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Overview
In this document, we first present the network details in Section 1. Then, we

analyze the effectiveness of the proposed large-pretrained visual model guided
feature estimation (PVGFE) module and the memory-based feature propagation
(MFP) module in Section 2 and Section 3. To examine the effectiveness of the
proposed local attention (LA) module on video colorization, we further analyze
it in Section 4. We then compare with closely-related methods in Section 5.
In addition, we conduct a user study to investigate the subjective preference by
human observers of each colorization method in Section 6. Finally, we show more
visual comparisons on both synthetic datasets and real-world videos in Section 7.

1 Network Details

As stated in Section 3 of the main manuscript, our method contains a large-
pretrained visual model guided feature estimation module, a memory-based fea-
ture propagation module, and a local attention module for video colorization.
We also show the network details of the proposed memory-based deep spatial-
temporal feature propagation network for video colorization in Figures 2 of the
main manuscript. In this document, we list the detailed architecture of our
proposed ColorMNet in Table 1. The spatial resolution of the input image is
448 × 448 pixels. To handle test videos of varying dimensions, we first follow
the widely used protocol to pad images so that they are divisible by 112 as the
usage of ViT-S/14 from DINOv2 and stage-4 features from ResNet50 requires
images to be divisible by 14 and 16, respectively. Then we interpolate the features
generated by DINOv2 to match the resolution of those generated by ResNet.

2 Effectiveness of the Large-Pretrained Visual Model
Guided Feature Estimation Module

As stated in Section 5 of the manuscript, we have analyzed the effectiveness
of the large-pretrained visual model guided feature estimation (PVGFE) mod-
ule. In this supplemental material, we further show more visual comparisons
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Table 1: Detailed architecture of our proposed ColorMNet.
[
Conv. 7×7, 64, stride 2

]
denotes a convolution with the filter size of 7×7 pixels with the filter number of 64 with
stride 2, Embed dim. denotes the dimension of embedding,

[
Interpolation, ×2

]
denotes

an interpolation operation with a scale factor equal to 2,
[
ResBlock, 256

]
denotes a

ResBlock consisting of convolutions with the filter size of 3 × 3 pixels with the filter
number of 256.

ColorMNet
Output size ResNet50 [3] DINOv2 [9]

Key feature extractor (PVGFE)
28×28×1024

Conv. 7×7, 64, stride 2
MaxPool, 3×3, stride 2 Conv. 1×1, 64

Conv. 3×3, 64
Conv. 1×1, 256

 × 3Conv. 1×1, 128
Conv. 3×3, 128
Conv. 1×1, 512

 × 4 Conv. 1×1, 256
Conv. 3×3, 256
Conv. 1×1, 1024

 × 6

Patch Embedding
Transformer block
Patch size = 14

Embed dim. = 384
Heads = 6

Blocks = 12
FFN layer = MLP

 × 12

Concat features from last 4 layers
Conv. 1×1, 1536

Interpolation, ×14/16
Conv. 3×3, 1024

28×28×64 Conv. 3×3, 64 Conv. 3×3, 64
28×28×64 Cross-channel attention [13]

Value feature extractor (ResNet18 [3]) 28×28×256

ResNet18 [3]
Conv. 7×7, 64, stride 2
MaxPool, 3×3, stride 2[

Conv. 1×1, 64
Conv. 3×3, 64

]
× 2[

Conv. 1×1, 128
Conv. 3×3, 128

]
× 2[

Conv. 1×1, 256
Conv. 3×3, 256

]
× 2

28×28×512 Conv. 3×3, 512

Decoder

112×112×256

Interpolation, ×2
ResBlock, 256

Interpolation, ×2
ResBlock, 256

112×112×2 Conv. 1×1, 2
112×112×2 GRU [1]
448×448×2 Interpolation, ×4

to demonstrate the effectiveness of the PVGFE module. In ‘ComparisonsWith-
SOTA.mp4’, we show that our proposed ColorMNet with using the PVGFE is
able to generate better-colorized videos.

To better understand the feature estimators mentioned above, we use the
PCA tools by [9] to visualize the features generated by them. Figure 1(b) shows
that ResNet50 cannot generate features that are aware of semantic structures.
Although DINOv2 generates more semantic features in Figure 1(c) and (d), it
lacks the local details vital for colorization tasks, which explains why DINOv2
performs favorably in high-level vision tasks, i.e., classification and segmentation
(see [9] for details), but fails in colorization as the exact colors for pixels of
objects are crucial considerations in colorization, unlike in segmentation where
the primary decision is whether or not a pixel belongs to a human. Figure 1(e)
shows that our proposed PVGFE module is capable of generating better features
optimized for colorization, retaining both semantic relevance and local details.
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(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

Fig. 1: Visualization of features. We use the PCA tools by [9]. (a) Input frame.
(b)-(e) are the features generated by the feature extractors of ColorMNetw/ ResNet50,
ColorMNetw/ DINOv2, ColorMNetw/ Concatenation and ColorMNet (Ours), respectively.
Compared with (b), (c) and (d), our proposed PVGFE can generate features that are
not only semantic-aware (i.e., the players and the dancer in the foreground) but also
sensitive to local details (i.e., a crowd of spectators in the background) in (e).
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Fig. 2: Extensive ablation study on the detailed design of the proposed MFP module.

3 Effectiveness of the Memory-based Feature Propagation
Module

As stated in Section 5 of the manuscript, we have analyzed the effectiveness
of the memory-based feature propagation (MFP) module. In this supplemental
material, we further show more visual comparisons to demonstrate the effective-
ness of the MFP module. In ‘ComparisonsWithSOTA.mp4’, we show that our
proposed ColorMNet with using the MFP is able to generate better-colorized
videos compared with the method without using the MFP.

In addition, we conduct an extensive ablation study on the parameters of the
proposed MFP module. Figure 2(a) shows that our method achieves its peak
PSNR when γ equals 5, as a higher γ risks potential information loss, while
a lower γ could contribute redundant data. Figure 2(b) and (c) show that our
method generally achieves slightly higher PSNR values with Ne, Ns and M
increasing, respectively. However, note that the GPU memory usage escalates
correspondingly with larger values of Ne, Ns and M .

4 Effectiveness of the Local Attention Module

As stated in Section 5 of the manuscript, we have analyzed the effectiveness of the
local attention (LA) module. We empirically set λ = 7 for λ× λ patch N (p). In
this supplemental material, we further show more visual comparisons to demon-
strate the effectiveness of the LA module. In ‘ComparisonsWithSOTA.mp4’, we
show that our proposed ColorMNet with using the LA is able to generate better-
colorized videos.
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(a) Inputs (b) MAMBA [11] (c) MeMOTR [2] (d) Ours

Fig. 3: Comparison results with closely-related methods on the DAVIS [10].

ColorMNet (Ours)
58.5%

BiSTNet
25.5%

DeepExemplar
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DeepRemaster
4.5%

(b) Input video (c) Exemplar (d) [4]

(a) Averaged selection percentage of user study (e) [14] (f) [12] (g) Ours

Fig. 4: User study result and an example of a group of results displayed to human
observers in the user study. (a) shows that our proposed ColorMNet achieves obviously
higher score than other state-of-the-art methods, which demonstrates its subjective
advantages. (b)-(g) are the input video, the exemplar image, the colorized videos by
DeepRemaster [4], DeepExemplar [14], BiSTNet† [12] and ColorMNet (Ours), respec-
tively. We make the methods anonymous and randomly sort the videos in (d)-(g) to
ensure fairness. † denotes that two exemplars are used.

5 Closely-related methods.

To the best of our knowledge, we are the first to optimize a memory bank strat-
egy suitable for colorization, yet it should be acknowledged that related strate-
gies have been explored in some video processing works, e.g ., MAMBA [11]
constructs a memory bank to solve video object detection by employing ran-
dom selection strategy, MeMOTR [2] introduces a long-term memory to solve
video object tracking by assigning exponentially decaying weights to it. Unlike
MAMBA which applies a randomized selection approach, treating every feature
on par, or MeMOTR which updates past memorized features via exponentially
decaying weights, our proposed MFP module stores features based on their im-
portance which is determined by the frequency of usage, thus empowering the
ability of global relation mining.

We further adopt the random selection in MAMBA and the decaying weights
in MeMOTR to replace our MFP for comparison. To ensure a fair comparison,
the same training settings are kept for model testing. Figure 3 shows that our
method can generate better colors for the dancing girl and the green grass.
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6 User Study

To evaluate whether our results are favored by human observers, we further con-
duct user study experiments. Specifically, we compare our method with exemplar-
based methods, i.e., BiSTNet [12], DeepExemplar [14] and DeepRemaster [4].
We randomly select 10 input videos from the DAVIS [10] validation set, the
Videvo [7] validation set and the NVCC2023 [5] validation set together with the
colorization results and the exemplar images displayed to 20 online observers
without constraints. We make the methods anonymous and randomly sort the
videos in each group to ensure fairness. Observers are asked to choose the most
visually pleasing results from a group of videos. Figure 4 shows that our method
is preferred by a wider range of users than other state-of-the-art methods.

7 More Experimental Results

In this section, we provide more visual comparisons with state-of-the-art meth-
ods on both synthetic and real-world videos. Figures 5-16 show the compar-
isons, where our method generates better colorized frames. In ‘Comparison-
sWithSOTA.mp4’, we show that the proposed method generates vivid and real-
istic videos.
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(a) Input frame and exemplar image (b) DDColor [6]

(c) Color2Embed [15] (d) TCVC [8]

(e) VCGAN [16] (f) DeepRemaster [4]

(g) DeepExemplar [14] (h) ColorMNet (Ours)

Fig. 5: Colorization results on clip bike-packing from the DAVIS validation dataset [10].
The results shown in (b) and (c) still contain significant color-bleeding artifacts. [4, 8,
14, 16] do not recover the man well. In contrast, our proposed method generates a
better-colorized frame, where the man is restored well and the colors look better.
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(a) Input frame and exemplar image (b) DDColor [6]

(c) Color2Embed [15] (d) TCVC [8]

(e) VCGAN [16] (f) DeepRemaster [4]

(g) DeepExemplar [14] (h) ColorMNet (Ours)

Fig. 6: Colorization results on clip blackswan from the DAVIS validation dataset [10].
The results shown in (b) and (c) still contain significant color-bleeding artifacts. In
contrast, our proposed method generates a better-colorized frame.
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(a) Input frame and exemplar image (b) DDColor [6]

(c) Color2Embed [15] (d) TCVC [8]

(e) VCGAN [16] (f) DeepRemaster [4]

(g) DeepExemplar [14] (h) ColorMNet (Ours)

Fig. 7: Colorization results on clip breakdance from the DAVIS validation dataset [10].
The results shown in (b) and (c) still contain significant color-bleeding artifacts. In
contrast, our proposed method generates a better-colorized frame, where the colors of
the dancer are restored well.
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(a) Input frame and exemplar image (b) DDColor [6]

(c) Color2Embed [15] (d) TCVC [8]

(e) VCGAN [16] (f) DeepRemaster [4]

(g) DeepExemplar [14] (h) ColorMNet (Ours)

Fig. 8: Colorization results on clip car-roundabout from the DAVIS validation
dataset [10]. The results shown in (b) and (c) still contain significant color-bleeding
artifacts. In contrast, our proposed method restores the colors of the flowerbed and
generates a better-colorized frame.
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(a) Input frame and exemplar image (b) DDColor [6]

(c) Color2Embed [15] (d) TCVC [8]

(e) VCGAN [16] (f) DeepRemaster [4]

(g) DeepExemplar [14] (h) ColorMNet (Ours)

Fig. 9: Colorization results on clip loading from the DAVIS validation dataset [10].
The results shown in (b) and (c) still contain significant color-bleeding artifacts. In
contrast, our proposed method generates a vivid and realistic frame, where the colors
of the box and the man’s hands are better restored.
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(a) Input frame and exemplar image (b) DDColor [6]

(c) Color2Embed [15] (d) TCVC [8]

(e) VCGAN [16] (f) DeepRemaster [4]

(g) DeepExemplar [14] (h) ColorMNet (Ours)

Fig. 10: Colorization results on clip CoupleRidingMotorbike from the Videvo validation
dataset [7]. The results shown in (b) and (c) still contain significant color-bleeding
artifacts. In contrast, our proposed method generates a realistic frame that is faithful
to the exemplar image.
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(a) Input frame and exemplar image (b) DDColor [6]

(c) Color2Embed [15] (d) TCVC [8]

(e) VCGAN [16] (f) DeepRemaster [4]

(g) DeepExemplar [14] (h) ColorMNet (Ours)

Fig. 11: Colorization results on clip Cycling from the Videvo validation dataset [7]. The
results shown in (b) and (c) still contain significant color-bleeding artifacts. In contrast,
our proposed method generates a vivid frame than other stage-of-the-art methods.



14 Y.X. Yang, J.X. Dong et al .

(a) Input frame and exemplar image (b) DDColor [6]

(c) Color2Embed [15] (d) TCVC [8]

(e) VCGAN [16] (f) DeepRemaster [4]

(g) DeepExemplar [14] (h) ColorMNet (Ours)

Fig. 12: Colorization results on clip SkateboarderTableJump from the Videvo validation
dataset [7]. The results shown in (b) and (c) still contain significant color-bleeding
artifacts. In contrast, our proposed method generates a realistic frame, where the colors
of the skateboard man and the trees are better restored.
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(a) Input frame and exemplar image (b) DDColor [6]

(c) Color2Embed [15] (d) TCVC [8]

(e) VCGAN [16] (f) DeepRemaster [4]

(g) DeepExemplar [14] (h) ColorMNet (Ours)

Fig. 13: Colorization results on clip TimeSquareTraffic from the Videvo validation
dataset [7]. The results shown in (b) and (c) still contain significant color-bleeding
artifacts. In contrast, our proposed method generates a vivid and realistic frame against
other stage-of-the-art methods.
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(a) Input frame and exemplar image (b) DDColor [6]

(c) Color2Embed [15] (d) TCVC [8]

(e) VCGAN [16] (f) DeepRemaster [4]

(g) DeepExemplar [14] (h) ColorMNet (Ours)

Fig. 14: Colorization results on clip 001 from the NVCC2023 validation dataset [5].
The results shown in (b) and (c) still contain significant color-bleeding artifacts. In
contrast, our proposed method generates a better-colorized frame, where the colors of
the woman and the leaves are better restored.
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(a) Input frame and exemplar image (b) DDColor [6]

(c) Color2Embed [15] (d) TCVC [8]

(e) VCGAN [16] (f) DeepRemaster [4]

(g) DeepExemplar [14] (h) ColorMNet (Ours)

Fig. 15: Colorization results on clip 014 from the NVCC2023 validation dataset [5].
The results shown in (b) and (c) still contain significant color-bleeding artifacts. In
contrast, our proposed method generates a vivid frame in (h) that is not only more
colorful compared with (d-g) but also faithful to the exemplar image in (a).
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(a) Inputs (b) DeepRemaster [4] (c) DeepExemplar [14] (d) ColorMNet (Ours)

Fig. 16: Colorization results on real-world videos. From top to bottom are respec-
tively the film clip from Roman Holiday (1953), the film clip from Miracle on 34th
Street (1947), the film clip from Manhattan (1979) and a real-world video collected
from the internet. We obtain the exemplars by searching the internet to find the most
visually similar images to the input video frames. DeepRemaster [4] cannot gerenate
vivid frames. The results shown in (c) generated by DeepExemplar [14] still contain
significant color-bleeding artifacts (the wall of the building and the skiing man) and
cannot maintain faithfulness to the given exemplar images (over-saturated colors on
the both the face of the man and the face of the woman). In contrast, our proposed
method generates vivid and realistic frames.
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