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In this supplemental material, we present additional details on our proposed
method. By providing these additional details, we aim to provide a deeper un-
derstanding by offering thoughtful explanations, detailed analyses, and technical
specifics that were excluded from the main paper due to length limitations. Our
intention is to facilitate complete replication and fair evaluation of the frame-
work. The supplemental material is organized as follows:

e Section [1| delves into further experiments and discussions. It includes ad-
ditional experiments conducted on high-resolution inputs, a comprehensive
comparison of different methods, analysis of seeds and hyperparameters,
quantitative results, and discussions.

e Section[2] presents a thorough analysis of AttnZero-Bench-101. It outlines the
training settings and provides a detailed examination of candidate attention
analysis.

e Section (3| provides comprehensive implementation details, covering various
settings and hyperparameters.

e Section [ offers a comprehensive description of the detailed model architec-
tures utilized in our method.

1 More Experiments and Discussions

1.1 Transfer Experiments on High-Resolution Inputs

The experimental results in Table [I| show that our method, AttnZero, con-
sistently achieves performance boosts even when applied to the Swin model
with high-resolution inputs. Compared to the baseline Swin-B model, our Swin-
B+ AttnZero variant demonstrates improved accuracy. Specifically, with a 2242
resolution, AttnZero achieves a Top-1 accuracy of 83.7, 0.2 higher than the base-
line. Similarly, at a resolution of 3842, AttnZero achieves a Top-1 accuracy of
84.8, showing a boost of 0.3 compared to the baseline. These results highlight
our method’s effectiveness in enhancing the Swin model’s performance, even with
high-resolution inputs.
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Table 1: Results of AttnZero with high resolution inputs on the ImageNet classification

task.
Method Reso #Params Flops | Top-1
Swin-B 2242 88M 15.4G [83.5
Swin-B+AttnZero | 224> 89M 15.3G | 83.7 (+0.2)
Swin-B 3842 88M 47.0G | 84.5

Swin-B+AttnZero | 384> 88M 43.5G | 84.8 (+0.3)

Table 2: Comparison of different linear attention designs on Swin-Tiny structures.

Linear Attention FLOPs +#Param Acc.
Hydra Attn [2] 4.5G 29M 80.7
Efficient Attn [38] 4.5G 29M 81.0
Linear Angular Attn [44] | 4.5G 29M 79.4
Enhanced Linear Attn 3] | 4.5G 29M 81.8
AttnZero (ours) 4.3G 28.2M | 82.1 (+0.8)

1.2 More Comparisons on ImageNet Datasets

Comparison results in Table [2] demonstrate that our proposed AttnZero method
consistently outperforms other efficient linear attention designs on the Swin-Tiny
structure. Despite having slightly fewer FLOPs and parameters compared to the
existing techniques, AttnZero achieves the highest accuracy of 82.1%, surpass-
ing the second-best Enhanced Linear Attention by a significant margin of 0.8%.
Our method exhibits superior performance while maintaining computational ef-
ficiency even when compared to computationally expensive attention mecha-
nisms like Hydra Attention, Efficient Attention, and Linear Angular Attention.
This consistent boost in accuracy across different efficient attention methods
highlights the effectiveness of our approach in leveraging linear attention for
improved representation learning. Furthermore, as depicted in Figure (1| (right),
our approach incorporating PVT and Swin architectures consistently outper-
forms various other models, including RegNet [35], T2T [45], ConT [11], and
CvT [42]|. This demonstrates our approach’s superior performance and stability
compared to these alternative models.

1.3 Multiple Repeated Trials and Sensitivity Analysis of Seeds

The experiment involving multiple repeated trials and sensitivity analysis of
seeds aims to assess the robustness and stability of the proposed method’s per-
formance. Table [3] presents the results of training the searched attention on a
small dataset with different initialization seeds. The observed variances in the re-
sults range between 0.1 and 0.2, indicating a relatively low degree of fluctuation.
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Table 3: Multiple replicate experiments results of AttnZero on tiny datasets. We report
top-1 “mean (std)” accuracies (%) over 3 runs.

Top-1 Acc. (%)

Model CIFAR-100 Flowers |33 Chaoyang [48|
DeiT-T 65.08 50.06 82.00
DeiT-T-+AttnZero 77.68 +0.20 57.89 +0.30 83.12 +0.06
AutoFormer-T 66.58 54.98 82.84
AutoFormer-T-+AttnZero 78.61 +0.24 61.58 +0.28 83.68 +0.10
PVT-T 67.42 58.57 82.46
PVT-T+AttnZero 76.68 +0.16 64.30 +0.24 84.57 +0.08
Swin-T 68.25 58.85 82.98
Swin-T+AttnZero 75.90 +0.18 65.13 +0.22 85.11 +0.09
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Figure 1: Effective Receptive Field (ERF) visualization (Left) and Accuracy (Right)
of our proposed AttnZero.

As shown in Table 4] our method consistently outperforms the baseline model.
This narrow range of variance suggests that the performance of the proposed
method is consistent and reliable, and the improvement over other methods is
stable across different initialization conditions. Consequently, the experiment
demonstrates that the proposed approach is not overly sensitive to specific seed
values, ensuring reproducible and trustworthy results. The consistent perfor-
mance across multiple trials with varying initialization seeds provides confidence
in the method’s robustness and applicability in practical scenarios.

1.4 Analysis of Hyperparameters

Our framework is involved in search and training hyperparameters. For all the
training hyperparameters, we use the same configurations with baselines and
other methods |12[29]. For a fair comparison, we do not change the training hy-
perparameters in all experiments. Therefore, we also can analyze the impact of
this parameter without analyzing it. In our hyperparametric analysis, we investi-
gate the impact of different hyperparameters on the performance of our method.
Specifically, we analyze the effects of population size (N), crossover probability
(pc), mutation probability (p,), and maximum generations (G) on our method.
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Figure 2: Qualitative analysis of baseline Mask RCNN-PVT-Tiny (First Row) and
Mask RCNN-PVT-Tiny with our approach (Second Row) on COCO benchmarks.

Table 4: Different seeds on method with AutoFormer-T on CIFAR-100 dataset.

Method} Sandorln See‘; }AVG STD

(Ours) |78.61 78.35 78.10|78.35 0.26

In our default setting, we configure these hyperparameters as (20,0.9,0.1,100).
Table [f] presents the results of our method with different hyperparameter con-
figurations on the CIFAR-100 dataset using AutoFormer-T. It can be observed
that increasing the number of search rounds from 100 to 200 leads to a marginal
improvement in performance, as seen in the comparison of (20, 0.9,0.1,100) and
(20,0.9,0.1,200). However, the other settings in our default configuration appear
optimal, as variations in population size, crossover probability, and mutation
probability do not significantly impact the performance. For instance, compar-
ing (20,0.9,0.1,100) with (10,0.9,0.1,100) shows only a slight decrease in per-
formance. Similarly, individually changing the crossover or mutation probability
does not result in substantial performance differences. These findings suggest
that our default hyperparameter settings are practical, and further adjustments
to these parameters may not yield significant performance improvements.

1.5 Quantitative Results

The quantitative results, as shown in Figure [1| (left), demonstrate the effective-
ness of our method in expanding the receptive fields. The perceptual field of
our approach encompasses a larger central region, indicating that the underly-
ing ViTs enhanced by our method possess a larger perceptual field. This global
visual modelling capability empowers our model with enhanced capability for
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Table 5: Different Hyperparameters (N, pe, pm, G) on method with AutoFormer-T
on CIFAR-100 dataset.

(20,0.9,0.1,100)|(20, 0.9, 0.1,200) (20, 0.9, 0.1,200)| (10, 0.9, 0.1, 100)| (10, 0.8, 0.1, 100) | (20, 0.9, 0.05, 100)
78.61 | 78.82 | 78.88 | 78.12 | 78.42 | 78.46

global visual understanding. Moving to Figure [2 the visualizations comparing
the detection results of our method and the baseline method in MS-COCO pro-
vide clear evidence of the significant superiority of our approach. Our method
excels in accurately detecting small objects and handling object detection in
complex scenes. These results highlight the robustness and capability of our
method in addressing challenging object detection scenarios.

1.6 More Discussions

About comparisons of the AttnZero framework compared to existing
NAS methods. We would like to address the comparisons made between the
AttnZero framework and existing NAS methods [4}[8}|13}24}25,32,/47,149]: (1)
General NAS methods: Our method is not a generic NAS approach. While gen-
eral NAS methods focus on improving the efficiency of NAS and the method
itself, our method has a different objective. Our primary purpose is to establish
a new attention mechanism search explicitly tailored for Vision Transformers
(ViTs) rather than enhancing the NAS aspects. Therefore, our method tends to
have a different search space, strategy, and goal than these generic methods. (2)
ViT-NAS approach: The ViT-NAS approach migrates generic NAS methods to
search the width and depth of different parts of the ViT architecture. However,
it is crucial to highlight that our method is not searching for architectural di-
mensions but rather the fine internal structure of attention. We have conducted
extensive experiments on ViT-NAS to demonstrate that our method is orthogo-
nal to this technique, as the search objects are fundamentally different. (3) Other
Auto-Zero or Multi-Objective NAS methods: While we share some ideas with
these approaches, such as Auto-Zero or Multi-Objective NAS, we have proposed
a new search space and a specific search process based on our newly established
task. Consequently, we are a specific application of these general ideas, but we
differ in our unique search space and process. Our AttnZero framework is dis-
tinct from existing NAS methods. We focus on discovering efficient attention
modules tailored for ViTs rather than generic NAS improvements or architec-
tural dimensions. We have introduced a specific search space and search process
to address the challenges specific to attention discovery in ViTs.

About comparisons of the AttnZero with other search strategies. While
we acknowledge that a direct comparison with existing NAS methods may not
be feasible at this stage, the fact that our method outperforms random search
provides strong evidence of its effectiveness. Random searches are indeed strong
baselines and can provide valuable insights into the effectiveness of our search
operator for this new task. In our experiments, we conducted a random search
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Figure 3: (a) Performance distribution of subsets of Attn-Bench-101 (AutoFormer).
(b) Performance distribution of subsets of Attn-Bench-101 (PVT). (c) Performance
distribution of subsets of Attn-Bench-101 (Swin). Here, we randomly select 100 atten-
tions from our entire benchmark for comprehensive analysis.

in our search space and consistently observed that our method outperformed
random search. This significant improvement demonstrates the effectiveness of
our search operator for this new task. Our core contribution lies in proposing
new search tasks and spaces beyond the existing preliminary search methods. By
addressing the specific challenges of attention discovery in Vision Transformers,
we have developed a framework that achieves superior performance compared
to random search. We believe that this achievement demonstrates the efficacy of
our search operator and its suitability for this task. We encourage future work
to build upon our findings and further optimize the method [?,@,@,

with knowledge distillation methods to continue

improving the performance.

2 AttnZero-Bench-101

AttnZero-Bench-101 is a comprehensive evaluation platform for assessing the
performance of different attention mechanisms on four ViT architectures. This
benchmark provides a standardized evaluation for each attention mechanism and
enables NAS algorithms to identify high-performing attention mechanisms. By
evaluating and comparing the performance of different attention mechanisms on
a standard set of architectures, AttnZero-Bench-101 facilitates fair comparisons.
It provides valuable insights for the development and improvement of attention
mechanisms.

2.1 Datasets and Training settings

Our study includes popular image classification datasets, such as CIFAR-100 ,
which consists of 50,000 training samples and 10,000 test samples across 100
classes. To train all our Vision Transformer (ViT) models, we adopt the train-
ing settings outlined in . Specifically, we utilize the AdamW optimizer |31]
with an initial learning rate of 5e-4 and a weight decay of 0.05. The learning
rate schedule follows a cosine policy , gradually reducing the learning rate
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to 5e-6. Each ViT model undergoes 100 training epochs, with a linear warm-up
period of 20 epochs, employing a batch size of 128. Our training process involves
images with an interpolated resolution of 224 x 224. These standardized settings
ensure consistency and enable fair comparisons among our attention candidates.

2.2 Attention Search Space

Our search space includes six computation graphs and different operators. The
primitive operations utilized in are classified into two categories based on their
inputs. The unary operations are applied to a single input tensor, while the
binary operations are conducted on two input tensors. The search space of the
automatic proxy consists of 25 unary operations and 4 binary operations. Their
detailed formulations are presented in Table [6]

2.3 Detailed Analysis of Benchmarks

The experimental results in Figure [3]demonstrate the performance of various at-
tention candidates on the DeiT, PVT, and Swin models. Notably, the accuracy of
different attention candidates appears to be more consistent in the DeiT model.
Conversely, the PVT and Swin models exhibit a wider range of successful and
failed candidates. This difference can be attributed to the additional complex-
ities in layering and window design introduced by PVT and Swin, which make
the performance of attention candidates more sensitive to these intricate archi-
tectural designs compared to the relatively simpler DeiT model. Additionally,
Figure 4 in the main text presents the accuracy distribution of the AutoFormer.
It is important to consider that the different types of computational graphs and
candidate operators depicted in Figure 4 represent combined statistics across
the four ViT subsets (DeiT, PVT, Swin, and AutoFormer). This comprehensive
analysis offers insights into the variations in attention candidate performance
across diverse vision transformer architectures, highlighting the impact of archi-
tectural choices on the effectiveness of attention mechanisms. It is worth noting
that in Figure 4 (c), the label "wo norm.op" refers to the default search space
without the inclusion of 12 norm and min_max norm operators. Similarly, "wo
act. ops" indicates the default search space without the swish and elu activation
functions. Lastly, "wo binary ops" represents the default search space without
the euclidean_dis and cosine_ sim operators. These labels specify the specific
search space configurations used for the respective experiments, providing im-
portant context for understanding the results presented in Figure 4.

2.4 Detailed Attention Design Guidelines

In the detailed design of the attention mechanism, attention types i3n302 and
i3n303 consistently outperform other types, as shown in Figure 4 (b). These
attention types possess an augmented topology that strikes a favorable balance
between performance and efficiency. When analyzing the ablations presented in
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Figure 4 (c), it becomes evident that advanced activation and normalization op-
erations play a more significant role in the overall performance of the attention
mechanism compared to the inclusion of new binary operators. This emphasizes
the importance of selecting and combining appropriate activation and normal-
ization operations for optimal attention performance. Regarding advanced ac-
tivation operations, Swish is a novel activation function introduced by Google
researchers. It is defined as the element-wise product of the input and the sigmoid
function of the input. Swish combines the smoothness of the sigmoid function
with the linearity of the input, resulting in a more flexible and expressive activa-
tion. It has been found to outperform ReLU in certain cases, offering improved
gradient flow and better handling of negative values. Another advanced activa-
tion function is ELU, which introduces non-linearity into the attention mecha-
nism. It smoothly approaches negative values by using the exponential function.
ELU mitigates the "dying ReLU" problem and allows negative values to have
non-zero gradients, making it advantageous in certain scenarios. For advanced
normalization operations, L2 normalization (also known as Euclidean normaliza-
tion) scales the attention scores by dividing them by the L2 norm of the scores.
This ensures that the attention scores have a unit length, leading to a smoother
attention distribution and improved interpretability. L2 normalization prevents
attention weights from becoming too concentrated on a few elements, promoting
a more balanced attention distribution. Another option is min-max normaliza-
tion, which scales the attention scores to a specific range, typically between 0
and 1. This normalization achieves this by subtracting the minimum value from
each score and dividing it by the range (maximum value - minimum value).
Min-max normalization ensures that the attention scores are within a consistent
range, making them more interpretable and comparable across different contexts.
By incorporating binary operators, information interaction within the attention
mechanism is facilitated. In addition to the widely used cosine_ similarity op-
erator from Hydra [2], we also consider the euclidean_distance as a simplified
calculation option. These binary operators provide alternative ways to measure
the similarity or dissimilarity between attention elements, enabling more di-
verse and flexible attention patterns. To summarize, attention types i3n302 and
i3n303 are preferred in the detailed design of the attention mechanism due to
their consistent superior performance. Furthermore, advanced normalization and
activation operations contribute more significantly to the attention mechanism’s
performance compared to new binary operators. These design choices enhance
performance, flexibility, and adaptability of the attention mechanism in various
applications and scenarios.

3 Experiments and Implementation Details

3.1 Details on Search Experiments

Search spaces and Parallel Search. We divide the overall search space into
sub-search spaces according to different attention mechanisms. The search space
A represents the set of all possible attention mechanisms or architectures that
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can be explored. By dividing this space into sub-search spaces A;, As, ..., Asg,
we group attention mechanisms or architectures based on their characteristics or
types. Let facc(A) and foomp(A) denote the accuracy and computational com-
plexity of an attention mechanism A, respectively. During the search process,
we perform parallel searches within each sub-search space A;, i = 1,2,...,6.
This parallel exploration allows us to explore different attention mechanisms ef-
ficiently simultaneously, taking advantage of computational resources and poten-
tially discovering diverse solutions. Within each sub-search space A;, we search
for attention mechanisms a that optimize the accuracy and computational com-
plexity objectives:

a; =acA; face(A)saea; feomp(A)

After exploring the sub-search spaces in parallel, we combine the discovered so-
lutions a; to obtain the final search result a*. This combination can involve
selecting the best-performing attention mechanisms from each sub-search space
or combining different attention mechanisms to create hybrid or ensemble mod-
els. The performance metrics can include accuracy facc(A) and computational
complexity feomp(A), or other relevant evaluation criteria. By exploring a diverse
set of attention mechanisms and architectures, our method aims to identify so-
lutions that balance computational complexity and accuracy, ensuring efficient
and effective attention mechanisms for various applications.

Multi-Objective Evolution Search. The multi-objective evolutionary algo-
rithm used in our search process is the NSGA-II, a popular algorithm for solving
multi-objective optimization problems. The algorithm has the following config-
uration in our setup: The number of Population sizes (N) is set to 20. The
crossover probability (p.) between two parent individuals to generate offspring
is set to 0.9. Mutation probability (p.,) set to 0.1. The algorithm runs for a maxi-
mum of 100 generations. In our parallel search process, we simultaneously apply
this multi-objective evolutionary algorithm on the DeiT, AutoFormer, PVT,
and Swin architectures using the specified configuration. This parallel search
approach allows us to explore a diverse set of concurrent attention modules and
architectures, potentially leading to more effective and efficient attention mech-
anisms.

Evaluation Settings. Our attention search is performed on the CIFAR-100
dataset, where the images are scaled to a resolution of 224x224 pixels. We
search using the validation results to ensure fair comparisons, and our validation
set does not overlap with the test set. To obtain validation results, we adopt
standard training settings from the literature [15], such as 300 epochs and the
AdamW optimizer. The training process for obtaining validation results can be
formulated as follows: Let Diyain and Dy, denote the training and validation
datasets, respectively. The model parameters 6 are optimized using the AdamW
optimizer, a variant of the Adam optimizer with weight decay regularization.
The objective function is the cross-entropy loss Lcg between the predicted class
probabilities p(y|x,#) and the ground truth labels y for the input images x:

ECE(G) = _E(m,y)N'Dtrain [logp(y|x79)]
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The training process is carried out for 300 epochs and the validation performance
is evaluated on Dy, using the same cross-entropy loss function.

Search Costs. We have implemented effective strategies to mitigate these costs
and make the search more efficient: 1. We have employed a divide-and-conquer
strategy for parallel search and subsearch spaces. This approach significantly
reduces the overall search time required. Our experiments have shown that the
entire search process takes approximately 1.05 days on the 8xV100 platform,
making it efficient and feasible. 2. we have also implemented program check-
ing and rejection strategies to filter out unpromising candidates swiftly. These
strategies have proven effective in accelerating the search process by more than
five times, further reducing the overall cost. 3. Furthermore, it is worth mention-
ing that the cost of our search can be further reduced by modifying the dataset
and training setup of the agent. In our approach, we have deliberately avoided
using a proxy setup to mitigate potential sorting problems and ensure the dis-
covery of the best-performing attention modules. This thoughtful consideration
helps reduce unnecessary costs and streamline the search process.

Program Checking. Program checking is conducted to verify the functionality
of the single candidate attention module by assessing its ability to generate out-
puts using random tensor inputs. This process allows us to identify and exclude
candidates that exhibit arithmetic errors or dimension mismatches. To achieve
this, we apply random tensor inputs X € RE*SXD to the attention module,
where B represents the batch size, S denotes the sequence length, and D is the
input feature dimension. The output of the attention module, Y € REXSXD ig
then verified to ensure that it has the correct dimensions and that the computed
values are within a reasonable range, without any computational discrepancies
such as NaN (Not a Number) or Inf (Infinity) values. By applying a range of
random tensor inputs and verifying the outputs, we can identify and exclude
candidates that exhibit arithmetic errors or dimension mismatches, ensuring the
attention module’s functionality before proceeding with further evaluations.
Rejection Protocol. We conduct a Rejection Protocol for newly generated
Candidate Attentions to reduce the number of invalid proxies during the search
process. Specifically, we check whether the loss of Attention belongs to a set
of invalid scores, which includes values such as NaN (Not a Number) and Inf
(Infinity). This step helps identify and filter out candidates with unreliable or
inappropriate attention representations. Let £(f) denote the loss function of a
Candidate Attention parameterized by 6, evaluated on a validation dataset. We
define the set of invalid scores Z as:

T = {L£(0)|£(0) € {NaN,+oc0}}

If £(0) € Z, the Candidate Attention is immediately rejected as it exhibits
unreliable or inappropriate attention representations. In addition, we track a
running historical average p and standard deviation o of validation performance
for previous Candidate Attention. If the current Candidate Attention’s loss £(6)
scores more than one standard deviation below the mean of this distribution,
ie., L(0) > u+ o, it is also rejected. This filters out proposals that are inferior
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to the linear attention baseline. By implementing these strategies within the Re-
jection Protocol, we can achieve an acceleration of more than five times during
the search process. This allows us to efficiently filter out invalid or underper-
forming candidates and focus on those with the potential for better attention
representations.

3.2 Detailed Analysis on Discovered Attention

The optimal attention a%,,,, 7., il our search, whose detailed expressions are as
follows:

Citnzero = Q x 12 (12 (@) m2 (01 () mi (1)) 1)

where Q, K,V € RB*S*D are the query, key, and value tensors, respectively,
obtained by linearly projecting the input X € RE*S*P with B representing
the batch size, S denoting the sequence length, and D being the input feature
dimension. The function ¢; utilizes the Exponential Linear Unit (ELU) with a
shift of 1, introducing nonlinearities into the attention computation. The ELU
activation function is defined as:

¢1(I){x ifz>0

e —1 otherwise

The 7, performs min-max normalization, scaling the matrix values to a range
between 0 and 1. This normalization step ensures that the attention weights
are properly distributed and avoids potential issues with extreme values. The
min-max normalization function is given by:

X — min(X)
max(X) — min(X)

m(X) =

Furthermore, the 12 normalization function 7e guarantees that the attention
weights have a unit norm, facilitating better interpretation and utilization of the
attention mechanism. The 12 normalization is defined as:

X

1X 1|2
Regarding computational complexity, AttnZero requires triple matrix multipli-
cations (i.e., O(d x d+ N xd+ N x d). Despite this, the overall time and memory

complexity of AttnZero remains O(N), which ensures AttnZero handles compu-
tations for sequences of varying lengths efficiently.

n2(X)

3.3 Details on Transfer Experiments on Tiny Datasets

Datasets. We include popular image classification datasets in our study, such
as Tiny ImageNet [1], Flowers 33|, and Chaoyang |48]. These datasets provide
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Table 6: The unary operations and binary operations in the proxy search space.
"UOP" denotes the unary operation, and "BOP" denotes the binary operation.

OP ID ‘OP Name Expression
UOPO00|no_op z

UOPO1 |relu max(0, z)
UOPO02|scale \/%
UOPO03|sqrt vz
UOPO4 |invert z+l*6
UOPO05(12_norm %(a:)m
UOPO06 |sigmoid HE%L ‘
UOPOT7 |logsoftmax In zﬁi:psl

UOPO08|softmax s T

i=1
UOPO09 |softsign 714:5\1-\
UOP10|elu elu(z) + 1
UOP11|sigmoid _revert 1 — sigmoid(z)
UOP12|exp e’
UOP13|abslog |In z|
UOP14|min_max_norm ﬁ%
UOP15 |transpose T
UOP16|swish x x sigmoid (x)
UOP17|logsigmoid log (H%)
UOP18|neg —x
UOP19|norm_d normalize(z, dim = d)
UOP20(leaky relu max(0.1z, x)
UOP21 |mish 2 x tanh (In1 + exp (z))
BOPO1 |sum T+y
BOPO02 |cosine_sim cos(z,y)
BOPO03 |product Oy

BOPO04 |matrix_multi  z-y
BOPO5 |euclidean _dis  d(z,y)
BOPO06 |mse mse(z, y)

diverse and representative samples for evaluating the performance of our method
across different domains. Tiny ImageNet [1] is a subset of the ImageNet dataset,
consisting of 200 different classes with 500 training images and 50 validation im-
ages per class. It serves as a compact version of the original ImageNet dataset,
allowing for faster experimentation and benchmarking of computer vision mod-
els. Flowers [33] is a dataset specifically designed for flower classification tasks.
It comprises 102 categories of various flower species, with each class containing
between 40 and 258 images. The dataset presents a challenging task due to the
inherent similarities among different flower types, requiring models to capture
subtle visual cues for accurate classification. Chaoyang dataset [48] consists of
colon slide image patches from the Chaoyang hospital, labeled by three pro-
fessional pathologists. The patches with consensus labels from all pathologists
formed the testing set, while the remaining patches constituted the training set.
For samples in the training set with inconsistent labels, one pathologist’s opinion
was randomly chosen. The final dataset comprised normal, serrated, adenocarci-
noma, and adenoma samples for training and testing, totaling several thousand
images.
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Table 7: Architectures of AttnZero-DeiT models.

AttnZero-DeiT-T
stage output -
AttnZero DeiT Block
[win 14x 14
resl 14 x 14 dim 192 |x12 None
| head 3 |

Table 8: Architectures of AttnZero-PVT models.

stage| output AttnZero-PVT-M AttnZero-PVT-L ‘
AttnZero [PVT Block| AttnZero [PVT Block
Convlx1, stride=4, 64, LN
resl |56 x 56 win 56 X 5 win 56 X 56
dim 64 [x2 None dim 64 |x3 None
head 1 head 1
Convlx1, stride=2, 128, LN
win 28 x 2§ win 28 x 2§
res2 128X 28/ | Jim 128 |x2| None dim 128 [x3| None
head 2 head 2
Convlx1, stride=2, 320, LN
win 14 x 14 win 14 x 14
res3 |14 x 14 dim 320 |x2 None dim 320 [x6 None
head 5 head 5
Convlx1, stride=2, 512, LN
resd | Tx T win 7 %1 win 7x 1]
dim 512|x2 None dim 512{x3 None
head 8 head 8

Implementation. In the training process, we train DeiT, AutoFormer, PVT,
and Swin models using the discovered attention from scratch. The training fol-
lows standard settings [15], including 300 training epochs, a cosine learning rate
scheduler, and the AdamW optimizer. Specifically, we utilize the AdamW op-
timizer [31] with an initial learning rate of 5e-4 and a weight decay of 0.05.
The learning rate schedule follows a cosine policy [30], gradually reducing the
learning rate to 5e-6. Each ViT model undergoes 100 epochs of training, with a
linear warm-up period of 20 epochs, employing a batch size of 128. The train-
ing process involves images with an interpolated resolution of 224 x 224. These
standardized settings ensure consistency and enable fair comparisons among our
attention candidates.

3.4 Details on Transfer Experiments on ImageNet Datasets

Datasets. ImageNet [36] is a widely used large-scale dataset in computer vision
research. It contains 1.2 million training images and 50,000 validation images
across 1,000 categories. . The dataset covers a wide range of object categories
such as animals, plants, vehicles, and everyday objects. ImageNet serves as a
benchmark for evaluating the performance of various computer vision models
and algorithms.
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Table 9: Architectures of AttnZero-Swin models.

AttnZero-Swin-T AttnZero-Swin-S AttnZero-Swin-B
stage| output e o | Swin Block AttnZero [ Swin Block AttnZero [ Swin Block
concat 4 x 4, 96, LN concat 4 x 4, 96, LN concat 4 x 4, 128, LN
res] |56 x 56 win 56 x 5 win 56 x5 win 56 X 5
dim 96 [x2 None dim 96 [ x2 None dim 128 |x2 None
head 3 head 3 head 3
concat 4 x 4, 192, LN concat 4 x 4, 192, LN concat 4 x 4, 256, LN
res? |28 x 28 Wifl 282 wm 28 x 2§ WiTA 28x2§
dim 192 [ x2 None dim 192 | x2 None dim 256 | x2 None
head 6 head 6 head 6
concat 4 x 4, 384, LN concat 4 x 4, 384, LN concat 4 x 4, 512, LN
res3 |14 x 14 win 7x7] win 7x7 win 7 x 7]
None dim 384|x6 None dim 384|x 18 None dim 512|x 18
head 12 head 12 head 12
concat 4 x 4, 768, LN concat 4 x 4, 768, LN concat 4 x 4, 1024, L
resd | TxT win 7x7] win 7x7 win 7x7
None dim 768|x2 None dim 768 |x2 None im 1024 x2
head 24 head 24 head 24

Implementation. We conduct the experiment on the ImageNet [36] with the
standard settings [10}/2939] and the input images are resized to a size of 224x224
pixels using bicubic interpolation. For the training settings, we train the model
for 300 epochs with a warm-up period of 20 epochs. The weight decay is set to
0.05. The base learning rate is 5e-4, the warm-up learning rate is 5e-7, and the
minimum learning rate is 5e-6. The learning rate scheduler is set to "cosine"
with a decay interval of 30 epochs and a decay rate of 0.1. We use the AdamW
optimizer with an epsilon value of le-8 and betas set to (0.9, 0.999). The SGD
momentum is set to 0.9. In terms of augmentation, we employ the AutoAugment
policy and set the random erase probability to 0.25. We also use mixup with an
alpha value of 0.8. These augmentation techniques enhance the model’s ability
to generalize and improve performance.

3.5 Details on Transfer Experiments on Downstream Tasks

Object Detection. MS-COCO dataset [27] is a widely used dataset for object
detection, segmentation, and captioning tasks in computer vision. It contains
over 330,000 diverse images with detailed annotations such as bounding boxes,
segmentation masks, and captions. The dataset covers various object categories
and includes images with complex scenes and diverse backgrounds. MS-COCO
is a valuable resource for training and evaluating models in object recognition
and scene understanding. The training setup for our detector is configured with
settings similar to the FLatten [12]|. Specifically, we use the 1x learning rate
schedule (12 epochs). The learning rate configuration is set to a step policy,
with a linear warm-up period of 500 iterations and a warm-up ratio of 0.001.
The learning rate is set to 2e-4. The learning rate is adjusted at epochs 8 and
11. For the optimizer, we use the AdamW optimizer with a learning rate of 1Ir.
The weight decay is set to 0.0001.

Semantic Segmentation. The ADE20K dataset |46] is a comprehensive and
widely used dataset for semantic segmentation in computer vision. It contains
a diverse collection of images that cover a wide range of indoor and outdoor
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scenes. The dataset consists of over 20,000 images, making it a significant re-
source for training and evaluating models. ADE20K provides detailed pixel-level
annotations for each image, labeling each pixel with a corresponding object or
scene class. This level of annotation allows for fine-grained understanding of
image content and enables models to accurately segment objects and scenes in
images. The training setup for our method follows the same settings as FLatten.
Specifically, we use a maximum of 40,000 iterations and a learning rate schedule
designed for 40,000 iterations. Evaluation is performed every 4,000 iterations,
using the mean Intersection over Union (mloU) as the evaluation metric. For
the optimizer, we employ AdamW with a learning rate of 0.0002 and a weight
decay of 0.0001 . The learning rate policy is set to polynomial, with a power
of 0.9 and a minimum learning rate of 0.0, applied on an iteration basis rather
than an epoch basis.

4 Model Architectures Details

We summarize the architectures of Transformer models, namely DeiT [39], PVT [40],
and Swin [29], as detailed in Tables 7| to @ To ensure a fair comparison, we aug-
ment our implementation by adding Depthwise convolution as same as FLat-
ten [12] for fair comparison. Furthermore, we replace the original self-attention
blocks with our focused linear attention block at all stages of DeiT and PVT
models. However, in the case of the Swin model, we incorporate our module only
in the early stages while maintaining the original structure (width and depth) of
the model. This approach enables us to assess the performance of our module in
comparison to the original attention blocks across different stages of the models.
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