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Abstract. Pretrained models have become a commodity and offer strong
results on a broad range of tasks. In this work, we focus on classification
and seek to learn a unique encoder able to take from several complemen-
tary pretrained models. We aim at even stronger generalization across
a variety of classification tasks. We propose to learn such an encoder
via multi-teacher distillation. We first thoroughly analyze standard dis-
tillation when driven by multiple strong teachers with complementary
strengths. Guided by this analysis, we gradually propose improvements
to the basic distillation setup. Among those, we enrich the architecture
of the encoder with a ladder of expendable projectors, which increases
the impact of intermediate features during distillation, and we introduce
teacher dropping, a regularization mechanism that better balances the
teachers’ influence. Our final distillation strategy leads to student models
of the same capacity as any of the teachers, while retaining or improving
upon the performance of the best teacher for each task.
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Fig. 1: Relative gains using our UNIC
encoder distilled from four teachers (DINO,
DeiT-III, iBOT, dBOT-ft), over the respec-
tive best teacher for each task using a single

encoder and no task-specific parameters.

Recent years have witnessed the rise
of many pretrained models [8, 61,
81]. They often share the same ar-
chitecture and sometimes even the
same training data. They general-
ize to a broad range of tasks, but
may particularly excel at specific vi-
sual recognition scenarios depend-
ing on the selected learning strategy.
Self-supervised learning models [8–10]
shine in transfer learning, i.e. general-
ization to novel classes, while models
trained with masked modeling tech-
niques [18, 81] are often better suited
to patch-level tasks. Meanwhile, supervised learning [14,29] is still best for spe-
cific classification tasks when labeled data is available during pretraining.

https://europe.naverlabs.com/unic
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In this paper, our goal is to learn a universal encoder capable of strong gen-
eralization across a broad spectrum of classification tasks. More specifically, be-
sides ImageNet classification [52] – the dataset on which our teachers are trained
and our students are distilled – we are further interested in the classification of
novel classes, on new domains, as well as dense prediction tasks such as semantic
segmentation or depth estimation. Our goal is to learn a single encoder that can
be directly applied to all these tasks, out-of-the-box, without the need for any
task-specific parameters besides a linear classifier per classification task.

Our approach uses multi-teacher distillation, drawing on the strengths of var-
ious specialized teachers to train an encoder that seeks to match or surpass the
best teacher in each task. We conduct a comprehensive analysis of the distillation
process from multiple teachers, evaluating our models on various tasks, includ-
ing image-level classification on ImageNet-1K and 15 more transfer datasets, as
well as patch-level classification tasks such as semantic segmentation and depth
estimation. We leverage our findings to gradually devise a method that shows
improved generalization across multiple tasks and axes. We modify the input of
expandable projectors [9, 10, 54] (building what we call a ladder of projectors)
so that they also act as information highways that propagate signal from in-
termediate layers to the distillation loss in a more direct manner. We analyze
learning dynamics across teachers and further propose teacher dropping, an effec-
tive strategy for balancing the teachers’ influence in multi-teacher distillation,
resulting in significant gains for the tasks at which our distilled models were
otherwise underperforming.

With all of our improvements added to the basic multi-teacher distillation
setup, we are able to train models that exhibit strong generalization across a
wide range of classification tasks on the image and patch levels, either retaining
or improving the performance of the best teacher. As an example, we show in
Fig. 1 that by distilling from four strong ViT-Base models trained on ImageNet
(i.e. DINO [8], DeiT-III [62], iBOT [81], and dBOT-ft [31]) we are able to train
a universal encoder excelling at all considered tasks. In our experimental study,
we show that our findings further extend to the case of larger teachers like DI-
NOv2 [39] and MetaCLIP [70] trained on arbitrary datasets. Finally, we study
the way the distilled encoders utilize their weights: first, by quantifying perfor-
mance drops after weights pruning, and second after reducing the dimension
of the output feature space using PCA. These experiments show that distilled
models have lower redundancy in both their weights and their features.

Contributions. To summarize, we conduct a thorough analysis of multi-teacher
distillation for ViT encoders and use our findings to improve the distillation
process and generalization power of the student. Among other simple but crucial
modifications, we introduce improvements like ladder of projectors and teacher
dropping regularization that enable us to learn models which retain or improve
the performance of the best teachers across many diverse tasks. We refer to
such models as Universal Classification models or UNIC. We finally perform
extensive evaluations along multiple axes of generalization and study the ways
the resulting models make use of their weights and feature space.
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2 Related Work

Knowledge distillation (KD) was initially introduced as a model compression
technique [7], where the goal is to train a smaller student model from the output
of a teacher model [23]. While early work focused on predicting the final outputs
of a classification model, the idea was rapidly extended to other forms of distilla-
tion, such as distilling intermediate representations [1,21,22,49,73,75,79]. These
methods perform well but require careful layer selection and loss balancing [21].
In our work, instead of matching layer-wise representations between the student
and teacher architectures, we add shortcut connections from intermediate layers
of the student to the loss of each teacher.
Multi-teacher knowledge distillation. KD can naturally be extended to an
ensemble of teachers so that student can benefit from their potential comple-
mentarity. While the final outputs of teachers trained for the same task can
simply be averaged [3,15,23,75], multi-teacher distillation with teachers trained
for different tasks is more challenging. UDON [76] first trains domain-specialist
teachers which are subsequently distilled in a student model using adaptive data
sampling for balancing the different domains. In [60], contrastive learning is
used for ensemble distillation while [56] proposes a framework tailored for teach-
ers trained with masked image modeling and contrastive learning. But such
approaches are not straightforward to extend to teachers learned differently.
Similarly, [71] combines self-supervised teachers from arbitrary heterogeneous
pretext tasks. [13, 16, 51] focus on jointly utilizing pseudo- and true labels for
multi-teacher distillation. Roth et al . [51] formulate multi-teacher distillation
as continual learning and further propose a novel method for data partition-
ing based on confidence. Here we develop a more generic method for combining
teachers, that is not limited to certain types of teachers or losses, and, un-
like [30, 51], does not require labeled data, nor classifiers associated with each
teacher for obtaining pseudo-labels.
Loss balancing is shown to be crucial in multi-task learning [11,24,26,78]. Sim-
ilar strategies to automatically balance losses have also been proposed for multi-
teacher distillation [15,32]. In [24], adaptive loss weights inversely proportional to
the average of each loss are introduced, while [32] learns instance-level teacher im-
portance weights using ground-truth labels. In [15], the random selection of one
teacher per mini-batch is shown to help. Our experiments show that our proposed
generalized teacher dropping strategy leads to better models compared to [15,24].
Distilling from a “foundation model” like CLIP [43] or DINOv2 [39] is an
effective approach for tasks with limited training data [36,42,67]. Distilling from
multiple foundation models allows for more versatile students. Recent works like
AM-RADIO [46], SAM-CLIP [65], and Open Vocabulary SAM [77] combine the
semantics captured by CLIP with the localization capabilities of models like
DINOv2 [39] or SAM [27]. AM-RADIO [46] builds on the same base setup as
our study, but employs no loss balancing. Another difference comes from the fact
that their student encoder is only a part of the final model: AM-RADIO requires
the teacher-specific projectors learned during distillation to also be used at test
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time, effectively increasing the parameters of the encoder with task-specific ones.
Instead, our method performs well on multiple classification tasks out-of-the-box,
without any additional parameters.
Combining models beyond distillation. Other creative ways to combine
multiple pretrained models have been proposed. Works like [37,44,45,59,68] ex-
plore different weight averaging strategies. They typically only combine models
that differ by their hyper-parameter configuration. Aiming at generalization, [72]
merges multiple ViTs, each specialized to a classification task, into a single en-
coder that solves all classification tasks jointly, via a gating network with multi-
ple functions. Instead, our students are distilled from scratch, have a simple ViT
architecture and tackle diverse classification tasks with simple linear probing.
Expendable projectors are extra modules that act as buffers between the
final encoder output and the space where the loss is computed. They have been
successfully used for both self-supervised [9,10] and supervised learning [54,66].
We extend this idea and add projectors during training to intermediate layers
as well. Roth et al . [50] use several such projectors of varied dimensionality for
metric learning, but do not use features from intermediate layers. Moreover, we
use a specific set of projectors per teacher, similar to [3,46]. This way, projectors
become loss-specific, i.e. they contribute to the loss for only one of the teachers.

3 Analyzing and improving multi-teacher distillation

In this section we first present the multi-teacher distillation setup we use as
a basis for our analysis (Sec. 3.1) and a summary of our evaluation protocol
(Sec. 3.2). We then delve into challenges around multi-teacher distillation of
ViT encoders (Sec. 3.3), and offer improvements to the basic setup to overcome
them, like enhanced expendable teacher-specific projectors heads (Sec. 3.4) and
strategies to more equally learn from all teachers (Sec. 3.5).

3.1 A basic distillation setup

Our task is to distil M teacher models T = {T1, . . . , TM} into a student model
S. An overview is shown in Figure 2. Each teacher t 2 T is a ViT [14] encoder
that maps an image x to a set of d-dimensional feature vectors yt,i = ft(x; i)
for token i, which can either be one of the H ⇥W patch tokens from P or the
global CLS token c. We aim at learning the parameters fs of the student S, such
that the output representations zi = fs(x; i) excel at all the tasks that any of
the teachers also shines at.

We append a projector head ht per teacher to the student encoder’s output
which transforms each token into a teacher-specific representation ht(zi). The
loss for each teacher is then computed on ht(zi), the output of the corresponding
projector head. We consider these projector heads as expendable, i.e. they are
removed after distillation and are not part of the student encoder. Their goal is to
assist the learning process, taking inspiration from similar expendable projectors
used in self-supervised [9] and supervised [54,66] representation learning. We set
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Fig. 2: Overview of our multi-teacher distillation setup. The same input image
is fed to each teacher and to student. We employ feature standardization at the output
of all teachers (Sec. 3.3), a ladder of expandable projectors attached to student (Sec. 3.4)
and teacher dropping regularization to balance teachers (Sec. 3.5). The latter enables
us to adaptively select a subset of teachers to contribute to the loss simply using loss
magnitudes. We use dedicated projectors for the CLS and patch tokens (Sec. 3.3).

projector heads to be Multi-Layer Perceptrons (MLPs) with two linear layers,
GeLU non-linearity and hidden dimension of dh = 4d, where d is the feature
dimension; we analyze projectors further in the next sections.

We use two common distillation losses: cosine and smooth-`1 (see supplemen-
tary material for details); the loss for token i from teacher t is given by:

Lt(x; i) = 0.5⇥
�
Lcos(ht(zi),yt,i) + Ls`1(ht(zi),yt,i)

�
. (1)

This loss is computed separately for the CLS and each of the patch tokens
P. To get the final loss, we sum losses from all teachers similar to [75], as well
as over the CLS token c and the tokens of all patches:

L(x) =
X

t2T

�
Lt(x; c) +

1

|P|
X

p2P
Lt(x; p)

�
, (2)

where |P| is the number of patch tokens.

3.2 Protocol summary

We first present a summary of the experimental protocol we use for the analysis
in this section. Further details are presented in the supplementary material.
Datasets and backbones. To better isolate the effects of different distillation
components, we use the same training data and architectures for all teachers
and students, i.e. the ImageNet-1K dataset [52] and ViT-Base [14], respectively.
During distillation, we discard the labels of ImageNet and only use the images;
no supervised loss is combined with the distillation losses presented above.
Teachers. We consider models learned using self-supervised learning (SSL), like
DINO [8] or iBOT [81], and supervised models like DeiT-III [62] or fine-tuned
dBoT [31], optimized for the classification task of ImageNet-1K. The former
have proven extremely effective for generalization whereas the latter achieve
state-of-the-art accuracy on the ImageNet-1K task. In this section, we present
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Table 1: Component analysis for distillation from two teachers. We report: im-
age classification on 1) ImageNet-1K (IN-val) and 2) 15 transfer learning datasets (aver-
aged), 3) semantic segmentation on ADE-20K, and 4) depth estimation on NYUd. Col-
umn legend: std: feature standardization, DP: dedicated projector heads for CLS/patch
tokens, LP: ladder of projectors and tdrop: teacher dropping regularization.

Model std DP LP tdrop
IN-val Transfer Segmentation Depth

top-1 (") top-1 (") mIoU (") RMSE (#)

Teacher models

1. DINO 77.7 72.4 30.4 0.570
2. DeiT-III 83.6 68.5 32.3 0.589
3. best teacher 83.6 72.4 32.3 0.570

Multi-teacher distillation (DINO & DeiT-III teachers)

4. basic setup 78.7 73.1 33.9 0.560

5.

UNIC

X 81.4 73.8 36.1 0.558
6. X X 82.2 74.1 36.9 0.551
7. X X X 82.7 74.2 37.4 0.546
8. X X X X 83.2 73.5 37.3 0.547

our analysis for M = 2 teachers, specifically DINO and Deit-III. More teachers
and combinations are explored in Sec. 4 and in the supplementary material.
Tasks. We measure performance on many tasks, divided along the following
axes: 1) Top-1 accuracy on the training set classes on the ImageNet-1K valida-
tion set [52] (IN-val); 2) Transfer learning performance on unseen classes; we
report top-1 accuracy averaged over 15 diverse image classification datasets;1
Dense prediction performance on 3) semantic segmentation and 4) depth esti-
mation; we report mIoU on ADE-20k [80] and RMSE on NYUD [57], measured
using a protocol that is essentially dense classification, i.e. using linear probes
as in [39]. We learn linear probes for all tasks directly over encoder outputs z.

3.3 Analyzing multi-teacher distillation of ViT tokens

In this section we analyze and revisit different aspects of distillation that are
specific to ViT encoders, e.g . the use of CLS and patch tokens. The former is
normally fed as input to image-level classifiers while patch tokens are important
for dense prediction. In this section we study their statistics and explore how this
affects design choices of the distillation setup. The top part of Tab. 1 compares
the accuracy of the self-supervised DINO and supervised DeiT-III on the differ-
ent evaluation axes. They show complementary strengths, i.e. they respectively
perform well on transfer learning and the ImageNet-1K validation set (IN-val).
Equalizing feature statistics across tokens and teachers. We start by
analyzing the statistics of features extracted from the CLS and patch tokens of
both teachers and show that this should be taken into account for multi-teacher
1 The 15 datasets are: 5 ImageNet-CoG levels [55] tailored for concept generalization, 8

small-scale fine-grained datasets (Aircraft, Cars196, DTD, EuroSAT, Flowers, Pets,
Food101, SUN397) and two long-tail datasets (iNaturalist-2018 and 2019).
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distillation. We calculate such statistics and notice a number of discrepancies
in their first and second moment values, both between CLS and patch tokens
of a given teacher as well as across teachers. The norm and standard deviation
for the CLS token features of DINO, for example, are double the ones for patch
tokens of the same model, while the same statistics also differ across DeiT-III
and DINO tokens (see supplementary material for more details).

To explore whether such statistical inconsistencies across features affect distil-
lation, we add feature standardization on each teacher output, i.e. we normalize
teacher features to zero mean and unit variance before computing the loss, which
was shown to be useful in [21]. This not only equalizes any differences between
CLS and patch tokens but also for tokens across teachers. For convenience and
generality, we propose to learn such normalization statistics on-the-fly during
distillation, using an exponential moving average. From Tab. 1 we see that the
performance of models learned via distillation is consistently higher using feature
standardization for both image- and patch-level tasks (rows 4 vs. 5).
I Feature standardization improves multi-teacher distillation

Projector heads for CLS and patch tokens. Beside statistical differences,
the CLS and patch token are also conceptually different: CLS is a global token
expected to encode image-level semantics whereas the patch tokens encode lo-
cal information. To better capture these specifics from CLS and patch tokens,
we experiment with dedicated teacher-specific projector heads for each type of
tokens. This comes at no added cost in practice, since we discard the projectors
after distillation. We discuss expendable projectors further in Sec. 3.4. Compar-
ing rows 5 and 6 in Tab. 1 we see that specializing the teacher-specific projector
heads to either CLS or patch tokens leads to further gains.
I Dedicated projectors for CLS/patches improve distillation performance

Classification on ImageNet and novel classes. Results in Tab. 1 show
that models learned via multi-teacher distillation lack in terms of ImageNet-1K
performance compared to highly optimized models for that specific task, such
as DeiT-III (82.2 vs. 83.6). One may suggest that this is due to the fact that we
do not use labels during distillation. To test that, we also performed distillation
using only the DeiT-III model as a teacher. In that case we were able to reach
a top-1 accuracy of 83.1% on ImageNet. This is much higher than the 82.2% we
get distilling jointly from multiple teachers and we therefore see that there is
still space for improvement during distillation itself.

From Tab. 1 we also see that models learned via multi-teacher distillation
greatly outperform DINO on transfer learning and classification of novel classes.
This is also true for the recent iBOT [81] model, which also achieves state-of-
the-art top-1 accuracy, i.e. 72.4% on average for transfer learning on our setup.
I Multi-teacher distillation significantly improves generalization

Multi-teacher distillation for dense prediction. To assess the discrimina-
tive power of patch tokens individually, we consider two dense prediction tasks,
semantic segmentation and depth prediction, after linear probing. Tab. 1 shows
that even the basic multi-teacher distillation setup improves over the best teacher
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(row 4). More importantly, performance increases even further (row 6) using
standardization and dedicated projectors for the CLS and patch tokens. The
student encoder achieves +4.6% higher mIoU than the best teacher for segmen-
tation. This result is even more impressive when compared to the performance
of models that are targeting improved dense prediction. Our models, which are
distilled from teachers trained with supervised and contrastive learning achieve
dense prediction performance comparable to models known to excel at dense
tasks, i.e. models trained via masked patch prediction like iBOT [81]: iBOT
achieves 36.6% mIoU on ADE-20K, while our student reaches 36.9%.
I Multi-teacher distillation improves the discriminative power of patch tokens

Retaining complementary teacher strengths. From the results in Tab. 1,
we see that models learned with our multi-teacher distillation setup and simple
modifications like feature standardization and dedicated projectors for CLS/patch
tokens are starting to show strong generalization performance on a number of
axes. We will use models distilled under this setup as the basis for the rest of our
study. Such models seem to retain the complementary strengths of their teach-
ers: They already outperform the best teacher on transfer learning and dense
prediction tasks, while also enjoying decent performance on the ImageNet task.
I Learning from multiple teachers can combine their strengths

As we discuss above, there is however still room for improvement; we ideally
want models to match or outperform the best teacher on all tasks. In the next
sections, we analyze different aspects of our distillation setup and introduce
further improvements towards that end.

3.4 A ladder of projectors for distillation

The basic setup above uses expendable projector heads as a way of injecting
teacher-specific parameters during distillation.2 Such modules are appended at
the end of the encoders and act as small “buffers” between the encoder output and
the feature space considered by the loss. In this section, we propose to use more
of these expendable modules in a complementary way: as information highways
that propagate information from intermediate layers to the loss in a more direct
manner. Intermediate layers have been used to improve distillation [17, 32, 75],
typically by adding extra losses on top of those layers. However, this leads to
a more challenging optimization. Besides, hyper-parameter tuning with many
added losses is combinatorial, and it becomes cumbersome. These issues are far
more prominent in the case of multiple teachers.

Instead of adding losses on intermediate representations, we propose to aug-
ment the existing expendable teacher-specific projector head to receive inputs
from intermediate layers and append modules that connect all intermediate layer
tokens directly to the teacher-specific projector head before the loss. We refer to
such augmented projectors as a ladder of projectors. This architecture bares sim-
ilarities to the adaptor architecture that is typically used for adapting a model
2 Projector heads are discarded after distillation and linear probes are learned over

the encoder outputs z.
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Fig. 3: Analyzing teacher dropping regularization (tdrop). (a) Loss for each
of the two teachers during multi-teacher distillation, with and without tdrop. (b)
ImageNet-1K top-1 accuracy when distilling from DINO & DeiT-III together, ver-
sus distilling only from DeiT-III, i.e. the teacher that excels at this task.

to a new task [74]. In our case, however, the adaptor-like modules we append
during distillation are expendable.

Specifically, we attach MLP projectors to intermediate layers and augment
the input of the teacher-specific projectors ht that until now operated only on
the last layer of the student encoder. Let zl denote the l-th layer output of the
student encoder for l = 1, . . . , L. The head for the ladder of projectors becomes:

h
LP
t ({zl : l 2 L}) =

LX

l=1

h
l
t(z

l), (3)

where h
l
t denotes the MLP projector head attached after layer l 2 L. The ar-

chitecture of h
l
t is identical to ht, however, since we are adding multiple such

projector heads, we significantly reduce the hidden dimension d
l
h and set dlh = d

when l < L. We explore architecture choices in the supplementary material.
From Tab. 1 we see that this ladder of projectors improves performance over-

all (row 8), especially for dense prediction. It seems that the dense connections
lead to better prime patch tokens. Gains are also significant for supervised clas-
sification: ImageNet-1K accuracy is increased by +0.5%.
I A ladder of projectors leads to improvements for both CLS and patch tokens

3.5 Learning all teachers equally well

The basic setup assumes that the final goal is for the distilled encoder to represent
each teacher equally well. When distillation uses feature standardization across
all teachers and simple losses like cosine and smooth-`1, there exists a straight-
forward way to compare how much each of the different teachers is learned: One
may simply compare the magnitudes of the losses, that indicate how well we are
approximating the feature space of each teacher.

Fig. 3a displays the loss curves for multi-teacher distillation for UNIC models,
using the setup presented in Sec. 3.3 (dashed lines). We see that the DINO
teacher seems to be learned faster and better than DeiT-III.
I Teachers do not equally contribute without further intervention
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It therefore comes as no surprise that our student lacks performance on
ImageNet-1K, i.e. the task that DeiT-III excels at. But what if DINO was not
even part of the distillation process? In Fig. 3b we show how ImageNet-1K ac-
curacy changes during distillation using DINO & DeiT-III as teachers, and for
the case of distilling only from DeiT-III. We see that our model learns faster
using multiple teachers but converges to a lower accuracy: The student seems to
exploit features from the additional teacher to ramp up performance faster, but
fails to reach the accuracy of distilling DeiT-III alone (83.1%).

Fig. 3 suggests that some form of loss balancing could be beneficial. Loss
balancing is common in multi-task settings: In most cases it is done manually
by adding hyperparameters that control each loss. Such an approach is however
cumbersome for many teachers and losses like our case, something also discussed
in [46]. It is important to avoid the combinatorial nature of manual tuning.
Another way, would be to use some of the existing methods for loss balancing
that are proposed for multi-task learning, e.g . methods like Adaloss [24]. We
argue that the case of multi-teacher distillation over standardized features and
simple regression losses is much simpler than multi-task learning when it comes
to balancing the losses: The magnitudes of the losses are comparable and can be
used for balancing and pacing the distillation process.
Teacher dropping regularization. We introduce a simple scheme for loss bal-
ancing that we name teacher dropping. Instead of designing some soft loss weigh-
ing algorithm, we take inspiration from methods like randomized dropout [58]
and path dropping [25], and propose to “drop”, i.e. zero-out the loss, for a subset
of the teachers. Dropping teachers at random is however something that would
not encourage loss equalization across teachers. Instead, we propose to directly
use absolute magnitudes of the losses when selecting which teachers to drop, i.e.
keeping the teacher whose loss magnitude is maximal and dropping any other
teacher with some probability. This bares conceptual similarities to adaptive
dropout [4], but our method is non-parametric, and simply exploits the fact that
feature space losses on constrained representations are comparable.
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Fig. 4: Teacher coefficients ↵t during
distillation from DeiT and DINO.

We perform loss-based teacher
dropping at the image level. At each
iteration and for every image, we de-
fine a binary coefficient ↵t = {0, 1}
for each teacher t that is multiplied
with the corresponding loss Lt. This
determines whether teacher t would
be dropped or not for that image with
probability p. To make sure there is
always some signal to learn from, we choose to never drop the teacher with the
maximum magnitude loss, i.e. the teacher that the current model approximates
least well. All other teachers could be dropped with probability p. Specifically
and for each image, the coefficient for teacher t 2 T is given by:

↵t =

(
1 if Lt = maxt Lt,

(1� �) if Lt 6= maxi Li, with � ⇠ Bernoulli(p) .
(4)
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In all cases, the teacher that is least well approximated in the current iteration
will always be used. We also experimented with patch-level teacher dropping but
found no noticeable gains (see supplementary material).
Effect of teacher dropping during distillation. We study the impact of
teacher dropping during distillation in Fig. 3a: teacher dropping makes the loss
magnitudes of the teachers much more similar as training progresses (solid lines).
In Fig. 4 we plot how the teacher coefficients ↵t vary during distillation; teacher
utilization becomes more balanced and stabilizes after some epochs.
I Teachers are distilled equally well with teacher dropping regularization

How does teacher dropping affect performance? We compared teacher
dropping regularization to manually balancing the teacher losses, random drop-
ping [15], as well as to the recent Adaloss [24] loss balancing method. Starting
from results in row 6 in Tab. 1, we found that none of these strategies is able
to noticeably improve, let alone outperform results with teacher dropping (row
8). Specifically, Adaloss achieves 80.1/73.6/34.3/0.565 on the four tasks, respec-
tively (see supplementary material for details). Besides performance, we believe
the effectiveness and simplicity of the proposed teacher dropping is unparalleled.

We studied the impact of the teacher dropping probability p and found per-
formances to be stable for different values. Yet, a higher p favours ImageNet
performance, with a slight decrease on tasks where the student already outper-
forms the best teacher (see supplementary material).

From Tab. 1 (row 8) we see that teacher dropping boosts performance for
ImageNet-1K, i.e. improves distillation on the task where our distilled mod-
els were lacking the most. When combining teacher dropping with a ladder of
projectors, we are able to achieve 83.2%, our top performance on that task.
This performance is only 0.4% lower than the highly optimized DeiT-III (row
3). What is more, we have also closed the observed gap between multi-teacher
distillation and specialized distillation using DeiT-III alone. Teacher dropping
significantly contributes to that end, i.e. increasing performance by 0.5% over
our best model with ladder of projectors (rows 7 vs. 8).
I Teacher dropping regularization is a simple and effective way to balance
teachers, specifically designed for multi-teacher distillation

3.6 Towards universal classification models

Multi-teacher distillation using a ladder of projectors and teacher dropping reg-
ularization enables us to reach ImageNet classification performance comparable
to the highly optimized DeiT-III, while simultaneously outperforming the best
teacher on transfer learning performance on 15 datasets with mostly novel classes
including long-tail ones, as well as on patch-level classification tasks like semantic
segmentation and depth estimation. We contend this evidence demonstrates that
our distilled models operate as more universal classification models. We will refer
to models learned with our enhanced multi-teacher distillation setup as UNIC
models (which stands for UNIversal Classification, pronounced “unique”).
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Fig. 5: Performance of different UNIC encoders on different pairs of tasks.
We report performance for UNIC encoders distilled from DINO & DeiT-III, iBOT &
dBOT-ft and all four teachers. We show results on ImageNet-1K (a), over 15 transfer
learning tasks (a, b), semantic segmentation (b, c) and depth estimation (c).

4 Experimental study

Teachers. We report results distilling from two pairs of teachers (DeiT-III [62]
& DINO [8] and iBOT [81] & dBOT-ft [31]3), as well as using all four together.
In all cases we use publicly available ViT-Base models trained on ImageNet-1K.
Extended protocol. We use the protocol summarized in Sec. 3.2 and detailed in
the supplementary material. We additionally report results on ImageNet-v2 [47],
an alternative validation set for ImageNet, as well as two datasets for measuring
performance under domain shift, i.e. ImageNet-R [20] and ImageNet-Sketch [64].
Besides reporting results for all 15 transfer datasets jointly, we further split the
datasets into separate axes, i.e. for concept generalization [55], long-tail [63]
and small-scale fine-grained recognition datasets (Aircraft [35], Cars196 [28],
DTD [12], EuroSAT [19], Flowers [38], Pets [40], Food101 [6], SUN397 [69]).

In all cases we chose hyperparameters based on ImageNet-1K performance,
the task which corresponds to the distillation data. See the supplementary mate-
rial for further implementation and evaluation details. There, we further report
results using the pre-existing classifiers in a plug-and-play manner, as well as for
the case of distillation using synthetic data from the ImageNet-SD dataset [53].
Results. We summarize results for our best UNIC models from different
teachers in Figs. 1 and 5. In Fig. 1 we show relative gains for a UNIC model
trained from all four teachers, while in Fig. 5 we report results for models distilled
from three different sets of teachers (DINO & DeiT-III, iBOT & dBOT-ft and
all four teachers). A short summary of our most important observations follows.

1. Stronger teachers give stronger students. From Fig. 5 we see that iBOT
& dBOT-ft yield improved student models compared to DINO & DeiT-III.

3 We use the dBOT model fine-tuned for ImageNet-1K classification.
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2. Adding more teachers seems to generally improve performance.
Distilling from all four teachers produces an even stronger student for most
cases. This is also true when the additional teachers are not better than the
existing ones: Besides ImageNet and transfer, adding DINO & DeiT-III to
the ensemble also improves segmentation performance over iBOT.

3. UNIC models excel at image-level classification. UNIC from 4 teach-
ers attains 83.8% and 80.3% top-1 accuracy on ImageNet-1K and ImageNet-
v2, matching the top performance of the state-of-the-art dBOT-ft model
(84% and 80%, respectively). Results are also strong on transfer learning,
with UNIC achieving +2.7% higher top-1 on average than iBOT/DINO.

4. Impressive gains on transfer to small fine-grained datasets. UNIC
achieves a +9.2% relative gain on average on 8 small-scale classification
datasets, some for domains far outside the ImageNet training set used for
all teachers and distillation (i.e. including satellite images and textures).
Complementary teachers appear to be highly beneficial in this case.

5. Strong gains for dense prediction with linear probing. Strong gains
are also observed on segmentation and depth estimation, for example on
ADE-20K where UNIC achieves a +8.2% relative gain over iBOT. Although
far from being the optimal protocol for the task, linear probing is best to
evaluate the discriminative power of the patch tokens from the encoder.

6. Retaining top teacher performance for domain shifts. DeiT-III shows
exceptionally high performance on ImageNet-R and Sketch (51.4% and 39.3%
top-1 accuracy, respectively). Our best UNIC model retains this top perfor-
mance, achieving 51.4% and 38.5%, respectively.

Table 2: Distilling MetaCLIP and DI-
NOv2 on ImageNet-1K.

Model k-NN Z-shot ADE-20K

Teacher Models
MetaCLIP-H [70] 82.1 80.5 35.4
DINOv2-G [39] 83.4 – 48.7

AM-RADIO [46] 84.8 80.4 48.1

UNIC⇤-L 85.0 80.7 47.7
UNIC-L 85.4 81.2 47.1

Distilling arbitrary models. We
extend our study to larger teachers
like MetaCLIP ViT-Huge/14 [70] and
DINOv2 ViT-Giant/14 [39] trained on
arbitrary datasets. We train a ViT-
Large/14 student for 200 epochs at
resolution 224, setting the teacher
dropping probability to p = 0.25.
In Tab. 2 we report results for k-
NN and zero-shot classification on
ImageNet-1K, as well as semantic seg-
mentation on ADE-20K. UNIC⇤ refers to a UNIC model without a ladder of pro-
jectors. These results offer some basic verification that our insights are also valid
in this more generic distillation case: Our UNIC model outperforms DINOv2 on
ImageNet-1K as well as the MetaCLIP on zero-shot classification.
Weight and feature space utilization. In this section, we seek to better un-
derstand why multi-teacher distillation leads to overall stronger encoders. We
do that by investigating the utilization of the encoder weights after pruning
(Fig. 6a) and the feature space after dimensionality reduction (Fig. 6b). We re-
port the change in accuracy on ImageNet-1K for our UNIC model and its teachers
when we prune the weights or reduce the feature dimension before training lin-
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Fig. 6: Network utility analysis via ImageNet-1K linear probing for the four teach-
ers and our student UNIC distilled from all of them. For each model, before training
linear probes, we either (a) prune their weights or (b) reduce the dimension of their
features via PCA. We report change in top-1 accuracy compared to their base per-
formance. UNIC’s encoder weights work together more cohesively (a), and its feature
space is more robust to dimensionality reduction (b).

ear probes. We prune encoder weights using `1-norm-based unstructured weight
pruning, and perform dimensionality reduction using PCA with whitening.

From Fig. 6a, we see that the performance of UNIC drops more rapidly than
any of the teachers as we increase the pruning ratio. This indicates that the
encoder weights show improved synergy, working together more cohesively and
efficiently to enhance the model’s overall performance.
I UNIC encoders utilize weights more effectively

At the same time, in Fig. 6b, we see that our student preserves its base
performance better than all teachers as we reduce the number of dimensions
with PCA. It seems that the feature space of UNIC can be represented better
with fewer principal components, possibly because of higher entanglement in the
original feature space.
I UNIC encoders are more resilient to dimensionality reduction

5 Conclusions

In this paper, we systematically analyze multi-teacher distillation and introduce
improvements to the distillation process that significantly enhance the perfor-
mance of student models across various benchmarks. More importantly, we show
that it is possible to distil from multiple teachers with complementary strengths
and learn models that match or improve the respective best teacher in both
image- and patch-based classification tasks. In that regard, we view UNIC mod-
els as universal classification models, advancing the frontier of general represen-
tation learning without task-specific adaptation.
Acknowledgements. The authors would like to sincerely thank Myung-Ho Ju,
Florent Perronnin, Rafael Sampaio de Rezende, Vassilina Nikoulina and Jean-
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7. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proc.
SIGKDD (2006)

8. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.:
Emerging properties in self-supervised vision transformers. In: Proc. ICCV (2021)

9. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: Proc. ICML (2020)

10. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proc.
CVPR (2021)

11. Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In: Proc.
ICML (2018)

12. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures
in the wild. In: Proc. CVPR (2014)

13. Clark, K., Luong, M.T., Khandelwal, U., Manning, C.D., Le, Q.V.: Bam! born-
again multi-task networks for natural language understanding. In: ACL (2019)

14. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In:
Proc. ICLR (2021)

15. Fukuda, T., Suzuki, M., Kurata, G., Thomas, S., Cui, J., Ramabhadran, B.: Effi-
cient knowledge distillation from an ensemble of teachers. In: Interspeech (2017)

16. Ghiasi, G., Zoph, B., Cubuk, E.D., Le, Q.V., Lin, T.Y.: Multi-task self-training for
learning general representations. In: Proc. CVPR (2021)

17. Hao, Z., Guo, J., Jia, D., Han, K., Tang, Y., Zhang, C., Hu, H., Wang, Y.: Learning
efficient vision transformers via fine-grained manifold distillation. Proc. NeurIPS
(2022)

18. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. In: Proc. CVPR (2022)

19. Helber, P., Bischke, B., Dengel, A., Borth, D.: EuroSAT: A novel dataset and deep
learning benchmark for land use and land cover classification. JSTAEORS (2019)

20. Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai,
R., Zhu, T., Parajuli, S., Guo, M., Song, D., Steinhardt, J., Gilmer, J.: The many
faces of robustness: A critical analysis of out-of-distribution generalization. In:
Proc. ICCV (2021)

21. Heo, B., Kim, J., Yun, S., Park, H., Kwak, N., Choi, J.Y.: A comprehensive overhaul
of feature distillation. In: Proc. ICCV (2019)



16 M.B. Sariyildiz et al.

22. Heo, B., Lee, M., Yun, S., Choi, J.Y.: Knowledge transfer via distillation of acti-
vation boundaries formed by hidden neurons. In: Proc. AAAI (2019)

23. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
Proc. NeurIPS-W (2014)

24. Hu, H., Dey, D., Hebert, M., Bagnell, J.A.: Learning anytime predictions in neural
networks via adaptive loss balancing. In: Proc. AAAI (2019)

25. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with
stochastic depth. In: Proc. ECCV (2016)

26. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In: Proc. CVPR (2018)

27. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. arXiv:2304.02643
(2023)

28. Krause, J., Deng, J., Stark, M., Li, F.F.: Collecting a large-scale dataset of fine-
grained cars. In: Proc. CVPR-W (2013)

29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Proc. NeurIPS (2012)

30. Landgraf, S., Hillemann, M., Kapler, T., Ulrich, M.: Efficient multi-task un-
certainties for joint semantic segmentation and monocular depth estimation.
arXiv:2402.10580 (2024)

31. Liu, X., Zhou, J., Kong, T., Lin, X., Ji, R.: Exploring target representations for
masked autoencoders. In: Proc. ICLR (2022)

32. Liu, Y., Zhang, W., Wang, J.: Adaptive multi-teacher multi-level knowledge dis-
tillation. Neurocomputing (2020)

33. Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts.
In: Proc. ICLR (2017)

34. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: Proc. ICLR
(2019)

35. Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual
classification of aircraft. arXiv:1306.5151 (2013)

36. Marrie, J., Arbel, M., Mairal, J., Larlus, D.: On good practices for task-specific
distillation of large pretrained models. arXiv:2402.11305 (2024)

37. Matena, M.S., Raffel, C.A.: Merging models with fisher-weighted averaging. In:
Proc. NeurIPS (2022)

38. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number
of classes. In: Proc. ICVGIP (2008)

39. Oquab, M., Darcet, T., Moutakanni, T., Vo, H.V., Szafraniec, M., Khalidov, V.,
Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., Howes, R., Huang, P.Y., Xu,
H., Sharma, V., Li, S.W., Galuba, W., Rabbat, M., Assran, M., Ballas, N., Syn-
naeve, G., Misra, I., Jegou, H., Mairal, J., Labatut, P., Joulin, A., Bojanowski, P.:
DINOv2: Learning robust visual features without supervision. TMLR (2024)

40. Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.V.: Cats and dogs. In: Proc.
CVPR (2012)

41. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in Python. JMLR 12 (2011)

42. Peng, Z., Dong, L., Bao, H., Wei, F., Ye, Q.: A unified view of masked image
modeling. TMLR (2023)

43. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. In: Proc. ICML (2021)



UNIC: Universal Classification Models 17

44. Ramé, A., Ahuja, K., Zhang, J., Cord, M., Bottou, L., Lopez-Paz, D.: Model rata-
touille: Recycling diverse models for out-of-distribution generalization. In: Proc.
ICML (2023)

45. Rame, A., Kirchmeyer, M., Rahier, T., Rakotomamonjy, A., Gallinari, P., Cord, M.:
Diverse weight averaging for out-of-distribution generalization. In: Proc. NeurIPS
(2022)

46. Ranzinger, M., Heinrich, G., Kautz, J., Molchanov, P.: AM-RADIO: Agglomerative
model–reduce all domains into one. In: Proc. CVPR (2024)

47. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do ImageNet classifiers generalize
to ImageNet? In: Proc. ICML (2019)

48. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proc. CVPR (2022)

49. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets:
Hints for thin deep nets. In: Proc. ICLR (2015)

50. Roth, K., Milbich, T., Ommer, B., Cohen, J.P., Ghassemi, M.: Simultaneous
similarity-based self-distillation for deep metric learning. In: Proc. ICML (2021)

51. Roth, K., Thede, L., Koepke, A.S., Vinyals, O., Henaff, O.J., Akata, Z.: Fantastic
gains and where to find them: On the existence and prospect of general knowledge
transfer between any pretrained model. In: Proc. ICLR (2024)

52. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. IJCV 115(3) (2015)

53. Sariyildiz, M.B., Alahari, K., Larlus, D., Kalantidis, Y.: Fake it till you make it:
Learning transferable representations from synthetic ImageNet clones. In: Proc.
CVPR (2023)

54. Sariyildiz, M.B., Kalantidis, Y., Alahari, K., Larlus, D.: No reason for no supervi-
sion: Improved generalization in supervised models. In: Proc. ICLR (2023)

55. Sariyildiz, M.B., Kalantidis, Y., Larlus, D., Alahari, K.: Concept generalization in
visual representation learning. In: Proc. ICCV (2021)

56. Shi, B., Zhang, X., Wang, Y., Li, J., Dai, W., Zou, J., Xiong, H., Tian, Q.: Hybrid
distillation: Connecting masked autoencoders with contrastive learners. In: Proc.
ICLR (2024)

57. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support
inference from rgbd images. In: Proc. ECCV (2012)

58. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. JMLR 15(1)
(2014)

59. Stoica, G., Bolya, D., Bjorner, J., Ramesh, P., Hearn, T., Hoffman, J.: Zipit! merg-
ing models from different tasks without training. In: Proc. ICLR (2024)

60. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. In: Proc.
ICLR (2020)

61. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: Proc. ICML
(2021)

62. Touvron, H., Cord, M., Jegou, H.: DeiT III: Revenge of the ViT. In: Proc. ECCV
(2022)

63. Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam,
H., Perona, P., Belongie, S.: The iNaturalist species classification and detection
dataset. In: Proc. CVPR (2018)

64. Wang, H., Ge, S., Lipton, Z., Xing, E.P.: Learning robust global representations
by penalizing local predictive power. In: Proc. NeurIPS (2019)



18 M.B. Sariyildiz et al.

65. Wang, H., Vasu, P.K.A., Faghri, F., Vemulapalli, R., Farajtabar, M., Mehta, S.,
Rastegari, M., Tuzel, O., Pouransari, H.: SAM-CLIP: Merging vision foundation
models towards semantic and spatial understanding. In: Proc. CVPR-W (2023)

66. Wang, Y., Tang, S., Zhu, F., Bai, L., Zhao, R., Qi, D., Ouyang, W.: Revisiting
the transferability of supervised pretraining: an MLP perspective. In: Proc. CVPR
(2022)

67. Wei, L., Xie, L., Zhou, W., Li, H., Tian, Q.: Mvp: Multimodality-guided visual
pre-training. In: Proc. ECCV (2022)

68. Wortsman, M., Ilharco, G., Gadre, S.Y., Roelofs, R., Gontijo-Lopes, R., Morcos,
A.S., Namkoong, H., Farhadi, A., Carmon, Y., Kornblith, S., et al.: Model soups:
Averaging weights of multiple fine-tuned models improves accuracy without in-
creasing inference time. In: Proc. ICML (2022)

69. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: SUN database: Large-
scale scene recognition from abbey to zoo. In: Proc. CVPR (2010)

70. Xu, H., Xie, S., Tan, X.E., Huang, P.Y., Howes, R., Sharma, V., Li, S.W., Ghosh,
G., Zettlemoyer, L., Feichtenhofer, C.: Demystifying clip data. In: Proc. ICLR
(2024)

71. Yao, Y., Desai, N., Palaniswami, M.: MOMA: Distill from self-supervised teachers.
arXiv:2302.02089 (2023)

72. Ye, P., Huang, C., Shen, M., Chen, T., Huang, Y., Zhang, Y., Ouyang, W.: Merging
vision transformers from different tasks and domains. arXiv:2312.16240 (2023)

73. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: Fast opti-
mization, network minimization and transfer learning. In: Proc. CVPR (2017)

74. Yin, D., Han, X., Li, B., Feng, H., Bai, J.: Parameter-efficient is not sufficient: Ex-
ploring parameter, memory, and time efficient adapter tuning for dense predictions.
arXiv:2306.09729 (2023)

75. You, S., Xu, C., Xu, C., Tao, D.: Learning from multiple teacher networks. In:
Proc. SIGKDD (2017)

76. Ypsilantis, N.A., Chen, K., Araujo, A., Chum, O.: Udon: Universal dynamic online
distillation for generic image representations. arXiv 2406.08332 (2024)

77. Yuan, H., Li, X., Zhou, C., Li, Y., Chen, K., Loy, C.C.: Open-vocabulary SAM: Seg-
ment and recognize twenty-thousand classes interactively. In: Proc. ECCV (2024)

78. Yun, H., Cho, H.: Achievement-based training progress balancing for multi-task
learning. In: Proc. ICCV (2023)

79. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. In: Proc. ICLR
(2017)

80. Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., Torralba, A.:
Semantic understanding of scenes through the ADE20k dataset. IJCV (2019)

81. Zhou, J., Wei, C., Wang, H., Shen, W., Xie, C., Yuille, A., Kong, T.: iBOT: Image
BERT pre-training with online tokenizer. In: Proc. ICLR (2022)


	UNIC: Universal Classification Models  via Multi-teacher Distillation

