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Abstract In this paper, we introduce Auto-GAS, the first training-free
Generative Architecture Search (GAS) framework enabled by an auto-
discovered proxy. Generative models like Generative Adversarial Net-
works (GANs) are now widely used in many real-time applications. Pre-
vious GAS methods use differentiable or evolutionary search to find opti-
mal GAN generators for fast inference and memory efficiency. However,
the high computational overhead of these training-based GAS techniques
limits their adoption. To improve search efficiency, we explore training-
free GAS but find existing zero-cost proxies designed for classification
tasks underperform on generation benchmarks. To address this challenge,
we develop a custom proxy search framework tailored for GAS tasks
to enhance predictive power. Specifically, we construct an information-
aware proxy that takes feature statistics as inputs and utilizes advanced
transform, encoding, reduction, and augment operations to represent
candidate proxies. Then, we employ an evolutionary algorithm to per-
form crossover and mutation on superior candidates within the pop-
ulation based on correlation evaluation. Finally, we perform generator
search without training using the optimized proxy. Thus, Auto-GAS en-
ables automated proxy discovery for GAS while significantly accelerating
the search before training stage. Extensive experiments on image gener-
ation and image-to-image translation tasks demonstrate that Auto-GAS
strikes superior accuracy-speed tradeoffs over state-of-the-art methods.
Remarkably, Auto-GAS achieves competitive scores with 110× faster
search than GAN Compression. Code at: https://github.com/lliai/Auto-
GAS.
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Table 1: Comparison of search cost for generative architecture search methods.

Method Algorithm Cost (GPU-days) Method Algorithm Cost (GPU-days)

AGAN [65] RL 1200 DGGAN [42] Heuristic 580
AutoGAN [18] RL 2 EAS-GAN [40] EA 1
AlphaGAN [59] Gradient 1.2 EGAN [64] EA 1.3
EAGAN [70] EA 0.8 Auto-GAS (ours) Training-free 0.09

1 Introduction

Generative models like Generative Adversarial Networks (GANs) [19] have made
tremendous strides in visual generation tasks such as image and video synthe-
sis [5,50]. However, their demanding computational footprint presents barriers to
deploying these models on edge devices with strict resource constraints [25, 47].
To overcome this, there is growing interest in model compression techniques [7,
12, 14, 49, 67]. Among them, Neural Architecture Search (NAS) [16] automates
architecture design, finding compact generative models for edge computing, and
enabling flexible structures without pre-trained weights. In contrast, other com-
pression methods are limited to fixed, handcrafted architectures and rely on
pre-trained models. The integration of NAS in generative models enables real-
time visual creation on edge devices, unlocking new interactive experiences in
domains like augmented reality [5, 24,50].

Conventional Generative Architecture Search (GAS) approaches typically
rely on expensive training-based training routes to assess candidate architec-
tures, such as maintaining weight-sharing supernets [13, 22] or conducting mul-
tiple training trials from scratch [56, 76]. However, training generative models
presents unique obstacles that greatly increase the costs and difficulties of ap-
plying these techniques for GAS. The training processes for generative models are
generally more complex than discriminative tasks because inherent instabilities
(e.g ., mode collapse [20]) can occur during optimization. In mode collapse, the
model generates only a limited variety of examples from the underlying distri-
bution. These instabilities make it challenging to reliably evaluate architectural
candidates with standard NAS training-based evaluations. As shown in Table 1,
gradient-based GAS methods like AdversarialNAS [17] and AlphaGAN [59] am-
plify these problems by jointly searching the generator and discriminator archi-
tecture spaces. This coupled search increases the overall complexity and fragility
of the optimization procedure. To address these difficulties, DGGAN [42] intro-
duced a progressive search approach where candidates are trained incrementally.
However, its process still requires a massive 580 GPU days to complete due to
the computationally intensive nature of generative model training.

Recently, training-free NAS approaches have demonstrated remarkable effi-
ciency using zero-cost proxies to predict network performance without training
network parameters. These methods are mainly present for encoder-only models
for classification tasks. Inspired by their computational efficiency, we compre-
hensively evaluate existing proxies when applied to generative tasks. As shown
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Figure 1: Correlation visualization of proxies (from left to right: Param., Synflow,
NWOT, and Auto-GAS) in Generation benchmarks [15].

in Figure 1, we can make some interesting observations: (1) We observe that
parameter-level proxies (e.g ., Synflow [57], SNIP [28], and GraSP [62]), which
estimate performance based on weight importance, generally perform poorer
when ranking generator candidates. This indicates their assumptions regarding
how architecture impacts learning do not directly translate to generative ob-
jectives and training dynamics. (2) Architecture-level proxies (e.g ., NWOT [45]
and Zen [39]) featuring topological encodings demonstrate stronger ranking abil-
ity. However, even the best architecture proxies leave room for improvement to
enable performing generative NAS at scale. These findings motivate developing
customized proxies that more precisely capture the unique characteristics of vi-
sual generation. Thus, a question naturally arises: how to design customized
proxies for generation tasks?

To answer this question, we present Auto-GAS, the first automated gen-
erative architecture search framework that aims to efficiently utilize custom
training-free proxies. Firstly, we derive that the mutual information of latent fea-
tures within generative models is strongly coupled with task optimization objec-
tives based on information bottleneck theory [3,54,61]. Then, we develop proxy
search strategies to better estimate the mutual information of these features.
Specifically, we build comprehensive operation search spaces and evolutionary al-
gorithms to search optimal information-aware proxies. To better process feature
statistics, our search space involves transform-based, encoding-based, reduction-
based, and augment-based operators. The search process in Auto-GAS begins
with initializing the population of proxies and then evaluates, crosses, and varies
them to improve the quality of the proxies. Throughout the search, we directly
utilize the ranking correlation with accuracy results in the benchmark as fitting
objectives, aiming to find a more suitable proxy for the generation tasks. With
this evolutionary process, Auto-GAS outperforms existing training-free NAS ap-
proaches by significant margins without manual tuning. Additionally, we search
for generator architectures using Auto-GAS and subsequently implement a full
training process on the searched generator.

We perform extensive experiments to validate the performance and efficiency
strengths of our Auto-GAS in generation tasks like image generation and image-
to-image translation. The experiments demonstrate that our Auto-GAS can
achieve better-generating performance than other zero-shot proxies and state-
of-the-art results on rank consistency. In contrast to handcrafted GAS methods,



4 Lujun Li et al.

our Auto-GAS framework enjoys many benefits: (1) Automatic. It enables the
automatic discovery of more expressive and efficient proxies that human expert
might ignore, which can reduce human bias and ensures that the resulting ar-
chitectures are optimized for the target problem or dataset. (2) General. The
search procedure of Auto-GAS improves generalization by discovering proxies
that generalize well on different search spaces. Based on the final results for the
search objectives, our framework can evolve adaptive proxies to generalize across
architectures. (3) Insightful. Our framework allows for the automatic discovery
of more expressive, efficient, and effective proxies for optimizing and customiz-
ing generation architectures, opening up new research directions for automated
GAN architecture search. Our contributions can be summarized as follows:

• We present Auto-GAS, the first training-free architecture search framework
for generation tasks. Auto-GAS achieves an ultra-efficient and elegant search
process with our auto-searched customized proxy.

• We propose a well-organized proxy search space, including latent features as
input and various transforms, encoding, reduction, and augment operations
as options. We develop evolutionary algorithms for effective & efficient proxy
search.

• We conduct extensive experiments on image generation and image-to-image
translation tasks. Auto-GAS obtains significant search acceleration and com-
petitive performance on multiple datasets.

2 Related Work

Generative architecture search. The field of Neural Architecture Search
(NAS) traditionally encompasses the design of exploration spaces, search method-
ologies, and assessment techniques to autonomously uncover optimal architec-
tural configurations within specified parameters. Empirical approaches utilize
an iterative process of training followed by exploration, either through multiple
iterations [4,73] or by employing weight-sharing strategies [41,72]. NAS has also
been extensively applied to the domain of GANs Architecture Search (GAS). The
primary goal in GAS is to automatically identify superior GAN structures that
enhance generative performance. Pioneering reinforcement learning-based GAS
techniques, such as AGAN [65] and AutoGAN [18], leverage RNN controllers to
construct GAN architectures and employ the Inception Score (IS) as their eval-
uation criterion. E2GAN [60] and AdversarialNAS [17] implement alternative
reward functions. EAGAN [70] conducts discrete searches and enhances the ro-
bustness of the GAN exploration process. Nevertheless, these training-dependent
search methodologies continue to be hampered by inefficient exploration and sub-
stantial computational demands. To tackle this challenge, we propose a training-
free approach, grounded in architecture decoupling, to enhance the discovery of
competitive GAN structures in a more computationally efficient manner.
Training-free architecture search. Zero-shot architecture exploration [10,
11, 29, 39], alternatively referred to as training-free NAS, offers a swifter alter-
native to conventional NAS methods. This approach’s evaluation process en-
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tails only a handful of forward or backward passes with a small batch of input
data, rendering it highly efficient. Zero-cost indicators can be categorized into
parameter-centric and architecture-centric proxies. Parameter-centric zero-cost
proxies (e.g ., Synflow [57], SNIP [28], and GraSP [62]) rely on pruning tech-
niques and aggregate the saliency values of each layer’s weights as a proxy. For
instance, Synflow [58] introduces a modified version of synaptic saliency scores
to prevent layer collapse during parameter pruning, while Fisher [1] calculates
the sum of all activation gradients in the network, applicable to channel prun-
ing. Grasp [63] ensures gradient flow preservation throughout the network for
efficient training. Their detailed formulations are as follows:

ρsnip =

∣∣∣∣ ∂L∂W ⊙W
∣∣∣∣ , ρsynflow =

∂L
∂W⊙W, ρfisher =

(
∂L
∂AA

)2

, ρgrasp = −(H
∂L
∂W )⊙W,

(1)
where L, W, A are loss function, weight and activation. H is the Hessian ma-
trix. However, the complexity of loss function L in generation tasks renders these
gradient-based methods ineffective. Regarding architecture-centric proxies, Zen-
NAS [39] introduced the novel Zen-Score to assess network expressivity, while
NWOT [45] examined correlations between linear maps induced by data points
for untrained architectures. Nevertheless, these approaches employ hand-crafted
fixed proxies for classification tasks and encoder-only CNN models. In generation
tasks, the encoder-decoder generator typically features intricate branches and
multi-scale features, posing significant challenges for traditional proxies in pre-
dicting final accuracy. To address this issue, we automatically optimize the first
customized proxies for GAS. Furthermore, our framework differs from EZNAS-
like methods [2, 36, 74, 75] in several aspects: (1) Tasks. EZNAS is exclusively
designed for classification, whereas our Auto-GAS is tailored for generation tasks.
(2) Search algorithms. EZNAS merely employs genetic programming, while
we propose a proxy evolution search strategy that substantially enhances search
efficiency. (3) Model statistic inputs. Our method solely utilizes features as
input, as we observed poor performance of parameter-level proxies. Conversely,
EZNAS selects parameters and gradients as inputs. (4) Search space. Our
Auto-GAS incorporates numerous feature-related operations absent in EZNAS.

3 Methodology

In this section, we first review existing proxies. Then, we present formulations
and insights of our proxy design (see Figure 2). Finally, we illustrate the detailed
search process.

3.1 Proxy Search Space

Motivation of our customized proxy design. Generative tasks are relevant
to the Information Bottleneck (IB) theory [3, 54, 61], which guides generative
models to learn compact representations that retain important characteristics for
accurate sample generation. In generative tasks, the IB theory helps understand
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Figure 2: Overall proxy search of Auto-GAS. We extract the latent features of the
generator with input data forward-propagation. Then we select various transform, en-
coding, reduction, and augment operators from the proxy search space to build candi-
date proxies. Finally, we perform a ranking evaluation to cross and mutate to get the
best proxy.

how generative models can balance compression (capturing essential features)
and reconstruction (faithful generation of samples) [55, 68]. IB theory suggests
maximizing the Mutual Information (MI) I(X;Fi) between the input data X
and the corresponding latent representation Fi can be expressed as:

I(X;Fi) = H(Fi)−H(Fi|X) (2)

where H(Fi) stands for the entropy of the latent representation Fi and H(Fi|X)
denotes the conditional entropy. Considering that neural networks are deter-
ministic, and the dataset has a finite number of instances, the conditional en-
tropy becomes zero, simplifying the mutual information (MI) estimation as
I(X;Fi) = H(Fi). Consequently, some information coding and compression
studies [26, 55] propose some operations (e.g ., Entropy and Gram-matrix) to
approximate the mutual information on latent representation. These inspired
us to develop our train-free method design thought chain: assess generative
model→ estimate MI→ design expressions via Entropy|Gram-matrix
ops → our train-free proxy. However, how about designing this potential
expressions? Recent Auto-Zero approaches [30,51] present a promising solution:
searching for the best machine learning solution from scratch. In addition, sev-
eral studies [6] have shown that normalize and activation operations can enhance
the formulation. Therefore, we automatically search for optimal proxies based
on these operators.
Proxy primitive operations. Our approach evolves the customized proxy in
the generation benchmark [15], which consists of U-Net-like encoder-decoder
models with various operators and their training results. We extract the latent
features of each layer in both the encoder and decoder modules as inputs to
the search process and represent the zero-cost proxy as a computation graph.
This graph is constructed as transform→ encoding→reduction→augment
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parts in processing generator statistics. The available primitive operations can
be summarized as follows:

• Transform operations: These operations involve different activation func-
tions and feature processing techniques to enhance raw features and repre-
sent architectural potentials. Examples of transform operations include relu,
swish, mish, scale,norm, exp, and softmax.

• Encoding operations: Inspired by coding algorithms and feature informa-
tion estimation, we employ binary and matrix-based operations in the en-
coding part. These operators help us better estimate the mutual correlation
information of samples. Some encoding operations include sign, above-zero,
above-median, gram-matrix, person, and hamming.

• Reduction operations: Reduction operators bridge the information ma-
trix and the proxy values. They are valuable for extracting useful matrix
information from different mathematical perspectives. Reduction operations
include slogdet, abslog, trace, and eigenvalue.

• Augment operations: Augment operators are applied to enhance the
proxy values’ ability to predict performance results. These operations in-
clude arithmetic functions such as abs, pow, l2-norm, log, sum, and mean.

By utilizing these primitive operations, our approach enables the evolution of
the customized proxy, facilitating the search for optimal solutions in the genera-
tion benchmark. These mathematical operations are essential building blocks to
construct a diverse and expressive search space of zero-cost proxy. We provide
more details of their formulas and properties in the supplementary material.

3.2 Proxy Evolution Search

Evolutionary process and goal. Utilizing our proxy search space and graph
representation, we employ an evolutionary algorithm (EA) outlined in Alg. 1 to
discover optimal proxy expressions. Our EA commences with an initial set of
candidate proxies and progressively refines the population across generations,
employing genetic operators such as selection, crossover, and mutation to yield
superior solutions. For fitness evaluation, each proxy is assessed based on the
ranking correlation between its output proxy Q scores and pre-determined per-
formance benchmarks D, enabling efficient identification of the optimal proxy
ρ∗ within the search space P, as follows:

ρ∗Auto−GAS = argmax
ρ∈P

(τ(D,Q)). (3)

where Kendall’s Tau τ is formulated as the correlation coefficient. Each evolution
picks top-k candidates with the highest evaluation score and randomly selects a
parent from the candidates for mutation.
Efficient proxy search with existing generation benchmark. It is expen-
sive to derive pre-trained results D, we adopt an alternative solution to achieve
proxy search using pre-computed architecture-performance pairs provided in
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Algorithm 1 Evolutionary Search for Auto-GAS Proxy
Input: Exploration domain S, candidate set P, maximum iterations T , sampling
ratio r, sampled pool R, top k selections.
Output: Auto-GAS proxy with highest Kendall’s Tau τ coeffi-
cient.
1: P0 := Initialize candidate set(Pi);
2: Sampled pool R := ∅;
3: for i = 1, 2, . . . , T do
4: Select Gi

s := SelectTopk(R, k);
5: // greedy evolutionary strategy
6: Empty sampled pool R := ∅;
7: Mutate := MUTATE(Gs

i );
8: Crossover Gc

i := CROSSOVER(Gs
i );

9: Incorporate Gm
i into R;

10: Incorporate Gc
i into R;

11: if R < P then
12: Introduce random samples
13: else
14: Proceed to line 4;
15: end if
16: end for

the existing TransNAS-Bench-101 [15] benchmarks. Specifically, this benchmark
involves Autoencoding task with 7k different generators in macro-level search
space and their evaluation metric (i.e., SSIM). Each generator network follows
an encoder-decoder structure in Pix2Pix, where the encoders are the searched
backbones, and the decoders contain 14 layers of convolution and deconvolution.
Thanks to this existing benchmark, we do not need to train performance ground-
truths again, and it only takes 1.5 hours in our proxy search process. In
light of excellent generality (proven in our extensive experiments), our searched
proxy ρAuto−GAS can be well transferred to similar search spaces and can be
directly used in most scenarios without additional search budget.

3.3 Discovered Proxy Analysis

Searched Zero-cost Proxy. We present formulas of the searched proxies on
the generation benchmark as follows:

ρ∗Auto−GAS = (slogdet([F′,F′T ]))2,F′ = above-mean(swish(F)) (4)

where F represents the original features, and transformed features F′ are ob-
tained by applying the swish operation followed by the above-mean operation to
the original features F. The [F′,F′T ] indicates the N × N gram-matrix of the
transformed features F′. The proxy value ρ∗ is calculated by taking the square
of the slogdet of the concatenated gram-matrix [F′,F′T ].
Analysis of searched proxy. The discovered formulations indicate that (1)
Mathematical operations, such as swish activation and slogdet, significantly con-
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Table 2: Ranking results on TransNAS-Bench-101 [15].

Method Kendall Spearman Pearson Method Kendall Spearman Pearson

SNIP [1] -2.04% -3.55% -0.26% ZiCo [29] 18.63% 15.53% 21.13%
EZNAS [2] 23.30% 25.91% 32.03% Synflow [57] -50.91% -65.01% -49.17%
NWOT [45] 51.28% 63.94% 48.88% Params. -12.97% -15.24% -5.80%
SNIP [28] 30.81% 23.31% 29.34% FLOPs 48.91% 64.01% 52.36%
Zen [39] -2.27% 2.58% 5.39% Auto-GAS 61.14% 79.32% 81.25%

tribute to the predictability of the proxy. These operations enhance the proxy’s
ability to capture important features and characteristics of the generator. (2)
Gram-Matrix and Mutual Information: The expression utilizes a sample-wise
gram-matrix, which accurately estimates the latent mutual information of the
generator. The gram-matrix captures the relationships and dependencies among
the transformed features, providing valuable insights into the generator’s be-
haviour. The discovered proxy of Auto-GAS, as illustrated in Figure 1, show-
cases a substantial improvement in ranking. This improvement suggests that
the searched proxy effectively captures essential characteristics of the generator,
leading to enhanced performance in the benchmark.
Understanding why our Auto-GAS surpasses other NAS methods. (1)
Many train-based NAS methods employ weight-sharing and other proxy settings,
which often lead to inaccurate estimations of architecture performance. In con-
trast, our Auto-GAS method searches for proxies based on actual performance,
resulting in a proxy that demonstrates strong ranking capability. (2) Other train-
free NAS methods are primarily designed for classification rather than generative
tasks. Consequently, these methods search for architectures using weak correla-
tion proxies. In contrast, our proxy exhibits a stronger correlation, ensuring the
discovery of more efficient models.

3.4 Training-free Generative Models Search

Auto-GAS has made efforts to search generative Models in a non-training way to
ease the instability of GAN training and improve search efficiency. In this stage,
we directly search the generator in ρAuto−GAS . In each iteration, we generate P
candidate generators to make up the population A, where all these candidates
use the randomly initialized weights W . Each candidate is characterized by both
architecture and weight variables. In each iteration, we evaluate P candidates
without training. We employ the information-aware proxy to assign scores to all
these candidates. The formulation of the search stage can be succinctly stated
as follows:

α∗
Auto−GAS = argmax

α∈A
ρ∗Auto−GAS(α,W). (5)

Note that in scenarios involving discriminator searches, we also use ρAuto−GAS

for searching the discriminator architectures with real sample inputs.
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Table 3: Comparison results on the CIFAR-10 and STL-10 datasets. We use FID (the
lower the better) and the mIoU metric (the higher the better) for evaluations.

Method Algorithm GPU days CIFAR-10 (32×32) STL-10 (48×48)
IS↑ FID↓ IS↑ FID↓

WGAN-GP [20]

Manual
–

7.86 29.3 – –
SN-GAN [46] 8.22 21.70 9.16 40.1
ProbGAN [21] 7.75 24.60 8.87 46.74

Improv MMD GAN [66] 8.29 16.21 9.34 37.63
BigGAN [5] 9.22 14.73 - -
AGAN [65]

RL
1200 8.29 30.50 9.23 52.70

AutoGAN [18] 2.00 8.55 12.42 9.16 31.01
AlphaGAN [59] 1.2 8.70 15.56 - -

AdversarialNAS [17] 1.00 7.86 24.04 8.52 38.85
EGAN [64]

EA
1.25 6.90 - - -

EAS-GAN [40] 1.00 7.45 33.20 - 38.84
EAGAN [70] 0.8 8.41 12.83 9.69 23.82

Fisher [1]

Training-free

0.12 8.03 17.66 9.37 29.82
Zen [39] 0.11 8.02 15.99 9.45 28.66

SNIP [28] 0.12 7.96 16.67 9.58 29.25
NWOT [45] 0.09 8.05 16.32 9.23 27.46
Auto-GAS 0.09 8.44 12.21 9.72 23.19

3.5 Generative Models Training

After the architecture searches, we train generative models with randomly se-
lected data samples. Simultaneously, a batch of noise samples is generated from
a noise distribution. The generator tries to generate data from random noise z
as G(z), which should be as close as possible to the real data distribution. The
discriminator tries to distinguish the generated data from the real data. The
value function V (D,G) for a minimax game is defined as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z))]
(6)

where x ∼ pdata(x) denotes the distribution of real data, z ∼ pz(z) denotes the
input noise to the generator.

4 Experiments

In this section, we first perform proxy search experiments on the generation
benchmark, and then we conduct architecture search experiments on image gen-
eration and image-to-image translation tasks by translocating the searched prox-
ies. Finally, we provide a detailed analysis of our approach.

4.1 Experiments on Generation Benchmark

Dataset and implementation. We adopt the search space and performance
ground truth provided by the Autoencoding task in TransNAS-Bench-101 [15] as
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Figure 4: Searched model on STL-10.

the benchmark for searching and evaluating GAS proxies. We split the 4:3 ratio
of the benchmark into the validation and test sets. During the proxy search
phase, we set (P, T , r, k) in Alg. 1 as (20, 100, 0.9, 5) and evaluate with 50
architectures in the validation set. After the search, we fairly compare the Auto-
GAS proxy with the traditional ones by randomly sampling 200 architectures in
the test set. Note that our validation and test sets do not overlap to ensure fair
proxy comparisons. Detailed implementations are in the Appendix.
Comparison results. Table 5 demonstrates the ranking capabilities of different
methods on Generation Benchmark. Auto-GAS (ours) achieves the best rank-
ings across all three measures: Kendall’s Tau (61.14%), Spearman (79.32%), and
Pearson (81.25%). These results indicate that Auto-GAS performed well in pre-
serving the rankings compared to other methods. These findings highlight the
effectiveness of Auto-GAS for generating meaningful and accurate rankings.

4.2 Experiments on Image Generation

Datasets and implementation. We perform evaluations using CIFAR-10 [27]
and STL-10 [8] datasets, aligning with other GAS methodologies [17, 18, 70].
CIFAR-10 comprises 50k training and 10k test 32×32 images, while STL-10
contains 100,500 images at a higher 48×48 resolution. We directly apply searched
proxies to identify optimal architectures within EAGAN’s [70] search space. The
exploration process spans 150 epochs with a P = 32 individual population.
Generator and discriminator batch sizes are 80 and 40, respectively. We utilize
16 randomly generated Gaussian noise images for proxy score computation to
expedite evaluation. Post-search, we conduct full training of the best-scoring
generator for 500 epochs. For evaluation, following previous GAS works [17, 18,
70], we generate 50,000 images to calculate IS and FID metrics. Figures 3 and 4
illustrate the discovered architectures for CIFAR-10 and STL-10.
Training-based NAS method comparison. We benchmark Auto-GAS against
various training-based NAS approaches: BigGAN [5], E2GAN [44], Adversarial-
NAS [17], and EAGAN [70]. As shown in Table 3, Auto-GAS demonstrates
superior efficiency. For CIFAR-10, Auto-GAS achieves lower FID than BigGAN
and comparable overall results to E2GAN, while outperforming AdversarialNAS
in both FID and IS. On STL-10, Auto-GAS significantly outperforms E2GAN
and AdversarialNAS in both metrics, rivaling EAGAN in IS and surpassing it in
FID. In summary, Auto-GAS emerges as an efficient and competitive approach,
either surpassing or matching several state-of-the-art training-based NAS meth-
ods across diverse evaluation metrics and datasets.
Zero-shot proxy comparison. Table 3 also juxtaposes the Auto-GAS proxy
with four alternative zero-shot proxies. Fisher and SNIP, relying on gradient-
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Table 4: Image translation evaluation on horse→zebra and Cityscapes datasets.

Model Dataset Method
#Parameters GPU days FID (↓) mIoU (↑)

Value Ratio Value Ratio Value Increase Value Drop

CycleGAN
horse→zebra

Original 11.4M – – – 61.53 – –
COEV [53] – – – – 96.15 34.6 –

(512×512)
GAN Comp. [38] 0.34M 33.3× 11.60 1.00× 71.81 10.3 –
Fast GAN Comp. [38] 0.36M 32.1× 3.12 3.72× 65.19 3.66 –
Auto-GAS 0.39M 29.3× 0.11 105.45× 63.66 2.13 –

GauGAN
Cityscapes

Original 93.0M – – – 57.60 – 62.18 –
GAN Comp. [38] 20.4M 4.6× 17.70 1.00× 55.19 2.41 61.22 0.96

(512×512) Fast GAN Comp. [38] 20.2M 4.6× 10.40 1.70× 56.25 1.35 61.17 1.01
Auto-GAS 21.0M 4.5× 0.16 110.63× 56.04 1.56 61.21 0.97

based computations, yield similar scores. Zen-Score and NWOT exhibit positive
correlations with model accuracy, outperforming gradient-based methods. These
results validate the Auto-GAS proxy’s efficacy, positioning it as a formidable
contender among zero-shot proxy methods.

4.3 Experiments on Image-to-image Translation.

Datasets and implementation. We comprehensively evaluate our approach
on image translation tasks using high-resolution datasets, including [9] and
horse→zebra [71] at 512×512 resolutions. We apply the proxy for architecture ex-
ploration, adopting GAN Compression’s [38] search space for fair comparisons,
focusing on channel and layer number configurations. We evolve to compress
Pix2Pix [23] on horse→zebra and GauGAN [48] on cityscapes. The search pro-
cess involves 500 iterations, followed by model retraining with a 0.0002 learning
rate and 16 batch size, adhering to the original paper [23].
GAN compression method comparison. Table 4 demonstrates that Auto-
GAS achieves the highest FID score of 63.66 for CycleGAN with a superior
compression ratio (29.3×) compared to alternatives. This indicates Auto-GAS ef-
fectively reduces model size while preserving image quality. For GauGAN, Auto-
GAS exhibits a marginally higher FID score and a competitive mIoU score of
61.22.
Qualitative Analysis. Figure 5 illustrates Auto-GAS’s proficiency in trans-
lation tasks. In contrast, FastGAN Compression not only yields a lower FID
score but also fails to eliminate artifacts like brown discoloration in zebra mod-
els. Conversely, Auto-GAS-generated zebra images accurately capture authentic
black-and-white zebra patterns.

4.4 Ablation Study

Search efficiency benefits. For image generation (see Table 3), our Auto-GAS
method exhibits significantly superior search efficiency to training-based NAS
GANs and has a definite advantage over other zero-cost proxies. The Fisher and
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Figure 5: Visualization results on image translation tasks using high-resolution
datasets, e.g ., horse→zebra and Cityscapes with 512×512 resolution.

Table 5: Ablations of our proxy search.

Exp. Method Kendall Spearman FID↓@CIFAR-10 FID↓@STL-10

I
Vanilla Gram-matrix 24.28% 35.75% 17.88 29.62
Auto-GAS 61.14% 79.32% 12.21 23.19

II

Auto-GAS without Transform 55.78% 73.60% 14.22 25.58
Auto-GAS without Encoding 51.64% 68.62% 15.26 26.49
Auto-GAS without Reduction 52.78% 71.95% 14.63 25.74
Auto-GAS without Augment 58.40% 76.06% 13.86 25.12

III
Auto-GAS (Gram-matrix) 61.14% 79.32% 12.21 23.19
Auto-GAS (Pearson) 60.07% 77.53% 12.85 24.62
Auto-GAS (Hamming) 60.58% 78.57% 12.35 23.88

IV
Auto-GAS (Proxy Random) 29.49% 38.25% 16.65 28.12
Auto-GAS (Proxy Evolution) 61.14% 79.32% 12.21 23.19

SNIP require gradient backpropagation, leading to increased time consumption
during the search process. In contrast, our Auto-GAS only requires a single
forward pass, making it faster than methods that necessitate multiple forwards
or gradient backpropagation. For image translation, as presented in Table 4,
Auto-GAS achieves a 110× enhancement compared to GAN Compression [38].
Ablation of proxy search. (1) Our proxy search space includes transform, en-
coding, reduction, and augmentation operations. Ablations in Table 5 (II) indi-
cate that all these operators contribute, with encoding operators having a greater
influence. (3) Ablations for different encoding operators in Table 5 (III) show
that the gram-matrix is important, but other operators (e.g ., Pearson correla-
tion matrix) also achieve similar performance. (2) Our contribution stems from
search space design and proxy search processes. Ablations in Table 5 demon-
strate that the various components of our search space contribute. In addition,
our proxy evolution search plays an important role in exploring extensive search
space and it significantly outperforms random search in Table 5 (IV).
Operations for mutual information estimation. (1) Gram-matrix calcu-
lates matrix correlation for mutual information, which measures the salient fea-
tures and relevant information captured by generative models. The comparison
in Table 5 (I) shows that the vanilla Gram-matrix can be used as a proxy for NAS
but is weaker than our Auto-GAS. (2) We also compare other operations for fea-
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Table 6: Results of different correla-
tion methods on the CIFAR-10 dataset.

Correlation Methods CIFAR-10
IS↑ FID↓

Hessian Trace 8.36 15.47
L2 norm 7.56 24.62
Entropy 7.70 25.43
Variance 7.67 23.75

Gram-matrix 8.12 17.88
Auto-GAS 8.44 12.21

Table 7: Results of hyperparameter
analysis on the CIFAR-10 dataset.

Hyperparameter CIFAR-10
IS↑ FID↓

Batch Size (20) 8.52 12.28
Batch Size (40) 8.02 16.52

Number of Individuals (16) 8.44 12.21
Number of Individuals (64) 8.11 16.32
EA iteration interval (5) 7.78 18.25
EA iteration interval (10) 8.38 13.69

ture information estimation in Table. 6. The results of L2 norm|Entropy|Variance
are worse than Auto-GAS, because they overlooks higher-order feature statistics.
Hessian Trace [43] yields relatively promising performance but its computational
complexity is excessive.
Hyperparameter analysis. The results in Table 7 indicate that a larger batch
size may speed up convergence but also risk overfitting. An appropriate popu-
lation size ensures our more efficient architecture exploration. Larger iteration
intervals allow for a more comprehensive exploration in our architecture space.

5 Conclusion

In this paper, we present Auto-GAS, a novel training-free generative architecture
search framework by evolving customized proxy. We derive from the information
bottleneck theory using the latent layer feature as input and building candi-
date proxies with various transform, encoding, reduction, and augment options.
We search for the best proxy using evolutionary algorithms. With customized
proxies, our Auto-GAS allows an efficient search for promising architectures.
Comprehensive experiment results on image generation and image translation
illustrate the promising performance of Auto-GAS. For future work, we will
augment our Auto-GAS with advanced methods [31–35,37,52,69]. We hope our
novel investigations will provide some insight for the generation and NAS re-
search community.
Iimitation. We mainly evaluate the same benchmarks as other NAS methods
for fair comparison. We will extend Auto-GAS to more generative models in
future work. Social impact. Our Auto-GAS focuses on technology improvement
without social and ethical implications.
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