffusion-based method, such as stable diffusion [35]
(12s/image). Second, arbitrary resolution. Our method can generate images at
arbitrary resolutions during inference, a capability lacking in diffusion-based
models. Third, high fidelity. Diffusion-based models prioritize naturalness over
fidelity, resulting in generated results that deviate significantly from the ground
truth. We compare our method with stable diffusion on the CelebAHQ dataset
under the same setting, the results are PSNR ↑ 37.97 (ours) vs. 37.60 (stable
diffusion) and L1 ↓ 0.01 (ours) vs. 0.032 (stable diffusion). The diffusion model
tends to generate results with low fidelity.

6 Future Work

In this study, we have demonstrated the effectiveness of the Semantic-Aware
Implicit Representation (SAIR) in the domain of image inpainting. While our
proposed method has shown remarkable performance in this specific task, its
broader applicability to other vision-related tasks has yet to be fully explored. As
part of our future research endeavors, we plan to conduct additional experiments
to assess the potential of our method in addressing various vision tasks beyond
inpainting, such as segmentation and denoising.



14 Canyu Zhang, Xiaoguang Li, Qing Guo, Song Wang

7 Conclusion

In this paper, we tackle the limitations inherent in existing implicit representation
techniques, which predominantly rely on appearance information and often
falter when faced with severely degraded images. To address this challenge, we
introduce a novel approach: the semantic-aware implicit representation (SAIR).
By seamlessly using a semantic implicit representation (SIR) to handle the
pixel-level semantic feature and a appearance implicit representation (AIR)
to reconstruct the image color, our method effectively mitigates the impact
of potentially degraded regions. To gauge the effectiveness of our approach,
we conducted comprehensive experiments on two widely recognized datasets,
CelebAHQ [26] and ADE20K [50]. The results unequivocally demonstrate that our
method outperforms existing implicit representation and inpainting approaches
by a substantial margin across four commonly employed image quality evaluation
metrics. Our model’s capacity to assist the implicit neural function in processing
damaged images expands its utility and applicability, offering promising prospects
for various image-related tasks.

Acknowledgments. This research is supported by the National Research
Foundation, Singapore, and DSO National Laboratories under the AI Singapore
Programme (AISG Award No: AISG2-GC-2023-008), Career Development Fund
(CDF) of Agency for Science, Technology and Research (No.: C233312028), and
National Research Foundation, Singapore and Infocomm Media Development
Authority under its Trust Tech Funding Initiative (No. DTC-RGC-04).

References

1. Bar, A., Gandelsman, Y., Darrell, T., Globerson, A., Efros, A.: Visual prompting
via image inpainting. NeurIPS 35, 25005–25017 (2022)

2. Cao, Y., Li, T., Cao, X., Tsang, I., Liu, Y., Guo, Q.: Irad: Implicit representation-
driven image resampling against adversarial attacks. In: ICLR (2024)

3. Chen, H., He, B., Wang, H., Ren, Y., Lim, S.N., Shrivastava, A.: Nerv: Neural
representations for videos. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang,
P., Vaughan, J.W. (eds.) NeurIPS. vol. 34, pp. 21557–21568. Curran Associates,
Inc. (2021)

4. Chen, J., Ren, X., Guo, Q., Juefei-Xu, F., Lin, D., Feng, W., Ma, L., Zhao, J.:
Lrr: Language-driven resamplable continuous representation against adversarial
tracking attacks. In: ICLR (2024)

5. Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local
implicit image function. In: CVPR. pp. 8628–8638 (2021)

6. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In:
CVPR. pp. 5939–5948 (2019)

7. Feng, T., Feng, W., Li, W., Lin, D.: Cross-image context for single image inpainting.
NeurIPS 35, 1474–1487 (2022)

8. Grattarola, D., Vandergheynst, P.: Generalised implicit neural representations.
arXiv preprint arXiv:2205.15674 (2022)

9. Guo, Q., Li, X., Juefei-Xu, F., Yu, H., Liu, Y., Wang, S.: Jpgnet: Joint predic-
tive filtering and generative network for image inpainting. In: ACM International
Multimedia. pp. 386–394 (2021)



SAIR: Learning Semantic-aware Implicit Representation 15

10. Guo, Z., Lan, C., Zhang, Z., Chen, Z., Lu, Y.: Versatile neural processes for learning
implicit neural representations. arXiv preprint arXiv:2301.08883 (2023)

11. Ho, C.H., Vasconcelos, N.: Disco: Adversarial defense with local implicit functions.
arXiv preprint arXiv:2212.05630 (2022)

12. Hsu, J., Gu, J., Wu, G., Chiu, W., Yeung, S.: Capturing implicit hierarchical
structure in 3d biomedical images with self-supervised hyperbolic representations.
NeurIPS 34, 5112–5123 (2021)

13. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., Dollár, P., Girshick, R.: Segment anything.
arXiv:2304.02643 (2023)

14. Lee, C.H., Liu, Z., Wu, L., Luo, P.: Maskgan: Towards diverse and interactive facial
image manipulation. In: CVPR (2020)

15. Lee, J., Jin, K.H.: Local texture estimator for implicit representation function. In:
CVPR. pp. 1929–1938 (June 2022)

16. Li, J., Wang, N., Zhang, L., Du, B., Tao, D.: Recurrent feature reasoning for image
inpainting. In: CVPR. pp. 7760–7768 (2020)

17. Li, W., Lin, Z., Zhou, K., Qi, L., Wang, Y., Jia, J.: Mat: Mask-aware transformer
for large hole image inpainting. In: CVPR. pp. 10758–10768 (2022)

18. Li, X., Guo, Q., Abdelfattah, R., Lin, D., Feng, W., Tsang, I., Wang, S.: Leveraging
inpainting for single-image shadow removal. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 13055–13064 (2023)

19. Li, X., Guo, Q., Cai, P., Feng, W., Tsang, I., Wang, S.: Learning restoration is
not enough: Transfering identical mapping for single-image shadow removal. arXiv
preprint arXiv:2305.10640 (2023)

20. Li, X., Guo, Q., Lin, D., Li, P., Feng, W., Wang, S.: Misf: Multi-level interactive
siamese filtering for high-fidelity image inpainting. In: CVPR. pp. 1869–1878 (2022)

21. Li, Z., Min, M.R., Li, K., Xu, C.: Stylet2i: Toward compositional and high-fidelity
text-to-image synthesis. In: CVPR. pp. 18197–18207 (2022)

22. Liao, L., Xiao, J., Wang, Z., Lin, C.W., Satoh, S.: Uncertainty-aware semantic
guidance and estimation for image inpainting. IEEE Journal of Selected Topics in
Signal Processing 15(2), 310–323 (2020)

23. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks
for single image super-resolution. In: CVPR Workshop. pp. 136–144 (2017)

24. Lin, Y., Xie, Y., Chen, D., Xu, Y., Zhu, C., Yuan, L.: Revive: Regional visual
representation matters in knowledge-based visual question answering. arXiv preprint
arXiv:2206.01201 (2022)

25. Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image
inpainting for irregular holes using partial convolutions. In: ECCV. pp. 85–100
(2018)

26. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
ICCV (December 2015)

27. Lu, Y., Zhou, J., McDorman, S.T., Zhang, C., Scott, D., Bukuts, J., Wilder,
C., Smith, K.Y., Wang, S.: Snowvision: Segmenting, identifying, and discover-
ing stamped curve patterns from fragments of pottery. International Journal of
Computer Vision 130(11), 2707–2732 (2022)

28. Lüddecke, T., Ecker, A.: Image segmentation using text and image prompts. In:
CVPR. pp. 7086–7096 (2022)

29. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commu-
nications of the ACM 65(1), 99–106 (2021)



16 Canyu Zhang, Xiaoguang Li, Qing Guo, Song Wang

30. Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: Edgeconnect: Structure
guided image inpainting using edge prediction. In: ICCV Workshops. pp. 0–0 (2019)

31. Ni, M., Li, X., Zuo, W.: Nuwa-lip: Language-guided image inpainting with defect-free
vqgan. In: CVPR. pp. 14183–14192 (2023)

32. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International conference on machine learning. pp.
8748–8763. PMLR (2021)

33. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125
1(2), 3 (2022)

34. Ren, Y., Yu, X., Zhang, R., Li, T.H., Liu, S., Li, G.: Structureflow: Image inpainting
via structure-aware appearance flow. In: CVPR. pp. 181–190 (2019)

35. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models (2021)

36. Su, K., Chen, M., Shlizerman, E.: Inras: Implicit neural representation for audio
scenes. NeurIPS 35, 8144–8158 (2022)

37. Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov,
A., Kong, N., Goka, H., Park, K., Lempitsky, V.: Resolution-robust large mask
inpainting with fourier convolutions. WACV (2022)

38. Tao, M., Tang, H., Wu, F., Jing, X.Y., Bao, B.K., Xu, C.: Df-gan: A simple and
effective baseline for text-to-image synthesis. In: CVPR. pp. 16515–16525 (2022)

39. Wang, Y., Tao, X., Qi, X., Shen, X., Jia, J.: Image inpainting via generative
multi-column convolutional neural networks. NeurIPS 31 (2018)

40. Xie, Z., Zhang, J., Li, W., Zhang, F., Zhang, L.: S-nerf: Neural radiance fields for
street views. arXiv preprint arXiv:2303.00749 (2023)

41. Xu, J., De Mello, S., Liu, S., Byeon, W., Breuel, T., Kautz, J., Wang, X.: Groupvit:
Semantic segmentation emerges from text supervision. In: CVPR. pp. 18134–18144
(2022)

42. Yang, Z., Lu, Y., Wang, J., Yin, X., Florencio, D., Wang, L., Zhang, C., Zhang, L.,
Luo, J.: Tap: Text-aware pre-training for text-vqa and text-caption. In: CVPR. pp.
8751–8761 (2021)

43. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit
surfaces. NeurIPS 34, 4805–4815 (2021)

44. Yin, F., Liu, W., Huang, Z., Cheng, P., Chen, T., YU, G.: Coordinates are not
lonely–codebook prior helps implicit neural 3d representations. arXiv preprint
arXiv:2210.11170 (2022)

45. Zhang, C., Guo, Q., Li, X., Wan, R., Yu, H., Tsang, I., Wang, S.: Superinpaint:
Learning detail-enhanced attentional implicit representation for super-resolutional
image inpainting. arXiv preprint arXiv:2307.14489 (2023)

46. Zhang, L., Chen, Q., Hu, B., Jiang, S.: Text-guided neural image inpainting. In:
ACM Multimedia. p. 1302–1310 (2020)

47. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018)

48. Zhao, M., Li, B., Wang, J., Li, W., Zhou, W., Zhang, L., Xuyang, S., Yu, Z., Yu,
X., Li, G., et al.: Towards video text visual question answering: Benchmark and
baseline. In: Thirty-sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (2022)

49. Zhenxing, M., Xu, D.: Switch-nerf: Learning scene decomposition with mixture of
experts for large-scale neural radiance fields. In: ICLR (2022)



SAIR: Learning Semantic-aware Implicit Representation 17

50. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing
through ade20k dataset. In: CVPR. pp. 633–641 (2017)

51. Zhou, C., Loy, C.C., Dai, B.: Extract free dense labels from clip. In: ECCV. pp.
696–712. Springer (2022)

52. Zhou, Z., Lei, Y., Zhang, B., Liu, L., Liu, Y.: Zegclip: Towards adapting clip for
zero-shot semantic segmentation. In: CVPR. pp. 11175–11185 (2023)

53. Zhu, Y., Liu, H., Song, Y., Yuan, Z., Han, X., Yuan, C., Chen, Q., Wang, J.: One
model to edit them all: Free-form text-driven image manipulation with semantic
modulations. NeurIPS 35, 25146–25159 (2022)


	SAIR: Learning Semantic-aware Implicit Representation

