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Fig. 1: Demo cases presentation of Merlin. Here we showcase several main capa-
bilities of our built Multimodal Large Language Model (MLLM), Merlin. Notably, in
the dialogue, the words marked with colors correspond to the trajectory outputs of the
targets in the image. To save space, we highlight them using the same colors.

Abstract. Humans can foresee the future based on present observa-
tions, a skill we term as foresight minds. However, this capability re-
mains under-explored within existing MLLMs, hindering their capacity
to understand intentions behind subjects. To address this, we integrate
the future modeling into MLLMs. By utilizing the trajectory, a highly
structured representation, as a learning objective, we aim to equip the
model to understand spatiotemporal dynamics. Inspired by the learning
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paradigm of LLMs, we first propose Foresight Pre-Training (FPT) that
jointly learns various tasks centered on trajectories, enabling MLLMs to
predict entire trajectories from a given initial observation. Then, we pro-
pose Foresight Instruction-Tuning (FIT) that requires MLLMs to reason
about potential future events based on predicted trajectories. Aided by
FPT and FIT, we build an unified MLLM named Merlin that supports
complex future reasoning. Experiments show Merlin’s foresight minds
with impressive performance on both future reasoning and visual com-
prehension tasks. Project page: https://ahnsun.github.io/merlin.

Keywords: Multimodal Large Language Model - Future Reasoning

1 Introduction

Human beings can predict future events or outcomes based on current observa-
tions, known in neuroscience theory as predictive processing [19]. In this paper,
we refer to this ability as foresight minds, which involves the use of past expe-
riences, knowledge, sensory information, and probabilistic reasoning to generate
expectations about future events. In the artificial intelligence (AI) domain, the
capability to predict future events is an important topic towards the realization
of artificial general intelligence (AGI).

Recent advancements in Multimodal Large Language Models (MLLMs), such
as GPT-4V [48] and Bard [2], have shown significant potential in image un-
derstanding and logical reasoning. Despite these achievements, these models
struggle to foresee future events based on current image observations. Even
provided with additional observations, like sequences of multiple frames, the
current MLLM models still struggle to adequately analyze and infer specific tar-
get behaviors, such as predicting object movements or interactions (shown in
Figure 2). On the contrary, human can reason the future to some extent based
on the observed current state [5,54], which shows powerful foresight minds.

To mitigate this existing deficiency in MLLMs, we start from dividing hu-
man’s process of foreseeing the future into a two-stage system [30,54]: (1) observ-
ing the dynamic clues of the subject and then (2) analyzing the behavior pattern
and reasoning what might happen according to the observation. For instance,
while watching a basketball game, people will first observe the moving players
on the court, and then forecast the specific player’s forthcoming actions, e.g.,
shooting, slam-dunking, or passing, by analyzing the current states and move-
ment patterns of the players. Compare this system to current MLLMs, we find
that MLLMs can complete the second stage well, thanks to the powerful logical
reasoning ability of LLM [50, 70]. Therefore the key challenge is the first stage.
That is, how to make MLLM acquire correctly spatiotemporal dynamics from
the multi-image observation?

Explicitly modeling next frames (e.g., reconstructing next frames [12,74]) can
be a straightforward way. However, it can be hard to directly extract dynamic
clues from the redundant visual information [25], especially from video sequences.
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Failure case of GPT-4V
What is this in the first frame going to ‘
do next?Analyse based on the trajectory.
Based on the player’s position within the court, their body
@ language suggest they might be considering taking a sh%
[Is there any player trying to disturb this shot? ‘ @

@ In the provided frames, there does not appear to be a
defender trying to contest the shot. ®

Fig. 2: Failure case of GPT-4V about future reasoning.

It is necessary to construct a suitable learning objective to assist MLLM in ob-
taining dynamic clues about the specific subjects. To this end, we point out that
tragectory, as a highly structured representation, is a good learning objective
which can link the temporal contexts between the past and the future.

Based on this insight, we propose to model the future to empower exist-
ing MLLMs with “foresight minds”. Following the modern learning paradigm of
LLMs, our future reasoning learning process includes two stages: (1) Foresight
Pre-Training (FPT), a paradigm that causally models the temporal trajecto-
ries, which interleave with multi-frame images. The model starts with the initial
observation of one or multiple subjects in the first frame as the query and then is
required to predict the whole trajectory. Notably, we introduce various tasks con-
taining richly labeled data [18,26,31,58,63,80], including object detection, object
tracking, etc., to perform multitask learning. And samples from these tasks are
properly formatted to ensure coordinated pre-training. (2) Future Instruction-
Tuning (FIT), then, considers the trajectory modeling bestowed by FPT as a
bridge in the logical chain of future reasoning. Simply put, when querying an
MLLM, it must articulate its reasoning in conjunction with the trajectory for
each object referenced. This method, as a form of Trajectory Chain-of-Thought,
effectively narrows the gap between trajectory perception and predictive future
reasoning, thereby fully unleashing model’s foresight minds.

Aided by the above future modeling technologies, we provide Merlin®, a
novel and unified MLLM capable of handling inputs and outputs of spatial co-
ordinates or tracklets from single image or multiple frames. Moreover, Merlin is
adept at performing inductive reasoning about future events based on current
observational results. To demonstrate this, we provide several real dialogues
between users and Merlin, as displayed in the Figure 1. Unlike the previous
MLLMs [41,84,87] which only supported interaction with a single image, Mer-
lin not only provides a richer multi-image interaction, but also on this basis, is
capable of executing unique and powerful future reasoning.

We construct a new future reasoning benchmark to evaluate Merlin’s logical
reasoning and future prediction abilities. The results, which significantly surpass

5 Merlin is a legendary character in the tales of King Arthur, renowned as a powerful
wizard and a wise counselor in the Arthurian legends. He is depicted as having the
power to foresee future events and has a deep understanding of fate and destiny.



4 E. Yu et al.

previous baselines [10,39,41,75], demonstrate Merlin’s stunning performance in
future reasoning. We further reveal Merlin’s exceptional performance in gen-
eral visual understanding. Through analysis in scenarios such as VQA (Visual
Question Answering) [23, 28], comprehensive understanding [42, 79], and hallu-
cination [37], we unexpectedly discovered that our proposed novel paradigm of
future learning aids MLLMs in gaining a deeper understanding of images. We
believe this brings new insights for the training of future MLLMs.

2 Related Work

2.1 Large Language Models

Large Language Models (LLMs) have gained significant attention due to their
capabilities in language generation and logical reasoning. Pioneering models like
BERT [15], GPT-2 [52], and T5 [53] laid the groundwork, but GPT-3 [8], the first
model with a 175 billion parameter size, made notable strides, demonstrating
strong zero-shot performance. An emergent ability, wherein model size scaling re-
sults in significant language capability improvements, was also observed in LLMs.
This was further facilitated by InstructGPT [49] and ChatGPT [47] using Rein-
forcement Learning with Human Feedback (RLHF) on GPT-3. These advance-
ments led to what’s called LLMs’ “iPhone moment”. Following GPT’s success,
several open-source LLMs, including OPT [83], LLaMA [65], and GLM [81], have
been proposed, showing similar performance to GPT-3. Models like Alpaca [64]
and Vicuna [11] illustrate the application of these LLMs, using a self-instruct
framework to construct excellent dialogue models.

2.2 Multimodal Large Language Models

The advancements in LLMs [47,65,66] have projected a promising path towards
artificial general intelligence (AGI). This has incited interest in developing multi-
modal versions of these models. Current Multi-modal Large Language Mod-
els (MLLMs) harness the potential of cross-modal transfer technologies. These
models consolidate multiple modalities into a unified language semantic space,
and then employ autoregressive language models as decoders for language out-
puts. Models like Flamingo [1] have adopted a gated cross-attention mechanism,
trained on billions of image-text pairs, to align visual and linguistic modalities,
showing impressive performance on few-shot learning tasks. Similarly, BLIP-
2 [36] introduced the Q-Former to align visual features more effectively with lan-
guage space. The LLaVA series [39,41,68] further enhanced this process by using
simply a MLP in place of the Q-Former and designing a two-stage instruction-
tuning procedure. Apart from creating general MLLMs, techniques have also
been developed for visual-interactive multimodal comprehension, involving the
precise tuning of referring instructions [10, 82, 85]. Furthermore, another inter-
esting direction in MLLM research involves integrating MLLMs for cross-modal
generation [16,20,32] by using text-to-image models such as Stable Diffusion.
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Response:
Judging by his respective trajectories and movements: Trackl<Id1>Frame1:[50,66,115,191];Frame2:[65,60,124,205];Frame3:[62,70,136,214]. This player will be tackled by
another player in a white jersey: F And both players will fall to the ground.

N Trajectory Visualization

‘ What will happen to this player?

E& Location:Frame1:[20,46,145,191] v

Appearance: The red player

Action: Running on the rugby field ‘ Show me the trajectory please l
v

Multiple Images Contexts Initial Observation User Prompt

First frame

Fig. 3: Overall pipeline of Merlin. The architecture of Merlin consists of three main
components: (1) an image encoder, (2) a large language model, and (3) a modality-align
projector. Bottom: The diverse input format that supports multiple-image contexts,
initial observation and the specific user prompt. Top: The model response including
the predicted trajectory and the future reasoning.

3 Metholodgy

3.1 Overall Architecture

Merlin is designed to unlock the foresight minds based on observations from
single images and multi-frame video clips. In order to accomplish this, images
and videos are comprehensively represented through a series of visual tokens,
which are then integrated into the language sequence that can be comprehended
by Large Language Models (LLMs) in a unified framework. Specifically, Merlin
consists of an image encoder, a decoder-only LLM, and a modality alignment
block as illustrated in Figure 3. Following prevalent practice [10,39,41,87], we opt
for the pre-trained CLIP [51] ViT-L/14 [17] as the visual encoder and Vicuna-
7B v1.5 [11] as the large language decoder. For more details, please refer to our
supplementary materials.

To provide enough visual information and details, the input images are re-
sized to a resolution of 448 x 448. At this juncture, the visual encoder iteratively
attends to (448/14)? uniformly divided image patches, yielding 1024 encoded
tokens. Considering the limited context length of LLMs and addressing the sub-
stantial computational challenges posed by high resolution and multi-frame con-
text modeling, we simply utilize a 2D convolution to achieve both dimension
projection and token aggregation [7,55].

We choose 2D convolution over 1D linear layers [10,39,41] or cross-attention
layers [4,36,87] as connector for the following reasons: (1) 2D convolution clus-
ters local visual tokens on a spatial scale [22], effectively achieving a one-step
transformation from spatial to channel information; (2) The good convergence
properties [29,60] of 2D convolution compared with cross-attention lay a solid
foundation for foresight learning in a two-step training approach.
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3.2 Foresight Pre-Training

Generative Pre-Training (GPT) [8,47,48] serves as the cornerstone of this gen-
eration’s Language Models (LLMs). Through learning to predict next token,
the model efficiently condenses data, thereby yielding emergent forms of intel-
ligence [69]. In this context, a very natural approach to enhance the model’s
perception of the dynamic clues across multiple frames is to explicitly model the
next frame (or image). However, due to the high redundancy in multi-frame vi-
sual information, the truly next-frame prediction remains a significant challenge
to date. A better approach at this juncture is to implicitly model high semantic
information in the label space (such as categories, bounding boxes) on a frame-
by-frame basis. Temporally, this label information forms a trajectory, a highly
structured representation. Causally modeling the trajectory in conjunction with
each frame of image helps to connect the past and present in time, thus enabling
the model to perceive the future.

To this end, we propose the Foresight Pre-Training, a way of causally model-
ing the trajectories interleaved with multi-frame images, to empower the MLLM
with the capacity of perceive the dynamic clues, and ultimately achieving fu-
ture reasoning. Specifically, given a video clip including several frames, we first
give the model the observation of the first frame, then we require the model to
predict the whole trajectory of the concerned subject in this video conditioned
on the initial observation. Notably, the observation of the first frame can be the
description or simple position of the concerned object. Formally,

P(Y|X) ~ P(Y|{X1,Xs,...}, Otirst), (1)

where X; denotes the i** frame and Oy¢irst is the first frame observation, Y
refers to the trajectory of the subject in Oy;ys; within the frame sequence. The
observation and the raw frames will be regarded as the condition to prompt
MLLM to predict the trajectory.

Data Construction. We first aggregate all valuable multimodal information
from diverse data resources and then properly organize them for multi-task fore-
sight pre-training. Specifically, for each sample instance I, we first collect its
multimodal information including consecutive multi-frame images {X7, Xo, ...},
subject observations from the first frame O;s;, and subject trajectory Y con-
structed from all frames. Formally,

I={{X1,Xs,..},Opirst, Y. 2)

We categorize observations of one subject of the first frame into three main
types: location description, appearance description and action description.
Then we randomly selected one of these observations of a particular subject in
the first frame as the query object. (It is also feasible to select observations of
multiple attributes as the query according to the characteristics of the dataset)

To better unleash the powerful generative modeling capacity of LLM, we
construct this query process as a type of conversation. Here is an example of the
constructed data shown in Figure 4. In this case, we want to query the subject
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An Example of FPT dialogue

Interleaved Multiple Images: Initial Observation:
Given a video clip including: Randomly C,ho'ce
. Location: Framel:[562, 342, 926, 561]

framel:m \n, frame2:m \n,frame3: \n Appearance: A panda on the right side.
. a E ¢ BtV L Action: A panda is lying on the ground.

Dialogue:

Question:
Interleaved Multiple Images, can you tell me the trajectory according to the initial observation ? To respond correctly,
utilize the specified <Idi>Frame t:[xmin,ymin,xmax,ymax]</Idi> format.

Answer:
Its trajectory is <Id1>Frame1:[562,342,926,561]; Frame2: [576,334,960,568];Frame3:[632,366,979,589] </lId1>.

Fig.4: One example to illustrate the multi-modality pretraining dataset.
The top block shows the provided contexts including the multiple images contexts and
initial observation (box, appearance and action) about the subject to prompt the LLM.
The bottom block shows the dialogue including question and answer.

— the panda on the right — with the randomly select observation, and expect
the answer with the movement trajectory of this panda across multiple frames.
To model this process, we convert the query to question and trajectory to answer
with proper natural language for embellishment.

Overall, the aforementioned process of dialogization roughly follows these
three principles: (1) Precise definition of task prompts and answer for-
mats. In particular, we use a task prompt to tell MLLM what specific task to
do (detect or track), and also specified the answer format with accurate de-
scriptions in each question. In this way, different types of tasks can be flexibly
organized together without compromising the general language ability. (2) Clear
indication of multimodal information. Concretely, for each group of image
tokens, we add a special frame indicator in front of then, i.e., framel:<image>
and frame2:<tmage>, so as to help MLLM better focus on the corresponding
image. (3) Interleaving of frames and observations. For the same identity,
we interleave the frames in which it appears with its positional observations, and
enclose them with two ID tokens (i.e. <Idi> and </Idi>) to construct a trajec-
tory. We believe that this interleaved organization helps in generatively training
to model causality within the trajectory, while the ID tokens ensures that the
model can distinguish among different identity objects.

Training Details. The objective in this stage is to initially endow MLLMs
with the capacity of modeling the spatiotemporal dynamics across multi-frame
images, while ensuring that its general language capabilities do not diminish.
Previous practices [4,40,41] typically conducting a separate modality alignment
training phase following a multi-task pre-training stage, which however, com-
plicates the training process and data construction. In this paper, we directly
incorporate both of them into one stage, and unfreeze all modules during pre-
training. This is because that we believe the MLLMs are sufficiently powerful to
concurrently handle the learning of general multimodal capabilities and multi-
task specific abilities under proper guidance. Furthermore, we mix a large amount
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of image-text pairs and rich-annotated conversation data (formatted according
to the above method) from diverse data sources [18,26,31,46,59,61,63,80] to con-
duct multi-task learning. In doing so, not only endows the model with foresight
minds but also ensures its multimodal alignment.

3.3 Foresight Instruction Tuning

Althought Foresight Pre-Training equips the model with the ability to observe
dynamic clues across multiple frames, it still falls short of true foresight minds.
This is because models typically struggle to effectively transform such observa-
tions into successful future reasoning [67,86].

Recent work [50, 86] has highlighted that Chain-of-Thought (CoT) [70] is
crucial in bridge the gap between the observations and actions of MLLMs with
theory of mind [56,67]. Meanwhile, several prior studies [10,84] have also demon-
strated that prompts indicating position (such as bounding boxes or points) —
a principle analogous to CoT — can concentrate an MLLM’s attention on the
relevant area, leading to more accurate dialogues and reducing the likelihood
of visual hallucination. Drawing inspiration from these findings, we conduct the
Foresight Instruction Training (FIT) building upon the foundation of FPT to
further enhance the model’s future reasoning capability. In specific, building on
the trajectory generating powered by FPT, we further union the trajectories to
generatively rationalize the forthcoming events. Mathematically,

P(Z|X)Y) ~ P(Z|{X1,X2,...},Ofirst, Y), (3)

where Z refers to the future observation which is deduced from observations in
each frame. It can be actions, events, trends, or simply likelihoods. In this con-
text, multi-frame images, in conjunction with the first subject observation, and
the trajectory of the same subject across all frames, serve as the union condition
to prompt MLLM to causally predict the future. This way, akin to Trajectory
Chain-of-Thought, effectively bridges the gap between trajectory perception
and predictive future reasoning, thereby fully unleashing model’s foresight minds.
Data Construction. The specific data construction method is similar to FPT,
but on this basis, we also deduce a future observation Z from the information
across multiple frames and append it after the trajectory in the answer. Formally,

I= {{X1)X27"'}7Ofi’r‘st7Y) Z} (4)

Practically, in this paper, we constitute future observations based on multi-
frame, multi-target action descriptions combined with human priors, and further
process them with GPT-4 [48] to ultimately form reasonable future inferences.
More details are provided in the supplementary materials.

Figure 3 provides an illustrative example of FIT, when a user questions Merlin
about the future of a player in red attire, Merlin initially presents the observed
trajectory of the concerned player, followed by the trajectory of another player
in white. Using these trajectories, Merlin deduces that the player in white is
likely to tackle the one in red, resulting in both players falling to the ground.
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Training Details. We freeze the vision encoder and keep the convolutional pro-
jector and the LLM unfreezed in this stage. On this basis, we primarily adopt the
open-source instruction tuning datasets, i.e., LLaVA-665K [39], for building the
basic ability for multi-round visual-language conversation. For further unleash-
ing the foresight minds of model, we first uniformly sample a certain number of
multitask dialogues in FPT, in order to maintain the model’s capacity of mod-
eling the dynamic clues across multi-frame images. In addiction, we also sample
data from three specific scenario datasets [38,45,71] and construct around 30K
FIT conversations based on the aforementioned data construction process.

4 Experiment

4.1 Experimental Settings

Datasets. For the foresight pre-training (FPT) stage, we first use 10M image-
text pairs sampled from LAION400M [57] to ensure multimodal alignment.
On this basis, we gather various open-source datasets with rich annotations
to conduct multi-task learning, including (1) object detection datasets: Ob-
ject365 [59] and Openlmage [33]; (2) tracking datasets: LaSOT [18], GOT10K [26],
MOT17 [46], DanceTrack [63] and SOMPT22 [61]; (3) grounding dataset: Ref-
COCO [31]; (4) object relation dataset: VCR [80]. For these data, as described
in Section 3.2), we apply strict task definitions and format specifications, and
re-organize them in the form of interleaved frames and observations. Ultimately,
we obtain approximately 5M question-answer data, which are mixed with 10M
paired data for foresight pre-training.

For the foresight instruction-tuning (FIT) stage, we mix approximately 730K

conversation data, including (1) open-source instruction-tuning data LLaVA-
665K [39], which integrates a series of VQA datasets [62] and multi-round con-
versation datasets [41]; (2) around 30K FIT multi-frame conversations con-
structed from three specific scenarios including MultiSports [38], TITAN [45]
and STAR [71] based on the data construction method described in Section 3.3;
(3) nearly 40K randomly sampled FPT multi-task data. For more details of the
datasets, please refer to the supplementary materials.
Implementation Details. As outlined in Section 3.1, Merlin utilizes the CLIP-
ViT-L/14 [51] as its vision encoder for image encoding and the open-source
Vicuna-7B v1.5 [11] for foresight decoding. Between them, a 3 x 3 convolution
layer with padding set to 1 and a stride of 2 is employed for both dimension
projection and token aggregating. During the foresight pre-training, we optimize
all parameters of the model, setting the learning rate to 5e — 5 and training for
one epoch. In the instruction tuning stage, we freeze the visual encoder and fine-
tune the parameters of the projector and LLM. In both stages, we train Merlin
using the AdamW [44] optimizer and a cosine annealing scheduler [43] as the
learning rate scheduler. The entire training process is conducted on 64 NVIDIA
A800 GPUs, with approximately 12 hours required for pre-training and 3 hours
for instruction-tuning. Additional implementation details can be found in the
supplementary materials.
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Table 1: The Effectiveness of Prediction Reasoning. We mainly select 5 metrics
from MMBench develop and test set, respectively, including OL: Object localization
(Prediction), PPR: Physical property reasoning, FR: Function reasoning, IR.: Identity
reasoning, and FP: Future prediction. Avg. denotes the average score. The best and
second-best performances are shown in bold font and underlined respectively.

Prediction Reasoning (Dev.)  Prediction Reasoning (Test)
Avg. OL PPRFR IR FP Avg. OL PPRFR IR FP
InstructBLIP [13] 13B 42.0 14.8 30.7 56.8 88.9 19.0 44.4 5.7 24.0 67.3 92.7 32.4

Method LLM Size

MiniGPT-4 [87] 13B 43.3 28.4 30.7 49.4 86.7 21.4 48.9 21.0 35.0 67.3 90.2 31.1
OpenFlamingo [3] B 528 2.5 10.7 86 22 24 11.529 14.0 9.3 11.0 20.3
MMGPT [42] 7B 19.5 1.2 240 99 60.024 16.8 3.8 13.0 12.1 524 2.7
MiniGPT-4 [87] 7B 26.8 7.4 14.7 19.8 80.0 11.9 279 8.6 13.0 29.9 61.0 27.0
InstructBLIP [13] 7B 34.8 6.2 173 51.9 84.4 143 39.0 2.9 17.0 52.3 78.0 44.6
LLaVA [41] 7B 38.7 8.6 25.3 53.1 77.8 28.6 39.7 13.3 35.0 48.6 82.9 18.9
mPLUG-Owl [75] 7B 41.0 18.5 18.7 66.7 86.7 14.3 45.9 16.2 23.0 59.8 91.5 39.2
Shikra [10] 7B 51.5 32.1 30.7 63.0 88.9 42.9 60.0 27.6 50.0 70.1 92.7 59.5
Kosmos-2 [27] 1.6B 54.4 38.3 33.3 56.8 91.1 52.4 58.2 40.4 30.0 65.4 89.0 66.2
LLaVA-1.5 [39] 7B 59.6 43.252.0 71.6 93.3 38.1 - - - - - -
Merlin (Ours) 7B 64.4 42.0 54.7 72.897.854.8 66.5 41.351.0 83.097.659.7

4.2 Properties Evaluation of Foresight Minds

In this section, we mainly verify the foresight minds (future reasoning) of Merlin
from two aspects, i.e., prediction reasoning and identity association ability, where
the former focuses on forecasting and reasoning location, events or behavior
based on image observation, and the latter focuses on the model’s ability to
establish subject identity associations across multiple frames to obtain dynamic
clues for future reasoning.

Prediction Reasoning. To evaluate this ability, we probe this ability based
on the several sub-tasks of MMBench [42]. MMBench provides a comprehensive
evaluation system to assess various capabilities of MLLM, with some metrics
focusing on the model’s prediction and reasoning capabilities. To this end, we
pick out these metrics to establish this new future reasoning benchmark and
compare Merlin with the existing SOTA models. As shown in Table 1, Merlin
achieves the best overall performance (64.4 average score on the development
set and 66.5 average score on the test set). Moreover, it obtains the best in 8/10
indicators and ranks second in all other indicators, which favorably demonstrates
Merlin’s strong predcition and reasoning ability.

Identity Association. We examine this ability by evaluating the performance
of object-tracking tasks [72,76-78], which can comprehensively demonstrate ob-
ject association and prediction capabilities. To this end, we evaluate Merlin in
existing mainstream tracking benchmarks, i.e., LaSOT [18] and GOT10K [26].
It is worth noting that Merlin is the first MLLM that can also carry out
tracking tasks. As shown in Table 2, Merlin achieves comparable performance
with expert models and even outperforms on some metrics. Notably, we only
sample a small amount of tracking data to train Merlin instead of the full amount
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Table 2: Comparison on main track- Table 3: Comparison with SOTA
ing benchmarks. Notably, the origi- methods on main MLLM bench-
nal LLaVA-1.5 [39] model was incapable marks. For VQA tasks, we mainly choose
of performing tracking tasks. Therefore, GQA [28] and VisWiz [24] to evaluate the
we utilized the model configuration of model; For general evaluation, we mainly
LLaVA-1.5 and trained a version of the choose MMBench [42] and MM-Vet [79].
model with the same dataset as Merlin TIncludes using in-house data that is not

for the fair comparsion. publicly accessible.
LaSOT GOT10k VQA Task Generalist

Method Success P,orm P AO SRg5 SRg7; Method GQA VisWiz MMB, MMB, MM-Vet
Specialist Models BLIP2[] 410 196 - 24
SiamFC [6] 336 42.0 33.9 348 353 9.8 il}li!ﬁﬁﬁlf’ 3] 402 345 360 380 262

1 515 _ ok / S X: - - 58. 50. -
ATOM [14 515 X 956634 402 1pppicsop (3 884 355 482 453
SiamRPN-+ [35] 49.6  56.9 49.1 51.8 61.8 325  |pppicggop 3] 452 360 545  54.6
SiamFC ¢ [73] 544 623 547 595 695 479 (uenvit (4] 505 a9 382 329
Generalist Models Qwen-VL-Chat® [4] 57.5  38.9 60.6  61.8 -
LLaVA-1.5 [39)] 194 165 12.8 23.5 202 9.7  LLaVA-15[39]  62.0 500 643 595 305
Merlin (Ours)  39.8  40.2 38.1 51.4 55.9 428  Merlin (Ours) 605 50.4 66.2 655  34.9

of data, which means LLM exhibits significant potential in handling temporal
tasks, possibly because tracking, as a temporal task, can be viewed as a casually
frame-level autoregressive task.

4.3 General Comprehension

In order to showcase the general multi-modal ability, we further benchmark Mer-
lin on various VQA benchmarks and recent benchmarks proposed for evaluating
the comprehensive capabilities of MLLMs.

Visual Question Answering (VQA). We first evaluate Merlin on several
mainstream VQA benchmarks to reflect the perceptual abilities of MLLMs in
understanding image content. As shown in Table 3, Merlin achieves competitive
performance compared with existing advanced MLLMs in the selected VQA
benchmarks (VQA). The results indicate that Merlin possesses strong image
understanding and question-answering capabilities.

Synthetica MLLM Benchmarks. Recently, several benchmarks have been
proposed to evaluate the comprehensive performance of MLLMs, encompassing
diverse finer-grained scenarios including visual perception, object recognition,
optical character recognition (OCR), future reasoning, and so on. In this part,
we select several mainstream MLLM benchmarks to evaluate Merlin. As shown
in Table 3, We present performance in accuracy on benchmarks including MM-
Vet [79] and MMBench [42]. On MMBench, we report results on the both de-
velopment and test sets. The results show that Merlin significantly outperforms
comparative methods, even though many methods utilized a substantial amount
of in-house data for pre-training, or employed several times more parameters.
This implies that, while introducing foresight minds into MLLMs, we not only
preserved their original visual capabilities but even further enhanced their overall
level of visual perception.
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Table 4: Zero-shot object hallucination evaluation on the COCO validation
set. “Yes” represents the proportion of positive answers that the model outputs.

Method LLM Size Random Popular Adversarial
Accuracy F1-Score Yes Accuracy F1-Score Yes Accuracy F1-Score Yes

LLaVA [41] 13B 64.12 73.38 83.26 63.90 72.63 81.93 5891 69.95 86.76
MiniGPT-4 [87] 13B 79.67 80.17 52.53 69.73 73.02  62.20 65.17 7042 67.77
InstructBLIP [13] 13B 88.57 89.27 56.57 82.77 84.66 62.37 72.10 77.32  73.03
Shikra [10] 13B 86.90 86.19 43.26 83.97 83.16 45.23 83.10 82.49  46.50
MultiModal-GPT [21] 7B 50.10 66.71  99.90 50.00 66.67 100.00 50.00 66.67 100.00
mPLUG-Owl [75] 7B 53.97 68.39 95.63 50.90 66.94 98.57  50.67 66.82 98.67
LLaVA [41] 7B 72.16 78.22 76.29 61.37 71.52  85.63 58.67 70.12  88.33
LLaVA-1.5 [39] 7B 83.29 81.33 - 81.88 80.06 - 78.96 77.57 -
Qwen-VL [4] 7B 84.73 82.67 - 84.13 82.06 - 82.26 80.37 -
Merlin (Ours) 7B 91.58 91.66 49.38 89.53 89.56 50.27 84.10 84.95 55.63

Table 5: Ablation study of the proposed strategies in Merlin. (ITP: Image-text
pair data, ITD: instruction-tuning data). We mainly report the AO score of GOT10k
and the average score of future reasoning.

Pre-Training Inst.-Tuning GOT10K Prediction Rea.
ITP FPT-Data ITD FIT—Data‘ AO Average .,

v X v X - 59.5
v X v v - 60.7
X v v v 15.5 52.8
v v v X 51.4 61.2
v v v v 51.4 64.4

4.4 Object Hallucination

Hallucination presents a significant challenge in existing MLLMs. This term
describes the phenomenon where the generated textual content exhibits incon-
sistencies when compared to its corresponding image content. In this section,
we present the experiments from the Polling-Based Object Probing Evaluation
(POPE [37]). As demonstrated in Table 4, Merlin surpasses recent SOTA meth-
ods with clear margins. More specifically, Merlin achieves optimal performance in
all metrics across three scenarios: Random, Popular and Adversarial, with
improvements of up to 5 points compared to the highly competitive baseline
Shikra [10]. Surprisingly, in multiple scenarios, the “yes” rate of Merlin is quietly
closed to 50%, demonstrating its extraordinary visual perception capabilities.

We analyze this success largely owing to the proposed foresight learning (FPT
and FIT). By enabling the model to learn the dynamic correspondence between
trajectories across multiple images, the model has gained a more precise abil-
ity to attend to relevant object (trajectories) contexts in the image, which helps
to better avoid misidentification and misalignment of irrelevant targets. We be-
lieve that this result will provide new thinking about addressing the issue of
hallucinations in MLLM.
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Table 6: Ablation studies of the model settings including resolution, vision
encoder and projector of Merlin.

Exp‘Resolution Projector Visual Encoder‘Tokens Num‘Prediction Rea. Got-10K

(1] 448x Conv2d unfrozen 256 64.4 51.4
(2} 336x Conv2d unfrozen 256 59.8 47.3
(3} 336x MLP unfrozen 576 58.1 23.5
(4] 448x Conv2d frozen 256 60.8 28.4

4.5 Ablative Analysis of FPT & FIT

As introduced in Section 3.2 and Section 3.3, FPT serves as the pre-training
strategy to enable MLLM to encapsulate dynamic information across frames
by predicting the trajectory of the next frame. FIT is designed to activate the
ability of foresight minds in a way of Trajectory CoT during instruction fine-
tuning. To further explore the effect of FPT and FIT, we conduct an ablation
study based on the established future reasoning benchmark and tracking dataset
GOT10K [26]. As shown in Table 5, we mainly report the average overlap (AO)
of GOT10K and the average score of future reasoning in the development set.

The results show that both FPT and FIT training strategies contribute to
the improvement of the metrics. Combining both FPT and FIT, Merlin achieves
the best performance which proves the effectiveness of the proposed strategies.
Furthermore, we can also observe that the lack of image-text pair data during the
pre-training stage considerably hampers the model’s general ability. This phe-
nomenon supports our perspective that, during the comprehensive pre-training
phase, the integration of image-text pair data is essential for maintaining modal-
ity alignment and preventing a decline in combined capabilities.

4.6 Ablative Analysis of Model Configuration

The configuration of model architecture for large-scale models is also a focal
point of interest for researchers. In this subsection, we specifically investigate the
impact of Merlin’s model configuration on performance. As depicted in Table 6,
we focus on examining the effects of model input resolution, the visual encoder
of the model, and the model’s projector on the ultimate performance of Merlin.
From the experimental outcomes, we can draw the following conclusions:

(i) High-resolution input is more conducive to visual perception and understand-
ing tasks (row @ and @), particularly for tasks that require precise localization,
such as detection and tracking.

(ii) The primary contribution of Conv2d is the ability to compress the number
of tokens efficiently and elegantly, which is crucial for supporting high-resolution
images. In contrast, MLPs cannot compress tokens. This high token count hin-
ders the training with multiple images. Moreover, more visual tokens does not
improve performance in future reasoning tasks (row @ and ®). We speculate that
an increased number of visual tokens may lead to the sparsity of supervision.



14 E. Yu et al.

1,278

This player <ld1> Framel: [46 8,651, 976]; Frame2: ; Frame3: [442, 254,607, 918] </Id1> is
dribbling the ball while being pursued by the opponents.

Fig. 5: Attention map visualization. To facilitate the observation, we map the at-
tention between the box responses and the visual tokens of each frame for visualization.

(iii) During the pre-training phase, the visual encoder should be unfrozen (row
O and O), which is beneficial for modal alignment and the expansion of the
fine-grained spatial information. Similar conclusion is also claimed in [9].

4.7 Visualization Analysis

In this subsection, we visualize the attention map of Merlin to further substan-
tiate the effectiveness of utilizing the proposed strategies. As shown in Figure 5,
we select the output attention map of the middle-level layers of LLM for vi-
sualization. We can observe that the word embedding of the output trajectory
coordinates can attend to the corresponding object from different frames cor-
rectly. This visualization results further prove that the trajectory representation
is a good interface to enable MLLM to establish the alignment between the lan-
guage description and the multi-images dynamic visual contexts. Furthermore,
this effectively explains why Merlin possesses a more powerful comprehensive
visual capability and a greatly lower level of hallucination compared to previ-
ous baselines. Indeed, the trajectory-driven foresight learning allows the large
language model to read images more profoundly!

5 Limitation and Conclusion

This study highlighted an obvious deficiency in Multimodal Large-Language
Models (MLLMs), specifically their ability to predict future events or outcomes
based on current observations, referred as “foresight minds”. To address this,
we serve as the first to point out that trajectory, as a highly structured rep-
resentation, is a good learning objective to assist MLLM in obtaining dynamic
information from the image observations. Based on this insight, we introduced a
unique training method including Foresight Pre-Training (FPT) and Foresight
Instruction-Tuning (FIT). By synergizing FPT and FIT, we created Merlin,
a unified MLLM that effectively understands and outputs spatial coordinates
or tracklets from single images or multiple frames. Merlin excels at a range of
traditional vision-language tasks while demonstrating powerful future reason-
ing capacities. Despite the substantial advancements made by Merlin, there still
are some limitations, particularly in processing long sequential videos and more
comprehensive future reasoning evaluation. We aspire for Merlin to guide the
enhancement of more advanced MLLMs in the future.
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