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Abstract In this paper, we present AttnZero, the first framework for
automatically discovering efficient attention modules tailored for Vision
Transformers (ViTs). While traditional self-attention in ViTs suffers from
quadratic computation complexity, linear attention offers a more effi-
cient alternative with linear complexity approximation. However, exist-
ing hand-crafted linear attention suffers from performance degradation.
To address these issues, our AttnZero constructs search spaces and em-
ploys evolutionary algorithms to discover potential linear attention for-
mulations. Specifically, our search space consists of six kinds of compu-
tation graphs and advanced activation, normalize, and binary operators.
To enhance generality, we derive results of candidate attention applied
to multiple advanced ViTs as the multi-objective for the evolutionary
search. To expedite the search process, we utilize program checking and
rejection protocols to filter out unpromising candidates swiftly. Addi-
tionally, we develop Attn-Bench-101, which provides precomputed per-
formance of 2,000 attentions in the search spaces, enabling us to sum-
marize attention design insights. Experimental results demonstrate that
the discovered AttnZero module generalizes well to different tasks and
consistently achieves improved performance across various ViTs. For in-
stance, the tiny model of DeiT|PVT|Swin|CSwin trained with AttnZero
on ImageNet reaches 74.9%]78.1%|82.1%|82.9% top-1 accuracy. Codes
at: https://github.com/lliai/ AttnZero.
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1 Introduction

In recent years, Vision Transformers (ViTs) demonstrate remarkable success in
various vision tasks, including image classification [16}|19}58,/62], object detec-
tion 60} 75], semantic segmentation [47]. ViTs draw inspiration from the trans-
formative impact of Transformers in natural language processing, utilizing self-
attention mechanisms to capture global dependencies. However, self-attention
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has a quadratic complexity that scales with the square of the input sequence
length. This quadratic complexity limits the scalability of ViTs for handling
large image inputs, thereby limiting their practical applications.

To address this issue, researchers have been exploring the use of linear atten-
tion [57] as a more computationally efficient alternative. Unlike self-attention,
linear attention has a linear complexity approximation, making it more suitable
for handling large input sequences. However, existing linear attention meth-
ods [42,[54] suffer from several limitations: (1) Linear attention often leads to
reduced performance than softmax attention due to its simplifying assumptions.
The simple linear operators used in linear attention have limited flexibility and
produce noisier activations than nonlinear functions [24]. These performance
degradations challenge leveraging linear attention as a viable substitute for self-
attention in ViTs. (2) Hand-crafted linear attention designs are often specific
to certain tasks or architectures, lacking generality across different scenarios.
Additionally, the manual design is labor-intensive, time-consuming, and heavily
reliant on expert knowledge. Consequently, these drawbacks hinder the scalabil-
ity and accessibility of linear attention in ViTs.

To address these challenges, we have made several observations. We notice
that some large language models [4l/7] employ new operators in Transformers
to improve performance. For example, LLaMA [59] currently uses RMSNorm
and SiLU to prevent training crashes. These successes inspire us to assemble a
series of advanced operators to enhance linear attention and explore their op-
timal combination formulations. However, the question remains: How can we
efficiently solve this combination problem? Recent developments in AutoML,
such as AutoML-Zero [50] and NAS methods [40}46|, offer a promising solution.
These methods involve constructing an extensive search space encompassing var-
ious options and searching for optimal architectures. Nevertheless, existing NAS
methods are not suitable for solving the formulation discovery problem in our
case for several reasons. (1) Different search space. The search spaces in
conventional NAS methods typically focus on network width/depth, block/cell
types, and parametric operators [5/56]. In contrast, our attention search space
includes many non-parametric operators and different combinatorial types. This
leads to an explosion in the search space and many unsuccessful candidates.
(2) Different search algorithms. Most recent NAS methods employ weight-
sharing strategies [14,/27] to reduce search costs. However, our search space is
explosive and extremely sparse, meaning that using previous ways to find po-
tential candidates is less efficient and effective. (3) Different search goals.
Most NAS methods prioritize performance for a single task and may struggle
to generalize well to different applications [65]. In contrast, our objective is to
discover generalized attention mechanisms that can be applied to various ViT
models and tasks. These challenges highlight that attention discovery is a new
task that requires a unique search space and strategy compared to traditional
NAS methods.

Based on the above observations, we propose AttnZero, a new framework
that aims to discover superior linear attention formulations that achieve a better
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Figure 1: Overall pipeline of AttnZero. Our framework obtains candidate attention
populations by sampling from attention search space. With program checking and
rejection protocols, we conduct validation results of these attentions on multiple ViTs.
Then, we use NSGA-II to obtain the optimal solution and cross-mutate for the next
population.

accuracy-efficiency tradeoff. As shown in Figure[I] our framework can be divided
into two parts: a comprehensive attention search space and a multi-objective evo-
lutionary search. Based on the basic form of linear attention, we develop six com-
putation graphs to represent attention candidates in the search space. Then, we
combine unary and binary operators with advanced functions, including various
activation functions, normalization techniques, and matrix arithmetic functions.
This approach allows us to obtain flexible and effective attention candidates. Our
goal for the search algorithm is to find attention formulations applicable across
different ViT models. To achieve this, we model the search task as a multi-
objective optimization problem and employ the NSGA-II evolution method to
obtain optimal solutions. During the search process, we validate candidate at-
tention in multiple ViT models through multi-architecture evaluations. Based on
these evaluations, our search engine exploits crossover and mutation for better
populations. To accelerate the search process, we perform a fast program check
and a rejection protocol to eliminate unpromising candidates during the search
process. In this way, our AttnZero improves at least 5x in search efficiency with-
out the weight-sharing setting , making our method free of ranking issues in
traditional NAS methods |§|7

We conduct comprehensive experiments to evaluate the transferability of
our discovered attention mechanisms across different ViT models, datasets, and
tasks without requiring additional searches. When applied to various ViT mod-
els, our AttnZero consistently outperforms the baseline method. For instance,
our method achieves gains of 3.0%~1.6% on PVT-T to PVT-L on the ImageNet
dataset. Furthermore, ViT models with AttnZero demonstrate significant im-
provements when considering different data domains. For example, DeiT+AttnZero
achieves gains of 6.2%, 7.8%, 1.1%, and 2.7% on the Tiny-ImageNet, Flowers,
Chaoyang, and ImageNet datasets, respectively. Additionally, we compile a new
benchmark named Attn-Bench-101, which consists of 2,000 attentions from our
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search space. The benchmark highlights the preference for advanced normaliza-
tion techniques, activation functions, and well-performing attentions. In conclu-
sion, our contributions can be summarized as follows:

e To improve linear attention, we present a new task, efficient attention dis-
covery, that generalizes to various ViT models and tasks. For this task, our
AttnZero, the first framework, is developed to achieve effective attention
search.

e We propose a comprehensive attention search space, including different types
of computation graphs and advanced operators as options. We develop multi-
objective searches with multiple ViTs evaluations to ensure generalisability.

e Our found attention can be well generalized to DeiT|PVT|Swin|CSwin and
other ViTs. Extensive experiments on multiple datasets in classification, de-
tection, and segmentation prove the superior performance of our AttnZero.

e We build Attn-Bench-101, providing many attentions and their results. Some
attention design guidances are summarised based on these results.

2 Related Works

Efficient Attention. The application of self-attention in computer vision has
made significant progress [2,(8]/26,/68]/69] with the introduction of ViT [19]. Then,
PVT [60] introduces a hierarchical structure while Swin Transformer [41] pro-
poses window-based attention to model dependencies efficiently. However, soft-
max attention’s quadratic complexity poses challenges. Linear attention reduces
this but often degrades performance [6,30,/64]. Efficient Attention |54] applies
softmax to Q and K while SOFT [42] uses matrix decomposition. Castling-
ViT [66] employs softmax attention during training but linear attention at infer-
ence. FLatten [24] preserves diversity through focused functions. While effective,
these methods still have performance limitations and require complex manual
design. In contrast, our AttnZero automatically discovers novel formulations to
enhance linear attention. Rather than replacing prior work, we aim to improve
the performance of the existing method while reducing manual effort. We build
our search space based on previous work and provide feedback on new patterns.
Thus, AttnZero complements rather than competes with manual methods.

Neural Architecture Search (NAS). NAS methods automate model design
through search spaces and algorithms [49}|77]. Early NAS works adopt reinforce-
ment learning with expensive costs [78|. Recent one-shot NAS |15] and zero-shot
NAS [11H13])36137,/73}/76] use techniques like weight sharing [23] and training-free
proxy evaluation to speed up search. Current NAS methods on ViTs [5}/45,(72]
(e.g., AutoFormer [5]) search the number of depth/head of transformers. In
contrast, AttnZero focuses on discovering attention mechanisms, not architec-
tural dimensions. We also apply AttnZero to AutoFormer and observe consistent
improvements, indicating our method is orthogonal to existing ViT-NAS meth-
ods. There are attempts to search entire attention blocks |67], SE-like atten-
tion [43l/61], projection layers [21], and Transformers searches in other fields like
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CTR |70] and NLP [20155]. We clarify that our AttnZero is the first to search for
efficient attention in visual tasks, which clearly differs in spaces/strategies/goals
from previous methods. Inspired by general idea in AutoML-Zero [51], we achieve
many new designs in search space/strategies for new attention discovery task,
and opens up new possibilities for enhancing the capabilities of ViTs.

3 Methodology: Efficient Attention Discovery

In this section, we first review the linear attention form. Then, we present our
search space and algorithms. The overall process is shown in Figure

3.1 Recap of Self-Attention and Linear Attention

In self-attention, input tokens are projected into query (@), key (K), and value
(V') matrices, respectively. The general form of self-attention is given by:

N

B Sim(QuK)
O =2 S S ) M

where O; represents the output of the i-th token and Sim denotes the similar-
ity function. The commonly used similarity function is the softmax function,

exp (QK Ty J&), where d is the dimension of the input tokens. However, the

quadratic time and space complexity of softmax attention, O(N2d), becomes
impractical for large numbers of tokens (N). To address this, linear attention is
explored as an efficient alternative, which can be expressed as

, _ HQ) (S, ) o
6(Q) (), e(k)" )
where ¢ represents the kernel function. Linear attention reduces the computa-
tional complexity to O(N), making it scalable for large input sequences. This
reduction is achieved by using carefully designed kernels to approximate the sim-
ilarity function, enabling a change in the computation order from (QKT)V to
Q(KTV), exploiting the associative property of matrix multiplication.

3.2 Efficient Attention Search Space

Attention Representation. In Figure [2| we construct six types of computa-
tional graphs using (Q, K, V) as inputs to represent our candidate attentions.
Among them, our i3n2 attentions follow the same process as standard linear
attention, and we improve it by searching for different unary operations. Par-
tially inspired by Castling-ViT [66], we introduce novel attention mechanisms
with three binary operator nodes based on basic linear attention. With addi-
tional operators with either O(N x d) or O(d x d) computational complexity, the



6 Lujun Li et al.

(Binary ) (CBinary )+ ( Binary ) ( Binary ) (Binary )«— (_ Binary )

@ (Binary) ((Binary ) |(Binary)
(Binary) (Binary) (Binary) (Binary)

Q KV QKV Q KV'Q KV Q KV-Q KV
i3n2 i3n301 i3n302  i3n303  i3n304 i3n305

Figure 2: Schematic of the six computational graphs in our search space. We denote
the graph with 3 inputs and 2 binary operations as i3n2. Similarly, i3n3 refers to a
graph with 3 inputs and 3 binary operations. Since each binary operation takes two
inputs, there are 5 possible graph structures for i3n3. We label these i3n301~i3n305,
respectively. For simplicity, we do not display unary operators here.

Table 1: Some operations in our attention search space. “UOP” and “BOP” denote
the unary and binary operation, respectively. Full operations are in the Appendix.

OP ID ‘OP Name Expression OP ID ‘OP Name Expression
UOPO00(no_op x UOP10|elu elu(z) +1
UOPO1|relu maX(O, :v) UOP11 |sigmoid _revert 1 — sigmoid(x)
UOPO02(scale \/% UOP12|exp e’
UOPO03|sqrt N UOP13 ab.SIOg |1nf—‘min(w)
. 1 UOP14|min _max norm — <2~
UOPO04|invert — — — max(z)—min(z)
zte=6 UOP15 |transpose x
UOPO05/12 a-mean(z) g
_horm std(x) UOP16|swish z % sigmoid ()
UOPO06|sigmoid H% BOPO1 [sum Tty
UOPO7|logsoftmax In % BOP02|cosine_sim cos(z,y)
A=t e BOPO03|product Ty
UOP08|softmax S e BOPO04 |matrix _multi z-y
UOPO09|softsign 1f|z| BOPO5 |euclidean _dis  d(z,y)

performance of these attention mechanisms can be enhanced without a signifi-
cant increase in computational overhead. Based on the different binary nodes,
these augmented attentions can be categorized into five types (i3n301 to i3n305),
effectively enhancing the modeling capability. We divide the sub-search space
according to these different types of attention. During the search process, we
first search the solutions within the sub-search space in parallel and then com-
bine them to obtain the final search result. Figure 4| (b) shows performance
for different attention candidates. These designs allow our method to balance
computational complexity and accuracy.

Primitive Operations. Table [I] presents some unary and binary operators
in our search space. These operators encompass both commonly used opera-
tions found in existing linear attentions |[3}/24,|54L66] and our proposed ones,
including: (1) The activation operations are responsible for enhancing the non-
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Algorithm 1 NSGA-II Evolution Search for AttnZero.

Input: Search space A, population size N, crossover probability p., mutation proba-
bility pm, max generations G.

Output: Set of Pareto-optimal attention formulations.

1: Initialize population Py with N individuals generated randomly;
2: Evaluate the fitness of each individual in Py for all objectives;
3: for g =1 to G do

4:  Perform non-dominated sorting on Py_1 to classify into fronts Fi, Fs, .. ;

5:  Calculate crowding distance for individuals in each front;

6: Q := Select N individuals for mating via front rank and crowding distance;
7:  Generate offspring Q' via crossover & mutation on Q with prob. p. and p,;
8:  Evaluate the fitness of each offspring in Q' for all objectives;

9:  Apply rejection protocols to Q' to remove unpromising candidate and get QN
10: R := Combine Py_; and Q”;

11:  Perform non-dominated sorting on R;

12:  Update P, by selecting top N individuals via front rank and crowding distance;
13: end for
14: P* := Extract the first front from Pg as the set of Pareto-optimal solutions;

linearity of attention. We include relu in FLatten [24] and introduce new acti-
vation functions such as swish and elu. (2) Normalization operations ensure a
smoother distribution of attention scores. We provide options such as 12 norm
and min_maxz_norm. (3) The binary operators facilitate information interac-
tion. Alongside cosine _ similarity in Hydra [3|, we also consider euclidean_ distance
as a simplified calculation option. As shown in Figure [4| (c), these operators
enhance the versatility and adaptability of attention expressions, resulting in
improved performance. Some complex operations such as decomposition [64]
and Gaussian kernel [6] would result in a highly sparse search space or need
hardware-specific supports. Hence they have not been included in our investi-
gation. In future work, we will continue to involve more promising operators in
our search space.

3.3 Multi-objective Evolutionary Search

After building the search space A, we sample the attention candidates a € and
apply it to the ViT model with weights W. For single-object search, the aim is
to find the optimal attention ag;, . by evaluating candidates using the trained
ViT model (W*):

a:ingle = argmaXACCVal (N (a‘7 W:\(a))) (3)
acA

However, ag;, ;. may perform well on the search model but fail to other ViT

models. For example, attention searched in Swin, while superior on Swin, per-
forms poorly on DeiT, PVT in Figure [5| (b). Such attentions suffer from limited
usefulness because they are difficult to transfer directly to different tasks.
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Multi-objective Evolution. To improve generalization of attention candidates
in different ViT models, our AttnZero framework employs a multi-objective evo-
lutionary algorithm. This algorithm aims to maximize the results of multiple
ViT models 1, o, ..., , under predefined computational complexity constraints.
We define a fitness function as follows:

Umutti = argmaxACCua (1 (a, Wi a(a)) 2 (a, Wy a(a)), .on (@, Wy a(a)) . (4)
a€

Our framework incorporates validation results of attention in DeiT, AutoFormer,
PVT, and Swin as objectives. This ensures that our attention module performs
effectively in various ViT models, including pure ViT, ViT models with NAS
search, ViT models with hierarchical design, and ViT models with local window
configurations, respectively. Solving this multi-objective problem is challenging
due to obstacles like conflicting optimals. To address this, we utilize NSGA-II
method [10] in Alg. [I] as our search engine. Our search begins with an initial
population of candidate attention modules and each candidate’s fitness is eval-
uated based on performance across ViT models. Non-dominated sorting ranks
the candidates and assigns them to fronts based on how they compare to others.
Then. we use crowding distance [48] calculations to maintain diversity within
the population. The selection process chooses candidates for the next gener-
ation, considering sorting and distance. Genetic operations like crossover and
mutation are applied to the selected candidates. This introduces diversity and
explores new areas of the search space. The least fit candidates are replaced with
offspring, ensuring continuous gains. The algorithm iterates through these steps
until it meets a termination criterion. During the search process, our algorithm
takes FLOPs as the complexity constraint. Finally, we consider the real speed
results in selecting final found attention from the Pareto-optimal solutions.
Search Acceleration Strategies. To improve the

search efficiency, we employ several strategies for

search acceleration: (1) Program checking. We per-

form program checking by verifying if the single can-
didate attention module can successfully generate out- o)
puts using random tensor inputs. This helps us iden-

tify and filter out candidates with arithmetic errors or
dimension mismatches. (2) Rejection protocols. Dur-
ing training each population, we reject candidates
with collapsed optimisation (e.g., loss = nan) and Q K v

historical average validation results falling far below pigure 3: Discovered at-
baseline linear attention. These strategies allow more tention a’,;,zoro-
than 5x search acceleration.

3.4 Discovered AttnZero Analysis

Formulas of discovered AttnZero. Figure [3J|illustrates the optimal attention
@y 1pnzero 1D OUr search, whose detailed expressions are as follows:

Crnzero =@ ¥ (12 (@) m2 (61 (K) m (V) (5)
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Figure 4: (a) Performance distribution of subsets of Attn-Bench-101 (AutoFormer).
(b) Results of various types of Attention. (c) Results of our default search space, default
search space without advanced normalization operations, activation operations, and
binary operations that we have newly introduced. More details are in the Appendix.

where ¢ utilizes the Exponential Linear Unit (ELU) with a shift of 1, intro-
ducing nonlinearities into the attention computation. The n; performs min-max
normalization, scaling the matrix values to a range between 0 and 1. This nor-
malization step ensures that the attention weights are properly distributed and
avoids potential issues with extreme values. Furthermore, the 12 normalization
function 7y guarantees that the attention weights have a unit norm, facilitat-
ing better interpretation and utilization of the attention mechanism. Regarding
computational complexity, AttnZero requires triple matrix multiplications (i.e.,
O(dx d+ N x d+ N x d). Despite this, the overall time and memory complexity
of AttnZero remains O(N), which ensures AttnZero to handle computations for
sequences of varying lengths efficiently.

Analysis of Attn-Bench-101. Our Attn-Bench-101 collects 2,000 attention
configurations and their training results in DeiT/AutoFormer/PVT/Swin on
CIFAR-100 (see Appendix for details). We analyze some results on AutoFormer
to understand better our search space: (1) In Figure 4] (a), we observe that our
search space contains many candidates with stronger performance than base-
line model. (2) Among various computed graphs, we identify i3n302 and i3n303,
superior to the other types (see in Figure [4 (b)). This is attributed to their
augmented topology allowing for a good tradeoff between performance and effi-
ciency. (3) For ablations in Figure [4| (c), advanced activation and normalization
operations offer more contributions compared to new binary operators.
Guidance for Efficient Attention Design. Based on the above analysis, we
can summarize that we prefer attention types of i3n302 & i3n303 and combina-
tions of advanced normalization and activation operations in the detailed design.

4 Search Experiments

4.1 Search Implementation and Results

Implementation. Our attention search is performed on CIFAR-100, which are
scaled to 224x224 resolution. We search using the validation results to ensure
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Table 2: Top-1 accuracy (%) of hand-crafted attentions (e.g., Linear [28] and FLat-
ten [24]) and attention with Random NAS method in our search space on CIFAR-100.

Models Baseline Linear |28] FLatten |24] Random (NAS) AttnZero (NAS)

DeiT-T 65.08 57.80 72.45 76.04 77.68 (+12.60)
AutoFormer 66.58 64.58 75.42 76.94 78.61 (+12.03)
PVT-T 67.42 66.58 74.83 73.12 76.68 (+9.26)
Swin-T 68.25 69.45 74.31 74.58 75.90 (+7.65)

fair comparisons, and our validation set does not overlap with the test set. For
search settings, we configure (N, p., pm, G) in Alg. [1| as (20,0.9,0.1,100) for
parallel search on DeiT|AutoFormer|PVT|Swin. To obtain validation results, we
adopt standard training settings [31] (e.g., 300 epochs and AdamW optimizer).
With our search acceleration strategies, the overall search only costs 1.05 days
on the 8xV100. More details are available in the Appendix.

Comparison Results with Hand-Crafted Attentions. The results in Ta-
ble 2| demonstrate the effectiveness of our AttnZero in consistently achieving sta-
ble boosts across different models. Firstly, when compared to the baseline, our
AttnZero achieves significant improvements. For example, the DeiT-T model
with our AttnZero improves from a baseline accuracy of 65.08% to 77.68%.
Similar improvements are observed for the AutoFormer, PVT-T, and Swin-T
models, indicating the consistent effectiveness of our approach. Furthermore,
our AttnZero shows improvements over the recent state-of-the-art method. For
example, the gain over FLatten for the DeiT-T model is 5.2%. These findings
emphasize the potential and significance of our AttnZero approach in improving
the performance of various models.

Comparing Random NAS Method. It is not easy to directly compare our
method to other NAS methods because we use different search spaces and do
not have weight sharing. To analyze our search strategy, we compare it to ran-
dom search in our same search space. The results in Table 2] show that our
AttnZero consistently improves model performance compared to random search.
We achieve increases in accuracy ranging from 1.32% to 3.56% depending on
the model. This demonstrates that our search strategy is more effective than a
random search.

4.2 Ablation Study

Multi-Objective Search (MOS) vs. Single-Objective Search (SOS). We
employ MOS to enable the discovery of attentions that exhibit strong general-
ization capabilities. Figure [5[ (a) illustrates the optimal candidate resulting from
our MOS process. The results demonstrate that the Top-3 candidates outper-
form the others consistently across various ViT models. In Figures [5| (b) and (c),
we compare the generalization performance of MOS and SOS across different
ViT models and datasets, respectively. The results indicate that while the SOS
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Table 3: Results of AttnZero for different ViT models and datasets.

Top-1 Acc. (%)

Model Tiny ImageNet |1] Flowers [44] Chaoyang |74]
DeiT-T 53.62 50.06 82.00
DeiT-T+AttnZero 59.91 (46.29) 57.89 (+7.83) 83.12 (+1.12)
AutoFormer-T 56.38 54.98 82.84
AutoFormer-T+AttnZero 62.56 (1-6.18) 61.58 (+6.60) 83.68 (40.84)
PVT-T 58.47 58.57 82.46
PVT-T+AttnZero 63.10 (+4.63) 64.30 (+5.73) 84.57 (+2.11)
Swin-T 60.22 58.85 82.98

Swin-T+ AttnZero

64.55 (14.33)

65.13 (+6.28)

85.11 (+2.13)

method may yield better results on the searched models, MOS consistently out-
performs SOS over a wider range of ViT architectures. Similarly, our AttnZero
approach with MOS consistently demonstrates performance benefits across dif-
ferent dataset domains. For instance, our AttnZero with MOS achieves a 0.9%
improvement over SOS on the ImageNet dataset.

Ablation of the Search Algorithm. In Figure [5| (d), we examine the evolu-
tionary search and search acceleration strategies. The search results reveal the
effectiveness of our acceleration strategy (i.e., program checking and rejection
protocols) in filtering out unpromising candidates and greatly expediting the
algorithm’s convergence. These search curves also indicate that the evolutionary
algorithm outperforms random search regarding efficiency in finding high-quality
solutions within our framework.

5 Transfer Experiments

5.1 Experimental Results on Tiny Datasets

Implementation. To check if our discovered attention generalizes beyond the
CIFAR-100 dataset that we searched on, we it to multiple datasets (i.e., Tiny Im-
ageNet [1], Flowers [44], and Chaoyang [74]). We train DeiT|AutoFormer|PVT|Swin
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Table 4: Results of AttnZero for DeiT Table 5: Results of AttnZero on ImageNet

& PVT on ImageNet (224x224). with 224 x224 resolution inputs.

Method |Params FLOPs|Top-1 (%) Method |Params FLOPs|Top-1 (%)
DeiT-T |58 57M  1.2G [72.2 AutoFormer-T [58] | 57M  1.3G [74.7
DeiT-TfAttnZero| 57M  1.0G |74.9 (+2.7) AutoF.-T+AttnZero 57M  1.1G |75.2(+0.5)
PVT-T [60] 13.2M  1.9G |75.1 Swin-T [41] | 20.0M 45G [81.3
PVT-TFAttnZero | 109M 1.8G |78.1(+3.0) Swin-T+AttnZero  282M  4.3G |82.1(+0.8)
PVT-S 245M 3.8G |79.8 Swin-S | 50.0M 8.7G (83.0
PVT-S+AttnZero | 19.8M  3.6G |81.4 (+1.6) Swin-S+AttnZero  49.5M  8.5G |83.2 (+0.2)
PVT-M 49M  6.7G |81.2 Swin-B | 88.0M 154G (83.5
PVT-M+AttnZero| 34.6M 6.6G |83.0 (+1.8) Swin-B+AttnZero 89.0M 15.3G |83.7 (+0.2)
PVT-L 61.4M  9.8G [81.7 CSwin-T [17] | 23.0M 4.3G [82.7

PVT-L+AttnZero | 47.1M  9.7G |83.3 (+1.6) CSwin-T+AttnZero 20.3M  4.0G (82.9 (+0.2)

Table 6: Comparison of different efficient attention methods on ImageNet.

Method |Reso Params FLOPs|Top-1 (%)
DeiT-T [58)] 2242 57M  1.2G [72.2
DeiT-T-+Hydra Attn |3] 2242 57M  1.1G |68.3

DeiT-T+Efficient Attn [54] | 224> 57M  1.1G |70.2
DeiT-T+Linear Angular [66]| 224> 5.7M  1.1G |70.8
DeiT-T+FLatten 2242 61M  1.1G |74.1
DeiT-T+AttnZero 2242 57M  1.0G |74.9 (+2.7)

using discovered attention from scratch. The training process follows standard
settings [31], including 300 training epochs, a cosine learning rate scheduler, and
the AdamW optimizer. Detailed settings are shown in the Appendix.

Results on Various Datasets. Table [3] highlights the effectiveness of At-
tnZero across various ViT models and datasets. It consistently surpasses the
baselines, resulting in a 6.29% increase in accuracy for the DeiT-T model on
Tiny-ImageNet. Similarly, AutoFormer and PVT-T models with AttnZero ex-
hibit similar improvements. On the Flowers dataset, AttnZero achieves an ac-
curacy of 57.89% for the DeiT-T model, surpassing the baseline by 7.83%. Aut-
oFormer and PVT-T models also benefit from AttnZero. The results on the
Chaoyang dataset further exemplify AttnZero’s capability to enhance accura-
cies. On the DeiT-T model, AttnZero achieves an accuracy of 83.12%, compared
to the 82% baseline. Moreover, the attention modules from AttnZero contribute
to the improved performance of AutoFormer, PVT-T, and Swin-T models com-
pared to their original versions. These findings demonstrate the promising ability
of AttnZero across different datasets and models.

5.2 Experimental Results on Large-scale Datasets

Implementation. We conduct the experiment on the ImageNet [52| dataset, a
widely used large-scale dataset consisting of 1000 classes and 1.2 million training
images. Note that we do not perform additional searches or modify the exist-
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Table 7: Results for Mask R-CNN on COCO dataset. We compute the FLOPs across
the backbone, FPN, and detection head using an input resolution of 1280x800.

Method FLOPs|Sch.| AP® AP%, AP%|AP™ APZY APT
PVT-T 240G | 1x [36.7 59.2 39.3[35.1 56.7 37.3
PVT-T+FLatten 244G | 1x 38.2 61.6 41.9|37.0 57.6 39.0
PVT-T-+AttnZero| 209G | 1x |40.0 62.6 43.1|37.4 59.4 40.1
PVT-S 305G | 1x [40.4 62.9 43.8]37.8 60.1 40.3
PVT-S+AttnZero| 248G | 1x |41.0 63.4 45.0|38.2 60.4 41.1

ing classical models. Instead, we directly replace the self-attention mechanism
with our discovered attention module. Furthermore, we ensure that our training
settings remain consistent with the standard settings [17,/411/58]. This includes
training the models for 300 epochs, cosine learning rate scheduler, and AdamW
optimizer. Specific training settings are shown in the Appendix.

Results on Various Backbones. Table [4] and Table [§] provides the perfor-
mance results of our AttnZero on ImageNet. The results show that our method
can transfer effectively to different ViT models. When applied to DeiT-T, At-
tnZero achieves a significant 2.7% gain over baseline. Similarly, AttnZero im-
proves PVT-T accuracy to 78.1%, surpassing the baseline by 3.0%. This demon-
strates that AttnZero can seamlessly migrate and consistently enhance perfor-
mance across ViT architectures. AttnZero also provides stable gains across mod-
els of varying scales. Paired with PVT-S, it boosts accuracy by 1.6%. Applied
to larger models like PVT-M, PVT-L, Swin-T, Swin-S, and CSwin-T, improve-
ments of 1.8%, 1.6%, 0.8%, 0.2% and 0.2% respectively are observed. These
findings highlight AttnZero’s stability in boosting the performance of ViT mod-
els from small to large scale. These results highlight the stability of our AttnZero
in enhancing the performance of ViT models across different scales.
Comparison with Other Linear Attention. Table[6]compares various linear
attention methods. The results demonstrate that AttnZero surpasses other linear
attention methods and baseline when incorporated into the DeiT-T model. No-
tably, compared to the Softmax baseline, AttnZero achieves a 2.7% improvement.
In contrast, other linear attention methods, such as Hydra Attn, Efficient Attn,
Linear Angular, and FLatten, exhibit lower accuracies. These findings highlight
the superiority of AttnZero in preserving or surpassing the performance achieved
by Softmax attention. On the other hand, other linear attention methods tend
to result in notable performance degradation.

5.3 Transfer Experiments on Detection and Segmentation

Object Detection. We evaluate our methods for object detection and instance
segmentation tasks on the COCO dataset |39]. Table 7| provides results on Mask
R-CNN detector [25] with 1x schedules. Our proposed PVT-T+ AttnZero model
achieves 2.3 box AP gains on PVT-T and significantly outperforms FLatten.
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Table 8: Results of semantic segmentation on ADE20K. We compute the FLOPs for
both the encoders and decoders using input images at a resolution of 512x2048.

Backbone Method  |FLOPs #Params| mloU mAcc
PVT-T SemanticFPN| 158G 17T | 36.57 46.72
PVT-T+FLatten SemanticFPN| 169G 16M | 37.21 48.95
PVT-T+ AttnZero|SemanticFPN| 126G 15M [39.16 50.30
PVT-S SemanticFPN| 225G 28M [ 41.95 53.02
PVT-S+AttnZero |SemanticFPN| 165G 23M  (42.62 54.02

These enhancements demonstrate the benefits of incorporating our found atten-
tion module within the popular ViT model for object detection tasks.
Semantic Segmentation. We assess the performance of our model using the
ADE20K dataset [71]. Table[§ provides semantic segmentation results on Seman-
ticFPN [29|. Among them, the Flatten module yields slight gains on the baseline
PVT-T model. However, our AttnZero model achieves even higher mIoU (39.16)
and mAce (50.30) scores while reducing the FLOPs and parameters. Similarly,
AttnZero achieves clear gains on PVT-S. These results highlight the compati-
bility of our AttnZero with different backbone architectures and its consistent
improvements across various scenarios.

6 Conclusion

In this paper, we introduce AttnZero, the first method that automates the discov-
ery of efficient attention modules that can be applied to various ViT models. At-
tnZero constructs a comprehensive search space consisting of different unary and
binary operators as potential attention mechanisms. It utilizes a multi-objective
genetic algorithm to search within this design space efficiently. Additionally, we
introduce Attn-Bench-101, which provides attention profile results to summa-
rize the insights gained from the search. Extensive experiments demonstrate
that the attention modules discovered by AttnZero can be successfully applied
to advanced ViTs for image classification, segmentation, and detection tasks.
For future work, we will consider extending the AttnZero with knowledge dis-
tillation methods [32H3538,|53}/63]. Iimitation. We present search strategies
but still involve some search costs following most AutoML methods. But these
costs are worthwhile because our discovered attention can be effectively applied
to different ViTs and tasks without additional searching (proven by our exten-
sive transfer experiments). Social impact. Our AttnZero focuses on technology
improvement without social and ethical implications.
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