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A Additional Visualizations of SignAvatars Dataset

In this section, we present more samples and visualizations of our SignAvatars
dataset for each of the subsets categorized by the annotation type: spoken lan-
guage (sentence-level), HamNoSys, and word-level prompt annotation.

A.1 Qualitative Analysis of SignAvatars Dataset

We provide further details of our SignAvatars dataset and present more visualiza-
tion of our data in Fig. 1, Figs. 2 and 3. Being the first large-scale multi-prompt
3D sign language (SL) motion dataset with accurate holistic mesh representa-
tions, our dataset enables various tasks such as 3D sign language recognition
(SLR) and the novel 3D SL production (SLP) from diverse inputs like text
scripts, individual words, and HamNoSys notation. We also provide a demo video
in the supplementary materials and our project page: https://signavatars.github.io/.

A.2 More generation samples from SignVAE

We now share snapshot examples produced from our SignVAE, demonstrating
the application potential for 3D sign language production in our demo video on
project page.

B Analysis of annotation pipeline

In this section, we provide further analysis of our annotation pipeline. Since there
is not yet an existing benchmark for SL reconstruction while our method is not
limited to SL video, we provide more in-the-wild examples with our annotation
methods in Fig. 6 to demonstrate the reconstruction ability of our annotation
pipeline. Moreover, Fig. 5 illustrates more qualitative comparison with state-of-
the-art methods on EHF dataset [23], where we can observe that our method
provides significantly better quality regarding pixel alignment, especially with
more natural and plausible hand poses. Subsequently, the biomechanical con-
straints can serve as a prior for eliminating the implausible poses, which happens
frequently in complex interacting-hands scenarios for other monocular capture
methods, as shown in Fig. 7.
† Work done during an internship at Tencent AI Lab.
⋆ Corresponding author.
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Fig. 1: More sentence-level spoken language examples of SignAvatars, ASL subset. We
have different shapes of annotations presenting the accurate body and hand estimation.

B.1 Further comparison with State-of-the-art Methods

In this section, we compared our method against SGNify [10] . Tab. 1 and Fig. 4
clearly present the gains form our method. Note that our method is also running
significantly faster than SGNify. On a single V100 GPU, our method takes 3 ∼ 5
minutes to run on a 60-frame video of HamNoSys where two hands are presented
while SGNify takes hours.

C Further Evaluation of SL generation

C.1 More Experiments of Baselines

In our main paper, We adapt MDM (phrased as SignDiffuse) to use our prompt
encoder as the semantic adaptor instead of the pre-trained CLIP. We provide a
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Fig. 2: More HamNoSys-level examples of SignAvatars, HamNoSys subset. We have
different shapes of annotations presenting the accurate body and hand estimation.

further comparison with different prompts using CLIP. Unfortunately, the MDM
with CLIP feature did not work for complex sentence-level sign language gener-
ation and yielded random meaningless gestures that do not match the text. For
the word-level generation, we follow the “Holistic” setting as in Tab. 6 achieving
0.246, 0.375, 0.527 for R-Precision, 4.668 for FID, 5.974 for MM-dist and 0.297,
0.411, 0.575 for MR-Precision, further demonstrating the ability of our SignVAE.

C.2 Evaluation of SignVAE generation on other benchmarks

In this section, we aim to conduct further experiments with our SignVAE on 3D
SLP from spoken language on other benchmarks to further showcase its ability.
To the best of our knowledge, no publicly available benchmark for 3D mesh
& motion-based SLP exists. Progressive Transformer [27] and its continuation
series [26, 28, 29] on RWTH-PHOENIX-Weather 2014 T dataset [6] provides a
keypoint-based 3D Text2Pose (Language2Motion) benchmark. Unfortunately,
since, at the time of submission, this benchmark was not publicly available. Note
that, conducting back-translation evaluations as in [27] must strictly follow the
rule to use the same back-translation model checkpoint for a fair comparison.
This is also the same for the human motion generation area, where all the eval-
uations should be conducted with the same evaluation checkpoints such as the
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Fig. 3: More word-level examples of SignAvatars, word subset. We have different shapes
of annotations presenting the accurate body and hand estimation.

popular HumanML3D benchmark does [12]. Unfortunately, the pretrained eval-
uation model checkpoint or its reproductions are available neither on the project
website https://github.com/BenSaunders27/ProgressiveTransformersSLP (with
an open issue) or on other sites, We have not managed to get in touch with the
corresponding authors. For this reason, we have re-evaluated the bench-
mark method in [27] as follows:

Experimental Details. To conduct evaluations on Phoenix-2014T using the
Progressive Transformer (PT) [27], we trained our network as well as PT on
this dataset and recorded new results under our metrics. We conduct the re-
evaluation experiments by:
– First, we generate mesh annotations for the Phoenix-2014T dataset and add

them as our subsets GSL. We follow the original data distribution and official
split to train our network.
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Input Ours SGNify Input Ours Full

Fig. 4: Qualitative comparisons with SGNify (left) and full-body samples from our
dataset (right).

Method Upper Body Left Hand Right Hand Both Hands Avg. Runtime (min)
SMPLify-SL 56.07 22.23 18.83 20.53 -

SGNify 55.63 19.22 17.50 18.36 > 480
Ours 38.5 15.56 13.28 14.42 5

Table 1: Quantitative comparison with SGNify on their released ground truth mocap
annotations. we compute the mean per-vertex error following SGNify to remove the
lower body and face.

– Second, because in addition to the absence of the evaluation model, the gen-
eration model checkpoints are also lacking, we re-train PT using the official
implementation on both 3D-lifted OpenPose keypoints JPT and the 3D key-
points Jours regressed from our mesh representation, corresponding to PT
(JPT ) and PT (Jours).

– Third, we train two 3D keypoints-based SL motion evaluation models on
this subset with JPT and Jours, resulting in two model checkpoints CPT and
Cours.

Comparisons. We conduct both quantitative and qualitative comparisons be-
tween the PT and our method, following the official split with both CPT and
Cours in Tab. 2 under our evaluation metrics introduced in Sec. 5 and Ap-
pendix D.1. As shown in Tab. 2, our method significantly outperforms PT,
especially regarding the R-precision and MR-precision, which indicates better
prompt-motion consistency. Moreover, we can discover from the evaluation of
Real Motion that the evaluation model Cours utilizing the 3D keypoints Jours
regressed from our mesh representation can provide essentially better matching
accuracy with less noise (MM-dist) than the noisy canonical 3d-lifted OpenPose
keypoints JPT , yielding better performance than using CPT . A carefully de-
signed evaluation model with proper training data will significantly improve the
ability to reflect the authentic performance of the experiments and will be less
likely to disturb our analysis as those in the results of CPT .
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Eval. Model Method R-Precision(↑) FID (↓) MM-dist (↓) MR-Precision (↑)
top 1 top 3 top 5 top 1 top 3 top 5

CPT

Real Motion 0.193±.006 0.299±.002 0.413±.005 0.075±.066 5.151±.033 - - -
PT (JPT ) 0.035±.009 0.082±.005 0.195±.004 4.855±.062 7.977±.023 0.088±.012 0.145±.012 0.212±.019

PT (Jours) 0.078±.004 0.149±.002 0.267±.003 5.135±.024 8.135±.019 0.138±.009 0.195±.023 0.311±.011

Ours 0.165±.006 0.275±.009 0.356±.003 4.194±.037 4.899±.029 0.219±.017 0.325±.015 0.443±.056

Cours

Real Motion 0.425±.004 0.635±.006 0.733±.009 0.015±.059 2.413±.051 - - -
PT (JPT ) 0.095±.004 0.155±.005 0.286±.002 3.561±.035 4.565±.027 0.175±.002 0.301±.010 0.419±.034

PT (Jours) 0.134±.002 0.285±.003 0.395±.005 3.157±.021 3.977±.024 0.216±.005 0.363±.006 0.489±.002

Ours 0.389±.006 0.575±.009 0.692±.005 1.335±.003 2.856±.009 0.497±.006 0.691±.004 0.753±.015

Table 2: Quantitative comparison on Phoenix-2014 dataset, where Real Motion and
Ours are evaluated by extracting the 3D keypoints from our mesh representation. The
JPT and Jours in the bracket represent being trained on the corresponding keypoints.
Furthermore, we also qualitative comparison results in Fig. 8. Please see more
visualizations in our supplementary video, and project page.
Discussion. With SignAvatars, our goal is to provide an up-to-date, publicly
available 3D holistic mesh motion-based SLP benchmark and we invite the
community to participate. As an alternative for the re-evaluation, we can also
develop a brand new 3D sign language translation (SLT) method to re-evaluate
PT and compare it with our method on BLEU and ROUGE. As a part of our fu-
ture work on SL understanding, we also encourage the SL community to develop
back-translation and mesh-based SLT methods trained with our benchmark. We
believe that the 3D holistic mesh representation presents significant improve-
ments for the accurate SL-motion correlation understanding, compared to the
pure 2D methods as shown in Tab. 4 and Tab. 5 of the main paper, which was
also proved to be true in a latest 3D SLT work [17].

D Implementation details for experiments and evaluation

Optimization strategy of automatic annotation pipeline. During opti-
mization, we utilize an iterative five-stage fitting procedure to minimize the ob-
jective function and use Adam optimizer with 1e-2 as the learning rate. Moreover,
a good initialization can significantly boost the fitting speed of our annotation
pipeline. At the same time, a well-pixel-aligned body pose will also help the re-
construction of hand meshes. Motivated by this, we apply 2000 fitting steps for
a clip and split the fitting steps into five stages with 400 steps in each stage to
formulate our iterative fitting pipeline. In the meantime, the Limited-memory
BFGS [22] with a strong Wolfe line is applied to our optimization. In the first
three stages, all the loss and parameters are optimized together. The weights
wbody = whand = 1 are applied for LJ to obtain a good body pose estimation.
In the last two stages, we will first extract a mean pose from the record of the
previous optimization to gain a stable body shape and freeze it as a fixed shape,
as the signer will not change in a video by default. Subsequently, to obtain accu-
rate and detailed hand meshes, we will enlarge the whand to 2 to reach the final
holistic mesh reconstruction with a natural and accurate hand pose.
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D.1 Evaluation Protocols

In this subsection, we will elaborate on the computational details of our used
evaluation protocol. To start with, our evaluation relies on a text-motion em-
bedding model following prior arts [17, 30, 33]. For simplicity, we use the same
symbols and notations as in our Sec. 3 and Sec. 4 of the main paper. Through
the GRU embedding layer, we embed our motion representation M1:T and lin-
guistic feature El

1:s into fm ∈ Rd and fl ∈ Rd with the same dimensions to apply
contrastive loss and minimize the feature distances, where d = 512 is used in our
experiments. After motion and prompt feature extraction, we compute each of
the evaluation metrics, which are summarized below:
– Frechet Inception Distance (FID) (↓), the distributional distance be-

tween the generated motion and the corresponding real motion based on the
extracted motion feature.

– Diversity, the average Euclidean distance in between the motion features of
ND = 300 randomly sampled motion pairs.

– R-precision (↑), the average accuracy at top-k positions of sorted Euclidean
distances between the motion embedding and each GT prompt embedding.

– Multimodality, average Euclidean distance between the motion feature of
Nm = 10 pairs of motion generated with the same single input prompt.

– Multimodal Distance (MM-Dist) (↓), average Euclidean distance be-
tween each generated motion feature and its input prompt feature.

– MR-precision (↓), the average accuracy at top-k positions of sorted Eu-
clidean distance between a generated motion feature and 16 motion samples
from dataset (1 positive + 15 negative).

We now provide further details in each of those. For simplicity, we denote the
dataset length as N below.
Frechet Inception Distance (FID) is used to evaluate the distribution dis-
tance between the generated motion and the corresponding real motion:

FID = ∥µgt − µpred∥2 − Tr(Cgt + Cpred − 2(CgtCpred)
1/2) (1)

where µgt, µpred are the mean values for the features of real motion and generated
motion, separately. C, Tr are the covariance matrix and trace of a matrix.
Diversity is used for evaluating the variance of the generated SL motion. Specifi-
cally, we randomly sample ND = 300 motion feature pairs {fm, f

′

m} and compute
the average Euclidean distance between them by:

Diversity =
1

ND

ND∑
i

∥f i
m − f i′

m∥ (2)

Multimodality is leveraged to measure the diversity of the SL motion generated
from the same prompts. Specifically, we compute the average Euclidean distance
between the extracted motion feature of Nm = 10 pairs {f j

m, f j′

m} of motion
generated with the same single input prompt. Through the full dataset, it can
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be written as:

Multimodality =
1

NNm

N∑
i

NM∑
j

∥f ij
m − f ij′

m ∥ (3)

Multimodal Distance (MM-Dist) is applied to evaluate the text-motion
correspondency. Specifically, it computes the average Euclidean distance between
each generated motion feature and its input prompt feature:

MM-Dist =
1

N

N∑
i

∥f i
m − f i

l ∥ (4)

E Discussion

E.1 Related Work

In this section, we present more details about the related work as well as the
open problems.
Background. Existing SL datasets, and dictionaries are typically limited to 2D,
which is ambiguous and insufficient for learners as introduced in [17], different
signs could appear to be the same in 2D domain due to depth ambiguity. In that,
3D avatars and dictionaries are highly desired for efficient learning [21], teaching,
and many downstream tasks. However, The creation of 3D avatar annotation for
SL is a labor-intensive, entirely manual process conducted by SL experts and
the results are often unnatural [3]. As a result, there is not a unified large-scale
multi-prompt 3D sign language holistic motion dataset with precise hand mesh
annotations. The lack of such 3D avatar data is a huge barrier to bringing these
meaningful applications to Deaf community, such as 3D sign language production
(SLP), 3D sign language recognition (SLR), and many downstream tasks such
as digital simultaneous translators between spoken language and sign language
in VR/AR.
Open problems. Overall, the open problems chain is: 1) Current 3D avatar
annotation methods for sign language are mostly done manually by SL experts
and are labor-intensive. 2) Lack of generic automatic 3D expressive avatar an-
notation methods with detailed hand pose. 3) Due to the lack of a generic
annotation method, there is also a lack of a unified large-scale multi-prompt 3D
co-articulated continuous sign language holistic motion dataset with precise hand
mesh annotations. 4) Due to the above constraints, it is difficult to extend sign
language applications to highly desired 3D properties such as 3D SLR, 3D SLP,
which can be used for many downstream applications like virtual simultaneous
SL translators, 3D dictionaries, etc.
According to the problem chain, we will introduce the SoTA from three aspects:
3D holistic mesh annotation pipeline, 3D sign language motion dataset, and 3D
SL applications.
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3D holistic mesh annotation: There are a lot of prior works for reconstruct-
ing holistic human body from RGB images with parametric models like SMPL-
X [23], Adam [15]. Among them, TalkSHOW [32] proposes a fitting pipeline
based on SMPLify-X [23] with a photometric loss for facial details. OSX [19]
proposes a time-consuming finetune-based weakly supervision pipeline to gener-
ate pseudo-3D holistic annotations. However, such expressive parametric models
have rarely been applied to the SL domain. [16] use off-the-shelf methods to
estimate holistic 3D mesh on the GSLL sign-language dataset [31]. In addition
to that, only a concurrent work [10] can reconstruct 3D holistic mesh annotation
using linguistic priors with group labels obtained from a sign-classifier trained
on Corpus-based Dictionary of Polish Sign Language (CDPSL) [20], which is
annotated with HamNoSys As such, it utilizes an existing sentence segmenta-
tion methods [25] to generalize to multiple-sign videos. These methods cannot
deal with the challenging self-occlusion, hand–hand and hand–body interactions
which makes them insufficient for complex interacting hand scenarios such as
sign language. There is not yet a generic annotation pipeline that is sufficient to
deal with complex interacting hand cases in continuous and co-articulated
SL videos.
Sign language datasets. While there have been many well-organized continu-
ous SL motion datasets [1,2,6,7,13,14] with 2D videos or 2D keypoints annota-
tions, the only existing 3D SL motion dataset with 3D holistic mesh annotation
is in [10], which is purely isolated sign based and not sufficient for tackling
real-world applications in natural language scenarios. There is not yet a unified
large-scale multi-prompt 3D SL holistic motion dataset with continuous and
co-articulated signs and precise hand mesh annotations.
SL applications. Regarding the SL applications, especially sign language pro-
duction (SLP), [4] can generate 2D motion sequences from HamNoSys. [27]
and [29] are able to generate 3D keypoint sequences with glosses. The avatar
approaches are often hand-crafted and produce robotic and unnatural move-
ments. Apart from them, there are also early avatar approaches [5, 8, 9, 11, 34]
with a pre-defined protocol and character.

E.2 Licensing

Our dataset will first be released under the CC BY-NC-SA (Attribution-
NonCommercial-Share-Alike) license for research purposes. Specifically, we will
release the SMPL-X/MANO annotation and provide the instruction to extract
the data instead of distributing the raw videos. We also elaborate on the license
of the data source we used in our dataset collection:
How2Sign [7]. Creative Commons Attribution-NonCommercial 4.0 Interna-
tional License.
DGS Corpus [24]. is under CC BY-NC license.
Dicta-Sign. is under CC-BY-NC-ND 4.0 license.
WLASL [18]. Computational Use of Data Agreement (C-UDA-1.0).
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Input Ours OSX PIXIE

Fig. 5: Comparisons of existing 3D holistic human mesh reconstruction methods on
EHF dataset. Our annotation method produces significantly better holistic reconstruc-
tions with plausible poses, as well as the best pixel alignment. (Zoom in for a better
view)

https://orcid.org/0000-0001-9080-5555
https://orcid.org/0000-0002-1445-3196
https://orcid.org/1111-2222-3333-4444
https://orcid.org/0000-0001-7915-7964


SignAvatars 11

Fig. 6: Our 3D holistic human mesh reconstruction methods on in-the-wild cases.
(Zoom in for a better view)

Input

Front view Side view

Fullw/o Lbio Fullw/o Lbio

Fig. 7: Visualization examples and analysis of our regularization term. The biome-
chanical constraints can alleviate the implausible poses caused by monocular depth
ambiguity, which happens occasionally in complex interacting-hands scenarios for other
monocular capture methods.
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“und auch am samstag im osten noch freundlich im westen dann zum teil 
kräftige schauer.”Input

Ground 
Truth 
Video

Ours

PT

“in der nacht zehn bis sechzehn grad in einigen mittelgebirgstälern nur 

einstellige werte.”

Ground 
Truth 
Video

Ours

Input

PT

“am montag mal sonne mal wolken mit nur wenigen schauern.”Input

Ground 
Truth 
Video

Ours

PT

Fig. 8: Qualitative comparison with PT [27] on Phoenix-2014 T dataset.
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