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1 Overview

In this document, we provide the following supplementary contents:

– Details of the spatial/temporal warp model (Section 2).
– Details of the warp smoothing model (Section 3).
– Details of dataset distribution (Section 4).
– Evaluation metric (Section 5).
– More experiments (Section 6).

Although we present more network details in this supplementary, we argue
that these network architectures themselves are not the primary contribution
of this work (although we appropriately modified them and achieved improve-
ments). Our main contribution lies in the new paradigm of unsupervised online
video stitching, including the representation of stitching trajectories and the
design of unsupervised smoothing optimization objectives.

For clarity, we summarize a part of notations and their corresponding mean-
ings in Table 1.

Besides, we also provide a supplementary video. Please refer to https://
www.youtube.com/watch?v=03kGEZJHxzI for the stitched videos from different
methods.

2 Spatial/Temporal Warp Model

Due to the similarity to UDIS++ [7], we just briefly described the structure and
loss function of the spatial/temporal model in our manuscript. Here, we give
more details in the supplementary material.

We first review the warp model of UDIS++ [7] in Fig. 1(a) and then depict
the differences. UDIS++ [7] adopts ResNet50 as the backbone and predicts the
control point motions in two steps. The first step estimates the 4-pt homography
motions [1] and converts them as the initial control point motions, while the
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Table 1: The notation table.

Notation Meaning Example
(t) The relative time in a sliding window. e.g., C(t), m(t), S(t)

Subscript i The control point index. e.g., Ci(t), mi(t), Si(t)

Superscript T , S From the temporal or spatial model. e.g., mT
i (t), MS

i (t)

Superscript (ξ) The absolute time ranging from N to the last frame. e.g., mT
i (t), MS

i (t)

Hatˆ The optimized mesh or trajectory. e.g., M̂S(t), Ŝ
MRig The rigid and regular initial mesh (predefined).

Itref/I
t
tgt The t-th reference/target frame.

SNet/TNet/SmoothNet The spatial/temporal/smooth warping models.
TMRig→MS(t−1)(·) The TPS transformation from MRig to MS(t− 1).

Table 2: Model size (/MB).

SNet TNet SmoothNet Total
StabStitch 28.55 28.76 2.12 59.43

UDIS++ [7] 297.73 - - 297.73

second step estimates the residual control point motions, which could reach
the final control point motions by addition with initial motions. Both steps
leverage the global correlation layer (i.e., the contextual correlation layer [4]) to
capture feature matching information and then regress the motions with simple
regression networks.

2.1 Structure Difference

We demonstrate the structure differences between the spatial/temporal warp
model and UDIS++ in Fig. 1(b)/(c). The differences are highlighted in red/blue.
The local correlation layer denotes the cost volume layer [9]. In the spatial warp
model, the search radius of the local correlation layer is set to 5, while in the
temporal warp model, we set the radius to 6 and 3.

Besides, we further simplify the network architecture, especially the regres-
sion networks, significantly reducing the network parameters. For clarity, we
compare the model size and report them in Tab. 2.

2.2 Loss Function

The alignment loss and distortion loss for the spatial/temporal warp model are
also similar to UDIS++ [7]. One can refer to [7] [6] for more details. For the
convenience of readers, we paraphrase their definitions here again.

Alignment Loss: As described above, the spatial/temporal warp model takes
two steps to predict the final control point motions mS(t)/mT (t) from global
homography transformation to local TPS transformation. Assuming the esti-
mated warping functions for homography and thin-plate spline are represented
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Fig. 1: The overall structures of our models. Left: the spatial/temporal warp model.
Right: the warp smoothing model.
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Fig. 2: The intra-grid (left) and inter-grid (right) constraints in the distortion loss.

as WH(·) and WT (·), the alignment loss is written as:

Lalignment = ωH∥Iref · WH(1)−WH(Itgt)∥1 + ωH∥Itgt · WH−1(1)−WH−1(Iref )∥1
+∥Iref · WT (1)−WT (Itgt)∥1,

(1)
where Iref/Itgt is the reference/target frame, 1 is an all-one matrix with the
same size as Iref , and ωH is a constant to balance different transformations.

Distortion Loss: The distortion loss consists of an intra-grid constraint and an
inter-grid constraint as follows:

Ldistortion = ℓintra + ℓinter. (2)

The intra-grid term prevents projection distortion caused by excessively large
grids after warping by penalizing the grids with side lengths exceeding a certain
threshold. As shown in Fig. 2(left), we define the horizontal/vertical projection
of each grid edge as eh/ev and the corresponding projection set as {eh}/{ev}.
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Then we can define the intra-grid loss as:

ℓintra =
1

(U+1)×V

∑
{eh}

σ(eh − 2W

V
) +

1

U×(V+1)

∑
{ev}

σ(ev − 2H

U
), (3)

where H×W and (U +1)× (V +1) are the image and control point resolutions.
σ(·) is the ReLU activation function.

As for the inter-grid term, it is used to reduce structural distortion caused
by inconsistent changes in adjacent grid edges (denoted by es1, es2). As shown
in Fig. 2(right), if the changes in adjacent edges are consistent, the included
angle should be close to 180. Therefore, we encourage its cosine distance to
approximate 1 as follows:

ℓinter =
1

Q

∑
{es1,es2}

(1− ⟨es1, es2⟩
∥ es1 ∥ · ∥ es2 ∥

), (4)

where {es1, es2} and Q are the set of horizontal and vertical adjacent edges and
their number.

3 Warp Smoothing Model

The network structure of the warp smoothing model is exhibited in Fig. 1(d).
Although its architecture is very simple (merely consisting of several fully con-
nected layers and 3D convolutions), it can still achieve good results with effective
and reasonable loss constraints.

4 Dataset

The videos in our dataset consist of three parts: some original videos from [11],
some stable videos from [10], and our captured videos. These videos are captured
with arbitrary and irregular motion trajectories. Therefore, we leverage them
to simulate two videos from different perspectives. Specifically, we collect the
video pair from different timestamps (e.g., one video is from the original video,
and the other video is captured after a random delay time). After that, we
crop the video frames to simulate an appropriate overlapping rate in stitching.
Considering the videos are collected from different timestamps, we further filter
out the videos with obvious moving objects. Finally, we get over 100 video pairs
and demonstrate the distribution of video duration in Fig. 3.

5 Evaluation Metric

To quantitatively evaluate the proposed method, we suggest three metrics as
described in the following:
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Fig. 3: The distribution statistics of the video duration time.

Alignment Score: Following the criterion of UDIS [5] and UDIS++ [7], we
also adopt PSNR and SSIM of the overlapping regions to evaluate the alignment
performance. We average the scores in all video frames.

Distortion Score: The final warp in the online stitching mode can be described
as a series of meshes: M̂S(N)(N), M̂S(N+1)(N), · · ·, M̂S(ξ)(N), · · ·. Then we
adopt Ldistortion(·) to measure the distortion magnitude. Because any distortion
in a single frame will destroy the perfection of the whole result, we choose the
mean value of the maximum distortion loss of each video as the distortion score.

Stability Score: The smoothed trajectories in the online stitching mode can
also be described as a series of positions: Ŝ(N)(N), Ŝ(N+1)(N), · · ·, Ŝ(ξ)(N), · · ·.
Then we adopt Lsmoothness(·) to measure the stability. The stability score is the
mean value of the average smoothness loss of each video.

Please note that in the comparative experiments, we only adopt the alignment
score because different methods define different warp representations and camera
trajectories. Thus we only apply the last two metrics to our ablation studies to
show the effectiveness of each module.

In the beginning, we evaluate the distortion and stability performance with
the metrics that are widely used in video stabilization [3] [2] [12]. These tradi-
tional metrics try to estimate the spatial transformation (homography or affine)
between adjacent frames from keypoint correspondences. However, the estimated
point correspondences are unreliable in our challenging testing cases (e.g., low
texture or low light). In addition, as described in Nie et al.’s video stitching [8],
the metric in the frequency domain (i.e., the stability score in [3]) are not reli-
able sometimes as the trajectory signals are usually very short and of different
lengths. Therefore, we adopt the more intuitive indicators (i.e., the distortion
loss and smoothness loss) to describe the distortion and stability performance.
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Table 3: More ablation studies about the optimization components of the warp
smoothing model on alignment performance (↑).

Method Regular Low-Light Low-Texture Moving-Fast Average
1 Only Spatial Warp 25.60/0.851 35.18/0.960 33.92/0.928 25.57/0.840 30.75/0.903
2 w/o Overlapping Mask (OP ) 22.26/0.759 32.14/0.945 30.97/0.913 20.73/0.713 27.40/0.851
3 w/o Smoothness (Lsmothness) 25.61/0.851 35.18/0.960 33.92/0.928 25.57/0.840 30.75/0.903
4 w/o Spatial Consistency (Lspace) 24.64/0.832 34.49/0.958 33.62/0.927 23.39/0.788 29.89/0.890
5 w/o Online Collaboration (Lonline) 24.70/0.833 34.50/0.958 33.62/0.927 23.39/0.787 29.91/0.890
6 StabStitch 24.64/0.832 34.51/0.958 33.63/0.927 23.36/0.787 29.89/0.890

Table 4: More ablation studies about the optimization components of the warp
smoothing model on distortion performance (↓).

Method Regular Low-Light Low-Texture Moving-Fast Average
1 Only Spatial Warp 0.925 0.913 0.767 0.610 0.804
2 w/o Overlapping Mask (OP ) 0.624 0.566 0.439 0.509 0.535
3 w/o Smoothness (Lsmothness) 0.554 0.598 0.471 0.514 0.534
4 w/o Spatial Consistency (Lspace) 1.189 1.214 1.081 1.098 1.145
5 w/o Online Collaboration (Lonline) 0.682 0.695 0.591 0.796 0.691
6 StabStitch 0.661 0.660 0.638 0.735 0.674

Table 5: More ablation studies about the optimization components of the warp
smoothing model on stability performance (↓).

Method Regular Low-Light Low-Texture Moving-Fast Average
1 Only Spatial Warp 29.03 26.33 27.35 158.57 60.32
2 w/o Overlapping Mask (OP ) 22.22 18.06 15.68 129.00 46.24
3 w/o Smoothness (Lsmothness) 28.98 26.34 27.35 158.22 60.22
4 w/o Spatial Consistency (Lspace) 23.38 19.60 18.67 133.85 48.88
5 w/o Online Collaboration (Lonline) 23.53 19.69 18.78 135.25 49.33
6 StabStitch 23.18 19.53 18.67 133.59 48.74

6 More Experiment

In this section, we conduct more experiments to explore the roles of different
optimization components in the warp smoothing model.

We first report the performance of the spatial warp model and complete Stab-
Stitch, and then ablate each constraint to show its effectiveness. The alignment,
distortion, and stability performance are shown in Tab. 3, Tab. 4, and Tab. 5,
respectively.

Data Term: The data term requires the smoothed trajectories to be close to
the original trajectories. Without this term, the final output trajectories will
degrade to constant paths, yielding meaningless results. Therefore, we ablate
the overlapping mask (OP ) instead by setting α to 0. As depicted in Tab. 3, the
alignment performance significantly decreases from 30.75/0903 to 27.40/0.851.
In this case, extensive artifacts will be produced.

Smoothness Term: The smoothness term works together with the data term to
strike a balance between preserving the original trajectories (especially alignment
performance) and smoothing the trajectories. Without this term, the output
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trajectories will be close to the original trajectories. As shown in Tab. 3 and
Tab. 5 (Experiment 1 and 3), the alignment and stability performance is close
to that of the spatial warp model. As for the distortion performance reported in
Tab. 4, it is significantly improved because of the spatial consistency term. If we
further remove the spatial consistency term on the basis of Experiment 3, the
distortion score will also approach that of the spatial warp model.

Spatial Consistency Term: With only the data and smoothness terms, every
trajectory will be optimized independently. However, there are (U +1)× (V +1)
control points, which implies (U +1)× (V +1) trajectories. If each trajectory is
smoothed separately without considering the consistency between trajectories,
distortions are prone to occur. As shown in Tab. 4 (Experiment 4 and 6), the
distortion is significantly increased without this term.

Online collaboration Term: In the online mode, only the last frame in a sliding
window (containing N frames) is used. The online collaboration term contributes
to the stability of adjacent sliding windows. Without this term, the stability
slightly degrades especially in the category of MF, as illustrated in Tab. 5 (Ex-
periment 5 and 6).

The final model (StabStitch) does not achieve the best performance in align-
ment, distortion, and stability. But it reaches the best balance among the three
metrics and produces the best visual effect, as demonstrated in our supplemen-
tary video.
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