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1 Training Details

We conducted all experiments using 4 NVIDIA RTX3090Ti GPUs.

1.1 Training Details for Classification Tasks

We employed the officially released codes to train all recognition models. The
SlowFast [3], I3D [1] and X3D [2]models were trained for 150 epochs with a
batch size of 16, using a base learning rate of 0.001. We employed a cosine decay
learning rate scheduler with 34 warmup epochs. We sampled 16 frames per clip
with a sampling rate of 16. For the configuration of training MViT v2 [6] model,
we apply the base learning 0.0001, cosine decay learning rate scheduler, 200
training epochs, 30 warmup epochs, and the batch size 8. We sample 16 frames
per clip with the sampling rate of 16.

1.2 Training Details for Localization Task

Feature extraction. We firstly extract the frames from each video with 25
FPS and also extract the optical flow with TV-L1 [4, 8] algorithm. After that,
we finetune an I3D [1] model on Kinetics 400 [5], and then use it to generate
the features for each RGB and optical flow frame. Since each video has variable
duration, we perform the uniform interpolation to generate 100 fixed-length fea-
tures for each video. Finally, we concatenate the RGB and optical flow features
into a 2048-dimensional embedding as the model input.
Model training. We train all the detection models with their officially released
code and the default configurations. For training ActionFormer [11] model, we
apply the base learning rate 0.001, cosine decay learning rate scheduler, 30 train-
ing epochs, 5 warmup epochs, and the batch size 16. For training TriDet [9]
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Fig. 1: Examples of filtered videos.

Fig. 2: Examples with minor flaws that were still retained.

model, we apply the base learning rate of 0.0004, step decay learning rate sched-
uler, 20 training epochs, and the batch size 200. For these two baseline models,
we employed three different backbone network settings for performance compar-
ison: CSN [10], SwinViviT [7], and SlowFast [3].

1.3 Training Details for Anticipation Task

We follow the same settings as used in classification experiment.

2 Annotation Interface Demonstration

2.1 Video Filtering

The videos in the OphNet dataset, sourced from YouTube, exhibit a variety of
styles, resolutions, and on-screen elements. To ensure quality and relevance, we
filtered out videos that do not provide a microscopic perspective (first row of
Fig. 1), as well as those with subtitles, additional video windows, or watermarks
occupying a significant portion of the frame (second row of Fig. 1). Furthermore,
videos depicting unrealistic animations, suffering from poor resolution, display-
ing grayscale images, or containing OCT imagery (third row of Fig. 1) were
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also excluded. However, we retained videos with minimal on-screen text or wa-
termarks (first row of Fig. 2). Additionally, 3D videos recorded using binocular
microscopes were preserved, albeit processed to retain only the left-eye perspec-
tive in our dataset.

2.2 Classification Annotation Interface

In this stage, we categorize the videos into valid and invalid videos through key-
presses, with valid videos further classified based on their primary surgical type.
Initially, an attending ophthalmologist categorizes the videos into three types:
cataract surgery, glaucoma surgery, and corneal surgery. These are then fur-
ther distributed for filtering and classification annotation, with each individual
responsible for one of the three major surgeries.

2.3 Hierarchical Localization Annotation Interface

We have designed an interface that supports three levels of annotation: surgery,
phase, and operation, and is easy to operate and modify later. The main window
plays the video (with features such as speed adjustment, fast forward, rewind,
and pause), while the left and right sub-windows display the corresponding
frames for the start and end times of the current annotated segment. Addi-
tionally, it supports functions such as automatic time positioning and instance
insertion.

3 Dataset Bias

Dataset Bias. OphNet’s videos are sourced from YouTube and exhibit diverse
styles, clarity, and screen elements. This diversity can aid detection models in
generalization but may affect their effectiveness and performance. Some videos
in the dataset include subtitles or additional video windows, such as watermark
shown in Fig. 1. Similarly, additional video windows offer another perspective
but can make the scene chaotic, making it harder to recognize primary surgical
actions. The presence of these factors in OphNet reflects the complexity of real-
world surgical environments, because an ophthalmic microscope may inherently
display different windows or show parameters during recording. While they pose
challenges, they also present opportunities for developing models that can better
handle variability and unpredictability, which are crucial aspects of real-world
surgical scenarios.
Annotation Bias. OphNet is entirely annotated by ophthalmologists, and while
this ensures a high level of expertise, it also introduces the possibility of annota-
tion bias reflecting specific regional practices, terminologies, and interpretations.
Despite the universal nature of many ophthalmic procedures, subtle differences
in surgical techniques, procedural preferences, and clinical terminologies could
lead to inconsistencies in how surgeries are categorized and described across
different regions. For instance, the technique for cataract extraction may vary
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(a) Video filtering and surgery classification annotation interface.

(b) Hierarchical temporal localization annotation interface for surgery, phase, and operation

Fig. 3: Annotation Interface Design

between phacoemulsification in one region and manual small incision cataract
surgery in another, leading to differences in the annotation of surgical phases
and operations. Similarly, the terminology used to describe certain procedures
might differ, with one region referring to a procedure as "anterior vitrectomy"
while another uses "pars plana vitrectomy." To reduce the possibility of biases
in precise annotations, we have taken great care to establish a unified definition
prior to describing the surgery, phase, and operation. However, potential biases
arising from regional variations and individual surgical practices are inevitable.
Recognizing these potential biases is crucial for the users of OphNet, as it allows
for a more nuanced interpretation of the data and its applicability to different
clinical settings. Future work could involve expanding the annotation team to
include ophthalmologists from diverse geographical regions and surgical back-
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grounds, further mitigating the impact of regional and individual biases on the
dataset.

4 OphNet’s Extension

Multi-Surgery Recognition. In the realm of surgical procedures, obtaining
large-scale, finely annotated video datasets is a formidable challenge due to pri-
vacy concerns, the extensive time required for detailed labeling by medical ex-
perts, and the complexity of surgical actions. Consequently, weak supervision
emerges as a pivotal approach, enabling the utilization of limited or imprecise
labels to train robust models capable of understanding and recognizing diverse
surgical activities. Looking forward, the integration of domain knowledge, such
as surgical ontologies and procedural guidelines, into learning frameworks holds
the potential to mitigate the limitations posed by weak labels. Additionally, the
exploration of unsupervised and semi-supervised methods, combined with weak
supervision, could provide new pathways for leveraging unlabelled video data
effectively. Collaboration between computer scientists, clinicians, and domain
experts is essential to develop more sophisticated algorithms that can under-
stand and predict surgical dynamics accurately.
Few-shot Learning. Few-shot learning approaches aim to develop models that
can generalize from very limited labeled data, a scenario commonly encountered
in the medical field due to the high cost, privacy issues, and time constraints
associated with annotating surgical videos. In the context of surgery, these meth-
ods are particularly valuable as they allow for the recognition and understanding
of surgical actions, tools, and phases from only a handful of examples, thereby
facilitating broader applicability across diverse surgical procedures and settings.
Domain Generalization. Domain Generalization (DG) techniques are increas-
ingly vital as they allow models to be robust and applicable across different
hospitals, surgical procedures, and patient demographics, without the need for
retraining. This is particularly crucial in surgical video analysis, where the vari-
ance in lighting, surgical techniques, equipment, and individual patient anatomy
can vastly differ.
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