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Abstract In this paper, we present AttnZero, the first framework for
automatically discovering efficient attention modules tailored for Vision
Transformers (ViTs). While traditional self-attention in ViTs suffers from
quadratic computation complexity, linear attention offers a more effi-
cient alternative with linear complexity approximation. However, exist-
ing hand-crafted linear attention suffers from performance degradation.
To address these issues, our AttnZero constructs search spaces and em-
ploys evolutionary algorithms to discover potential linear attention for-
mulations. Specifically, our search space consists of six kinds of compu-
tation graphs and advanced activation, normalize, and binary operators.
To enhance generality, we derive results of candidate attention applied
to multiple advanced ViTs as the multi-objective for the evolutionary
search. To expedite the search process, we utilize program checking and
rejection protocols to filter out unpromising candidates swiftly. Addi-
tionally, we develop Attn-Bench-101, which provides precomputed per-
formance of 2,000 attentions in the search spaces, enabling us to sum-
marize attention design insights. Experimental results demonstrate that
the discovered AttnZero module generalizes well to different tasks and
consistently achieves improved performance across various ViTs. For in-
stance, the tiny model of DeiT|PVT|Swin|CSwin trained with AttnZero
on ImageNet reaches 74.9%|78.1%|82.1%|82.9% top-1 accuracy. Codes
at: https://github.com/lliai/AttnZero.
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1 Introduction

In recent years, Vision Transformers (ViTs) demonstrate remarkable success in
various vision tasks, including image classification [16, 19, 58, 62], object detec-
tion [60, 75], semantic segmentation [47]. ViTs draw inspiration from the trans-
formative impact of Transformers in natural language processing, utilizing self-
attention mechanisms to capture global dependencies. However, self-attention
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has a quadratic complexity that scales with the square of the input sequence
length. This quadratic complexity limits the scalability of ViTs for handling
large image inputs, thereby limiting their practical applications.

To address this issue, researchers have been exploring the use of linear atten-
tion [57] as a more computationally efficient alternative. Unlike self-attention,
linear attention has a linear complexity approximation, making it more suitable
for handling large input sequences. However, existing linear attention meth-
ods [42, 54] suffer from several limitations: (1) Linear attention often leads to
reduced performance than softmax attention due to its simplifying assumptions.
The simple linear operators used in linear attention have limited flexibility and
produce noisier activations than nonlinear functions [24]. These performance
degradations challenge leveraging linear attention as a viable substitute for self-
attention in ViTs. (2) Hand-crafted linear attention designs are often specific
to certain tasks or architectures, lacking generality across different scenarios.
Additionally, the manual design is labor-intensive, time-consuming, and heavily
reliant on expert knowledge. Consequently, these drawbacks hinder the scalabil-
ity and accessibility of linear attention in ViTs.

To address these challenges, we have made several observations. We notice
that some large language models [4, 7] employ new operators in Transformers
to improve performance. For example, LLaMA [59] currently uses RMSNorm
and SiLU to prevent training crashes. These successes inspire us to assemble a
series of advanced operators to enhance linear attention and explore their op-
timal combination formulations. However, the question remains: How can we
efficiently solve this combination problem? Recent developments in AutoML,
such as AutoML-Zero [50] and NAS methods [40,46], offer a promising solution.
These methods involve constructing an extensive search space encompassing var-
ious options and searching for optimal architectures. Nevertheless, existing NAS
methods are not suitable for solving the formulation discovery problem in our
case for several reasons. (1) Different search space. The search spaces in
conventional NAS methods typically focus on network width/depth, block/cell
types, and parametric operators [5, 56]. In contrast, our attention search space
includes many non-parametric operators and different combinatorial types. This
leads to an explosion in the search space and many unsuccessful candidates.
(2) Different search algorithms. Most recent NAS methods employ weight-
sharing strategies [14, 27] to reduce search costs. However, our search space is
explosive and extremely sparse, meaning that using previous ways to find po-
tential candidates is less efficient and effective. (3) Different search goals.
Most NAS methods prioritize performance for a single task and may struggle
to generalize well to different applications [65]. In contrast, our objective is to
discover generalized attention mechanisms that can be applied to various ViT
models and tasks. These challenges highlight that attention discovery is a new
task that requires a unique search space and strategy compared to traditional
NAS methods.

Based on the above observations, we propose AttnZero, a new framework
that aims to discover superior linear attention formulations that achieve a better
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Figure 1: Overall pipeline of AttnZero. Our framework obtains candidate attention
populations by sampling from attention search space. With program checking and
rejection protocols, we conduct validation results of these attentions on multiple ViTs.
Then, we use NSGA-II to obtain the optimal solution and cross-mutate for the next
population.

accuracy-efficiency tradeoff. As shown in Figure 1, our framework can be divided
into two parts: a comprehensive attention search space and a multi-objective evo-
lutionary search. Based on the basic form of linear attention, we develop six com-
putation graphs to represent attention candidates in the search space. Then, we
combine unary and binary operators with advanced functions, including various
activation functions, normalization techniques, and matrix arithmetic functions.
This approach allows us to obtain flexible and effective attention candidates. Our
goal for the search algorithm is to find attention formulations applicable across
different ViT models. To achieve this, we model the search task as a multi-
objective optimization problem and employ the NSGA-II evolution method to
obtain optimal solutions. During the search process, we validate candidate at-
tention in multiple ViT models through multi-architecture evaluations. Based on
these evaluations, our search engine exploits crossover and mutation for better
populations. To accelerate the search process, we perform a fast program check
and a rejection protocol to eliminate unpromising candidates during the search
process. In this way, our AttnZero improves at least 5� in search efficiency with-
out the weight-sharing setting [22], making our method free of ranking issues in
traditional NAS methods [9, 18].

We conduct comprehensive experiments to evaluate the transferability of
our discovered attention mechanisms across different ViT models, datasets, and
tasks without requiring additional searches. When applied to various ViT mod-
els, our AttnZero consistently outperforms the baseline method. For instance,
our method achieves gains of 3.0%�1.6% on PVT-T to PVT-L on the ImageNet
dataset. Furthermore, ViT models with AttnZero demonstrate significant im-
provements when considering different data domains. For example, DeiT+AttnZero
achieves gains of 6.2%, 7.8%, 1.1%, and 2.7% on the Tiny-ImageNet, Flowers,
Chaoyang, and ImageNet datasets, respectively. Additionally, we compile a new
benchmark named Attn-Bench-101, which consists of 2,000 attentions from our
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search space. The benchmark highlights the preference for advanced normaliza-
tion techniques, activation functions, and well-performing attentions. In conclu-
sion, our contributions can be summarized as follows:

� To improve linear attention, we present a new task, efficient attention dis-
covery, that generalizes to various ViT models and tasks. For this task, our
AttnZero, the first framework, is developed to achieve effective attention
search.

� We propose a comprehensive attention search space, including different types
of computation graphs and advanced operators as options. We develop multi-
objective searches with multiple ViTs evaluations to ensure generalisability.

� Our found attention can be well generalized to DeiT|PVT|Swin|CSwin and
other ViTs. Extensive experiments on multiple datasets in classification, de-
tection, and segmentation prove the superior performance of our AttnZero.

� We build Attn-Bench-101, providing many attentions and their results. Some
attention design guidances are summarised based on these results.

2 Related Works

Efficient Attention. The application of self-attention in computer vision has
made significant progress [2,8,26,68,69] with the introduction of ViT [19]. Then,
PVT [60] introduces a hierarchical structure while Swin Transformer [41] pro-
poses window-based attention to model dependencies efficiently. However, soft-
max attention’s quadratic complexity poses challenges. Linear attention reduces
this but often degrades performance [6, 30, 64]. Efficient Attention [54] applies
softmax to Q and K while SOFT [42] uses matrix decomposition. Castling-
ViT [66] employs softmax attention during training but linear attention at infer-
ence. FLatten [24] preserves diversity through focused functions. While effective,
these methods still have performance limitations and require complex manual
design. In contrast, our AttnZero automatically discovers novel formulations to
enhance linear attention. Rather than replacing prior work, we aim to improve
the performance of the existing method while reducing manual effort. We build
our search space based on previous work and provide feedback on new patterns.
Thus, AttnZero complements rather than competes with manual methods.
Neural Architecture Search (NAS). NAS methods automate model design
through search spaces and algorithms [49,77]. Early NAS works adopt reinforce-
ment learning with expensive costs [78]. Recent one-shot NAS [15] and zero-shot
NAS [11–13,36,37,73,76] use techniques like weight sharing [23] and training-free
proxy evaluation to speed up search. Current NAS methods on ViTs [5, 45, 72]
(e.g ., AutoFormer [5]) search the number of depth/head of transformers. In
contrast, AttnZero focuses on discovering attention mechanisms, not architec-
tural dimensions. We also apply AttnZero to AutoFormer and observe consistent
improvements, indicating our method is orthogonal to existing ViT-NAS meth-
ods. There are attempts to search entire attention blocks [67], SE-like atten-
tion [43,61], projection layers [21], and Transformers searches in other fields like
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CTR [70] and NLP [20,55]. We clarify that our AttnZero is the �rst to search for
e�cient attention in visual tasks, which clearly di�ers in spaces/strategies/goals
from previous methods. Inspired by general idea in AutoML-Zero [51], we achieve
many new designs in search space/strategies for new attention discovery task,
and opens up new possibilities for enhancing the capabilities of ViTs.

3 Methodology: E�cient Attention Discovery

In this section, we �rst review the linear attention form. Then, we present our
search space and algorithms. The overall process is shown in Figure 1.

3.1 Recap of Self-Attention and Linear Attention

In self-attention, input tokens are projected into query (Q), key (K ), and value
(V ) matrices, respectively. The general form of self-attention is given by:

Oi =
NX

j =1

Sim(Qi ; K j )
P N

j =1 Sim(Qi ; K j )
Vj ; (1)

where Oi represents the output of the i -th token and Sim denotes the similar-
ity function. The commonly used similarity function is the softmax function,
exp

�
QK T =

p
d
�

, where d is the dimension of the input tokens. However, the

quadratic time and space complexity of softmax attention, O(N 2d), becomes
impractical for large numbers of tokens (N ). To address this, linear attention is
explored as an e�cient alternative, which can be expressed as

Oi =
� (Qi )

� P N
j =1 � (K j )T Vj

�

� (Qi )
� P N

j =1 � (K j )T
� ; (2)

where � represents the kernel function. Linear attention reduces the computa-
tional complexity to O(N ), making it scalable for large input sequences. This
reduction is achieved by using carefully designed kernels to approximate the sim-
ilarity function, enabling a change in the computation order from (QK T )V to
Q(K T V), exploiting the associative property of matrix multiplication.

3.2 E�cient Attention Search Space

Attention Representation. In Figure 2, we construct six types of computa-
tional graphs using (Q, K, V) as inputs to represent our candidate attentions.
Among them, our i3n2 attentions follow the same process as standard linear
attention, and we improve it by searching for di�erent unary operations. Par-
tially inspired by Castling-ViT [66], we introduce novel attention mechanisms
with three binary operator nodes based on basic linear attention. With addi-
tional operators with either O(N � d) or O(d� d) computational complexity, the
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Figure 2: Schematic of the six computational graphs in our search space. We denote
the graph with 3 inputs and 2 binary operations as i3n2. Similarly, i3n3 refers to a
graph with 3 inputs and 3 binary operations. Since each binary operation takes two
inputs, there are 5 possible graph structures for i3n3. We label these i3n301� i3n305,
respectively. For simplicity, we do not display unary operators here.

Table 1: Some operations in our attention search space. �UOP� and �BOP� denote
the unary and binary operation, respectively. Full operations are in the Appendix.

OP ID OP Name Expression

UOP00 no_op x
UOP01 relu max(0; x)
UOP02 scale xp

dx

UOP03 sqrt
p

x
UOP04 invert 1

x + e� 6

UOP05 l2_norm x � mean ( x )
std ( x )

UOP06 sigmoid 1
1+ e� x

UOP07 logsoftmax ln ex
P n

i =1 es i

UOP08 softmax ex
P n

i =1 es i

UOP09 softsign x
1+ j x j

OP ID OP Name Expression

UOP10 elu elu(x) + 1
UOP11 sigmoid_revert 1 � sigmoid(x)
UOP12 exp ex

UOP13 abslog jln xj
UOP14 min_max_norm x � min( x )

max( x ) � min( x )

UOP15 transpose xT

UOP16 swish x � sigmoid (x)
BOP01 sum x + y
BOP02 cosine_sim cos(x; y )
BOP03 product x � y
BOP04 matrix_multi x � y
BOP05 euclidean_dis d(x; y )

performance of these attention mechanisms can be enhanced without a signi�-
cant increase in computational overhead. Based on the di�erent binary nodes,
these augmented attentions can be categorized into �ve types (i3n301 to i3n305),
e�ectively enhancing the modeling capability. We divide the sub-search space
according to these di�erent types of attention. During the search process, we
�rst search the solutions within the sub-search space in parallel and then com-
bine them to obtain the �nal search result. Figure 4 (b) shows performance
for di�erent attention candidates. These designs allow our method to balance
computational complexity and accuracy.
Primitive Operations. Table 1 presents some unary and binary operators
in our search space. These operators encompass both commonly used opera-
tions found in existing linear attentions [3, 24, 54, 66] and our proposed ones,
including: (1) The activation operations are responsible for enhancing the non-
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Algorithm 1 NSGA-II Evolution Search for AttnZero.
Input : Search spaceA , population size N , crossover probability pc , mutation proba-
bility pm , max generations G.
Output : Set of Pareto-optimal attention formulations.
1: Initialize population P0 with N individuals generated randomly;
2: Evaluate the �tness of each individual in P0 for all objectives;
3: for g = 1 to G do
4: Perform non-dominated sorting on Pg� 1 to classify into fronts F1 ; F2 ; : : :;
5: Calculate crowding distance for individuals in each front;
6: Q := Select N individuals for mating via front rank and crowding distance;
7: Generate o�spring Q0 via crossover & mutation on Q with prob. pc and pm ;
8: Evaluate the �tness of each o�spring in Q0 for all objectives;
9: Apply rejection protocols to Q0 to remove unpromising candidate and get Q

00

10: R := Combine Pg� 1 and Q
00

;
11: Perform non-dominated sorting on R ;
12: Update Pg by selecting top N individuals via front rank and crowding distance;
13: end for
14: P � := Extract the �rst front from PG as the set of Pareto-optimal solutions;

linearity of attention. We include relu in FLatten [24] and introduce new acti-
vation functions such asswish and elu. (2) Normalization operations ensure a
smoother distribution of attention scores. We provide options such asl2_norm
and min_max_norm . (3) The binary operators facilitate information interac-
tion. Alongside cosine_similarity in Hydra [3], we also considereuclidean_distance
as a simpli�ed calculation option. As shown in Figure 4 (c), these operators
enhance the versatility and adaptability of attention expressions, resulting in
improved performance. Some complex operations such as decomposition [64]
and Gaussian kernel [6] would result in a highly sparse search space or need
hardware-speci�c supports. Hence they have not been included in our investi-
gation. In future work, we will continue to involve more promising operators in
our search space.

3.3 Multi-objective Evolutionary Search

After building the search spaceA, we sample the attention candidatesa 2 and
apply it to the ViT model with weights W. For single-object search, the aim is
to �nd the optimal attention a�

single by evaluating candidates using the trained
ViT model (W � ):

a�
single = argmax

a2A
ACC val (N (a; W �

A (a))) (3)

However, a�
single may perform well on the search model but fail to other ViT

models. For example, attention searched in Swin, while superior on Swin, per-
forms poorly on DeiT, PVT in Figure 5 (b). Such attentions su�er from limited
usefulness because they are di�cult to transfer directly to di�erent tasks.
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Multi-objective Evolution. To improve generalization of attention candidates
in di�erent ViT models, our AttnZero framework employs a multi-objective evo-
lutionary algorithm. This algorithm aims to maximize the results of multiple
ViT models 1, 2, ..., n under prede�ned computational complexity constraints.
We de�ne a �tness function as follows:

a�
multi = argmax

a2A
ACC val (1 (a; W �

1 A (a)) ;2 (a; W �
2 A (a)) ; :::;n (a; W �

n A (a) ) : (4)

Our framework incorporates validation results of attention in DeiT, AutoFormer,
PVT, and Swin as objectives. This ensures that our attention module performs
e�ectively in various ViT models, including pure ViT, ViT models with NAS
search, ViT models with hierarchical design, and ViT models with local window
con�gurations, respectively. Solving this multi-objective problem is challenging
due to obstacles like con�icting optimals. To address this, we utilize NSGA-II
method [10] in Alg. 1 as our search engine. Our search begins with an initial
population of candidate attention modules and each candidate's �tness is eval-
uated based on performance across ViT models. Non-dominated sorting ranks
the candidates and assigns them to fronts based on how they compare to others.
Then. we use crowding distance [48] calculations to maintain diversity within
the population. The selection process chooses candidates for the next gener-
ation, considering sorting and distance. Genetic operations like crossover and
mutation are applied to the selected candidates. This introduces diversity and
explores new areas of the search space. The least �t candidates are replaced with
o�spring, ensuring continuous gains. The algorithm iterates through these steps
until it meets a termination criterion. During the search process, our algorithm
takes FLOPs as the complexity constraint. Finally, we consider the real speed
results in selecting �nal found attention from the Pareto-optimal solutions.

Figure 3: Discovered at-
tention a�

AttnZero .

Search Acceleration Strategies. To improve the
search e�ciency, we employ several strategies for
search acceleration: (1) Program checking. We per-
form program checking by verifying if the single can-
didate attention module can successfully generate out-
puts using random tensor inputs. This helps us iden-
tify and �lter out candidates with arithmetic errors or
dimension mismatches. (2) Rejection protocols. Dur-
ing training each population, we reject candidates
with collapsed optimisation (e.g., loss = nan) and
historical average validation results falling far below
baseline linear attention. These strategies allow more
than 5� search acceleration.

3.4 Discovered AttnZero Analysis

Formulas of discovered AttnZero. Figure 3 illustrates the optimal attention
a�

AttnZero in our search, whose detailed expressions are as follows:

a�
AttnZero = Q � � 2

�
� 2 (Q) � 2

�
� 1 (K )T � 1 (V )

��
(5)
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Figure 4: (a) Performance distribution of subsets of Attn-Bench-101 (AutoFormer).
(b) Results of various types of Attention. (c) Results of our default search space, default
search space without advanced normalization operations, activation operations, and
binary operations that we have newly introduced. More details are in the Appendix.

where � 1 utilizes the Exponential Linear Unit (ELU) with a shift of 1, intro-
ducing nonlinearities into the attention computation. The � 1 performs min-max
normalization, scaling the matrix values to a range between 0 and 1. This nor-
malization step ensures that the attention weights are properly distributed and
avoids potential issues with extreme values. Furthermore, the l2 normalization
function � 2 guarantees that the attention weights have a unit norm, facilitat-
ing better interpretation and utilization of the attention mechanism. Regarding
computational complexity, AttnZero requires triple matrix multiplications ( i.e.,
O(d� d+ N � d+ N � d). Despite this, the overall time and memory complexity
of AttnZero remains O(N ), which ensures AttnZero to handle computations for
sequences of varying lengths e�ciently.
Analysis of Attn-Bench-101. Our Attn-Bench-101 collects 2,000 attention
con�gurations and their training results in DeiT/AutoFormer/PVT/Swin on
CIFAR-100 (see Appendix for details). We analyze some results on AutoFormer
to understand better our search space: (1) In Figure 4 (a), we observe that our
search space contains many candidates with stronger performance than base-
line model. (2) Among various computed graphs, we identify i3n302 and i3n303,
superior to the other types (see in Figure 4 (b)). This is attributed to their
augmented topology allowing for a good tradeo� between performance and e�-
ciency. (3) For ablations in Figure 4 (c), advanced activation and normalization
operations o�er more contributions compared to new binary operators.
Guidance for E�cient Attention Design. Based on the above analysis, we
can summarize that we prefer attention types of i3n302 & i3n303 and combina-
tions of advanced normalization and activation operations in the detailed design.

4 Search Experiments

4.1 Search Implementation and Results

Implementation. Our attention search is performed on CIFAR-100, which are
scaled to 224� 224 resolution. We search using the validation results to ensure
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