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Abstract Distillation-aware Architecture Search (DAS) seeks to dis-
cover the ideal student architecture that delivers superior performance
by distilling knowledge from a given teacher model. Previous DAS meth-
ods involve time-consuming training-based search processes. Recently,
the training-free DAS method (i.e., DisWOT) proposes KD-based prox-
ies and achieves significant search acceleration. However, we observe that
DisWOT suffers from limitations such as the need for manual design and
poor generalization to diverse architectures, such as the Vision Trans-
former (ViT). To address these issues, we present Auto-DAS, an auto-
matic proxy discovery framework using an Evolutionary Algorithm (EA)
for training-free DAS. Specifically, we empirically find that proxies con-
ditioned on student instinct statistics and teacher-student interaction
statistics can effectively predict distillation accuracy. Then, we represent
the proxy with computation graphs and construct the proxy search space
using instinct and interaction statistics as inputs. To identify promising
proxies, our search space incorporates various types of basic transforma-
tions and network distance operators inspired by previous proxy and KD-
loss designs. Next, our EA initializes populations, evaluates, performs
crossover and mutation operations, and selects the best correlation can-
didate with distillation accuracy. We introduce an adaptive-elite selection
strategy to enhance search efficiency and strive for a balance between ex-
ploitation and exploration. Finally, we conduct training-free DAS with
discovered proxy before the optimal student distillation phase. In this
way, our auto-discovery framework eliminates the need for manual design
and tuning, while also adapting to different search spaces through direct
correlation optimization. Extensive experiments demonstrate that Auto-
DAS generalizes well to various architectures and search spaces (e.g .,
ResNet, ViT, NAS-Bench-101, and NAS-Bench-201), achieving state-of-
the-art results in both ranking correlation and final searched accuracy.
Code at: https://github.com/lliai/Auto-DAS.
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1 Introduction

Knowledge Distillation (KD) transfers logits [17, 52], features [26, 32], or rela-
tion [40,47] knowledge of heavy teacher models as additional supervised signals
to augment lightweight student models. KD originally served as model compres-
sion technique for large models and has recently been used as a common strat-
egy for performance improvement in different scenarios. For example, distilling
a CNN teacher for a Vision Transformer (ViT) [49] can significantly enhance its
performance, particularly when training from scratch in data-limited scenarios.
However, the architecture gap between the teacher and student network creates
a mismatch between the receptive field and the prediction reliability [38, 56].
These disparities contribute to distillation gains, i.e., students with a smaller
architecture gap with teachers will enjoy better final results.

To alleviate these problems, a new task, Distillation-aware Architecture Search
(DAS), is presented to search for an optimal student architecture from the given
teacher, which obtains the best performance with the help of neural architecture
search. In contrast to the traditional NAS methods, the DAS approach needs to
consider the effect of the teacher and employ distillation accuracy as the search
evaluation metric. Some observations [7,36] indicate that the models searched by
traditional NAS methods [9,20,35] are suboptimal in distillation, and there is a
common performance ranking gap for obtained students between vanilla training
and distillation. For the DAS task, some training-based methods leverage Re-
inforcement Learning (RL) [36] or gradient method [14] as search strategies to
find the ideal student. However, these methods bring in high search costs (e.g ., 5
days with 200 TPUv2 in AKD [36]), which causes heavy burdens for application.
Recently, DisWOT [7] first presents the training-free DAS framework with some
KD-based proxies, exploiting the connection between training-free proxies and
knowledge distillation loss. It achieves significant search acceleration by using
statistics between random networks for predicting distillation accuracy without
candidate training. However, some drawbacks still limit its extensive applica-
tion, which could highlight from two aspects: (1) Expert design and tuning
costs. These KD-based proxies are inspired by some distillation studies with ex-
tensive expert intuition and require extensive tuning. It is hard to state if these
proxies are optimal for DAS as limited by the designer’s experience. (2) Gener-
alization issue. Handcrafted ones only perform well on some specific settings
but are hard to adapt to different scenarios without changing/modification. As
shown in Figure 1, existing handcrafted proxies perform well on the CNNs but
do not generalize well to ViT models. Thus, two questions arise: (1) How to
efficiently discover the proxies without expert knowledge? (2) How to
find the optimal proxies for different search spaces?

For the first problem, we observe that previous proxy expressions are usu-
ally constructed for typical inputs and common primitive operations. Inspired
by Auto-Zero [42], we explore a from-scratch proxy discover framework alter-
native to handcrafted for DAS task. For the second problem, we can evolve
various proxy candidates by directly taking their predictability for distillation
accuracy as feedback. In addition, we find that proxies with inputs from student
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Figure 1: Spearman correlation (%) on
CNN models(left) and ViT models(right).
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Figure 2: Illustration of Auto-DAS.

instinct statistics and teacher-student interaction statistics consistently achieve
better results. For example, DisWOT+Synflow in Figure 1 achieves stable im-
provements on multiple search spaces. Based on these observations, we present
Auto-DAS, a from-scratch framework for discovering proxies for DAS tasks are
proposed as an alternative to manually designed ones. As shown in Figure 2,
we first build the proxy search space, consisting of both instinct and interaction
proxy. The instinct proxy is used with student’s weights and gradient statistics
as input and different unary and binary mathematical operations as candidate
components. For interaction proxy, we select teacher-student features, embed-
dings, logits as inputs, different basic transformation operations, and distance
functions to form the computation graph. Then, we randomly sample various
proxies as the population and then perform mutation and crossover operations
according to the ranking ability of different proxies. To improve generality, we
directly treat the Kendall correlation between the prediction of the candidate
proxy and the ground truth under distillation as the fitting objective of the
evolutionary algorithm. To speed up the process, we employ an adaptive-elite
selection strategy during the evolution search. With the automatic search frame-
work, our Auto-DASsurpasses existing training-free NAS approaches by a large
margin without involving too much prior knowledge. Finally, after getting the
Auto-DAS proxy in a given search space, we search for the best student archi-
tectures with the highest Auto-DAS score and apply the searched students to
distill the knowledge from the given teacher.

In comparison to manual DAS techniques, our Auto-DASframework offers
several advantages: (1) Autonomy. It facilitates the spontaneous discovery of
more potent and efficient proxies that may elude human experts, thus miti-
gating bias and ensuring that the resultant architectures are tailored for the
intended problem or dataset. (2) Versatility. The search mechanism of Auto-
DASenhances adaptability by uncovering proxies that perform well across diverse
search spaces. Our framework can evolve flexible proxies to generalize across ar-
chitectures, based on the ultimate distillation outcomes for the search objectives.
(3) Enlightening. Our approach enables the automatic identification of more
expressive, efficient, and effective proxies for optimizing and customizing student
architectures, paving the way for novel research and applications in DAS and KD
tasks. (4) Efficacy. We have conducted comprehensive experiments on ResNet,
NAS-Bench-101, NAS-Bench-201, and ViT-Bench search spaces to confirm the
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superiority of our Auto-DAS. The results demonstrate that our Auto-DAScan
surpass other zero-shot proxies in distillation accuracy and achieve state-of-the-
art results in rank consistency, such as a 40% improvement in Kendall correlation
over DisWOT. To summarize, our key contributions to Auto-DAS are:

• We introduce the pioneering framework for discovering proxies from scratch,
Auto-DAS, to address handcrafted limitations and enhance generalizability
in predicting distillation accuracy across various students.

• We devise a well-structured proxy search space, incorporating instinct and
interaction statistics as inputs, along with diverse unary, binary, transforms,
and distance functions as operations. We develop evolutionary algorithms
with adaptive-elite selection for effective and efficient proxy search.

• We provide empirical evidence that Auto-DASachieves cutting-edge perfor-
mance across ResNet, NAS-Bench-101, NAS-Bench-201, ViT-Bench search
spaces and multiple datasets.

2 Related work

Distillation-aware architecture search. The increasing demand for practi-
cal applications of large-scale models [5,12] has led to impressive advancements
in Knowledge distillation (KD) across various domains [26–30, 32, 43], includ-
ing image classification [17], object detection [51, 55], and NLP [21]. However,
discrepancies between teacher and student architectures can substantially im-
pact distillation outcomes. Consequently, distillation-aware student architecture
search for a given teacher model has emerged as a crucial new area of research.
Traditional reinforcement learning-based search methods [36] utilize KD-loss as
feedback for DAS but incur significant additional costs during the search process.
Subsequent research employs efficient gradient-based methods [14], albeit intro-
ducing new optimization challenges. Recently, DisWOT [7] introduced the first
training-free DAS framework. However, DisWOT relies on a manually designed
proxy, which lacks generalization across different search spaces. To address this
limitation, we propose the first automated proxy discovery for training-free DAS
tasks. Our method not only retains the advantages of DisWOT, such as effi-
ciency and flexibility, but also automatically optimizes proxies without expert
intervention. Auto-DAS paves the way for novel DAS research and offers valuable
insights based on search result analysis for the research community.
Training-free architecture search. Conventional NAS [18, 60] involves de-
signing search spaces, algorithms, and evaluations to automatically discover
optimal architectures under given constraints. Training-based methods employ
train-then-search or weight sharing processes [19, 41, 54, 60]. Training-free NAS,
also known as zero-shot NAS [6, 8, 31, 33, 34, 57, 59], enables faster search by
predicting performance without training. Zero-cost proxies are categorized as
parameter-level or architecture-level. Parameter-level approaches rely on prun-
ing and saliency values [23, 45, 50], while architecture-level methods evaluate
expressiveness [34] or linear map correlations [37]. DisWOT proposed KD-based
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Figure 3: The overall illustration of Auto-DAS. Our search space includes unary, bi-
nary, transform, and distance options with different inputs. Then, we construct our
intrinsic & interaction proxies and use crossover & mutation to search for the best
proxy.

Table 1: Operations of Auto-DAS. More details are available in the Appendix.

Proxy Input Type Primitive Operations

instinct
Activations Unary exp,mish, leaky, relu, tanh, softmax, sigmoid, pow2, pow4, log, abslog, abssqrt
Gradients Unary l1norm, revert,min−maxto−mean, to− std, invert, lnnorm, normalizedsum, no− op
Weights Binary sum, subtract,multiply, divide, dot.

Interaction
Feature Transform tanh, log, sqrt, batchnorm,min−max, norm, softmax, exp,mish, leaky, relu
Embed Transform mask, no, bmm,mm, scale,multi− scale, scale, local, batch, channel, drop, satt, natt, catt
Logits Distance ℓ1, ℓ2, ℓKL, ℓhard, ℓCosine, ℓPearson

proxies, but their fixed formulations limit generalization. To overcome these lim-
itations, we consider student internal statistics and teacher-student similarities
as inputs and evolve superior proxies from scratch for training-free DAS tasks.
Inspired by Auto-Zero, our innovations include a novel proxy search space and
a specialized search process, promoting automatic proxy design for distillation.
Our approach differs from EZNAS [2] in terms of tasks (ours is customized for
CNNs and ViTs), search algorithms (ours employs adaptive-elite selection), and
search space (ours incorporates teacher-student knowledge). Unlike EZNAS and
Auto-KD, which focus solely on vanilla classification, we directly search on the
distillation task and include teacher-student knowledge and additional options
in the search space.

3 Methodology

This section delves into the intricacies of existing proxies, our proposed search
space, the search algorithm, and an analysis of the results. Subsequently, we
outline a training-free student search process utilizing the discovered zero-cost
proxy. Figure 3 illustrates the workflow of our approach.
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3.1 Examination of existing proxies

To provide context for our training-free method, we first examine current zero-
cost proxies: SNIP [23] calculates a saliency metric at initialization using a single
mini-batch of data to estimate the loss change when a specific parameter is elimi-
nated. Synflow [45] introduces a modified version of synaptic saliency scores that
prevents layer collapse during parameter pruning, while Fisher [46] computes the
sum over all activation gradients in the network, applicable for channel pruning.
Their detailed formulations are as follows:

ρsnip =

∣∣∣∣ ∂L∂W
⊙W

∣∣∣∣ , ρsynflow =
∂L
∂W

⊙W, ρfisher =

(
∂L
∂A

A
)2

, (1)

where L, W, A are loss function, weight and activation. H is the Hessian matrix.
These proxies consist of various unary, binary operations with statistics input
from the candidate model, named instinct proxies in our paper. For the dis-
tillation scenario, DisWOT presents some KD-based proxies based on KD-loss
design, as follows:

ρDisWOT = DL2(G([AS,AT ])) +DL2(G([FS,FT ])), (2)

where A, F , E , P are activation maps, feature maps, embeddings, and logits
prediction. [·, ·] means to perform the same operation on two primitives. G is the
gram-matrix. DL2, DKL are ℓ2 and ℓKL distance. These KD-based proxies use
teacher-student pair-wise statistics as input and different transformations and
distance functions to construct formations that we denote as interaction proxies.
Based on these analyses, we build search spaces for instinct and interactive
proxies in the next part.

3.2 Search Space for Proxy Discovery

Our search space structure comprises three primary components: input choices,
primitive operations, and proxy representation. As illustrated in Table 1, for
input choices in constructing zero-cost proxies, the instinct proxy extracts ac-
tivations, gradients, and weights from the student model, while the interaction
proxy selects features, embeddings, and logits of the teacher-student network.
These inputs represent the most informative options common across traditional
and KD-based proxies. For instance, features provide insights into data distri-
bution and internal network representations, while gradients highlight weight
sensitivity to loss functions. Following this observation, we register each student
layer’s activation, weights, and corresponding gradients as potential inputs for
our zero-cost proxy. Regarding primitive operations, we consider unary and bi-
nary operations for instinct proxies, and transform and distance operations for
interaction proxies. We include mathematical, normalization, and scaling opera-
tions for unary operations; matrix sums and products for binary operations; and
activation, normalization, scaling, and other transformations, along with typical
distance functions for interaction proxies. Our proxy is represented as a com-
putation graph, where input nodes are instinct and interaction statistics, and
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Algorithm 1 Evolutionary Strategy for Auto-DAS Proxy Discovery
Input: Architecture space S, candidate set P, iteration limit T , selection proportion
r, temporary set R, elite count k.
Output: Highest-scoring Auto-DAS configuration.
1: Initialize candidate set P0 := GenerateInitialCandidates(Pi);
2: Empty temporary set R := ∅;
3: for i = 1, 2, . . . , T do
4: Reset temporary set R := ∅;
5: Populate R with random selections from P;
6: Elite group Gik := SelectTopPerformers(R, k);
7: Choose parent Gp

i := RandomlyPick(Gik);
8: Generate offspring Gm

i := MUTATE(Gp
i );

9: // Adaptive Elite Preservation
10: Randomly generate baseline E;
11: if ρ(Gm

i ) > ρ(E) then
12: Include Gm

i in P ;
13: else
14: Include E in P ;
15: end if
16: Eliminate lowest-scoring proxy from population.
17: end for

intermediate nodes are primitive operations. The graph’s output is the proxy
score used for distillation ranking. Our comprehensive search space encompasses
most zero-cost proxies, KD-based losses, and model similarity formulations, con-
stituting our core innovation and contribution.

3.3 Evolution Procedure and Objective

Utilizing our proxy search space, we employ an Evolutionary Algorithm (EA) to
identify optimal proxy expressions (refer to Figure 3 and Algorithm 1). Our EA
initiates with a population of candidate proxies and iteratively evolves it over
generations using genetic operators such as selection, crossover, and mutation
to generate superior solutions. For objective fitting, each proxy is evaluated
based on the ranking correlation between its output proxy Q scores and actual
performances D to efficiently discover the optimal proxy ρ∗ from search space
S, as follows:

ρ∗Auto−DAS = argmax ρ ∈ S(τ(D,Q)), (3)

where Kendall’s Tau τ serves as the correlation coefficient. Each evolution gen-
eration selects the top-k candidates with the highest Auto-DAS scores and ran-
domly chooses a parent from these candidates for mutation. During mutation,
a node in the computation graph is randomly selected and mutated with newly
generated primitive operations.
Efficient proxy search with existing benchmark. Obtaining pre-trained
results D can be resource-intensive. To address this, we leverage pre-computed
architecture-performance pairs from existing DisWOT benchmarks [7]. These
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Figure 4: Search
curve on ResNet.

Figure 5: Correlation visualization of NWOT (left), DisWOT
(middle), Auto-DAS (right) on ResNet search space.

benchmarks provide distillation results for various ResNet and NAS-Bench-
101/201 search space models. Utilizing this benchmark eliminates the need to
retrain performance ground-truths and significantly reduces the proxy search
process time to merely 0.05 GPU-day. Due to its excellent generality (demon-
strated in our extensive experiments), our searched proxy ρAuto−DAS transfers
well to similar search spaces and can be directly applied in most scenarios with-
out additional search budget.
Adaptive-elite selection strategy. To mitigate population deterioration and
premature convergence, we introduce an adaptive-elite selection strategy. This
approach involves comparing the performance of mutation-generated offspring
with that of a randomly generated individual. The individual with a higher Auto-
DAS score is then added to the population. By maintaining or enhancing the
overall population performance over time, this strategy accelerates convergence
towards a high-performing solution (see Figure 4).

3.4 Searched Zero-cost Proxy

We present formulas of the searched proxies on ρCNN for CNN Search space
(e.g ., ResNet, NAS-Bench) and ρV iT ViT search space as follows:

ρCNN = DKL(sigmoid([FS ,FT ])) +
1

M

∑
|logsoftmax(

∂L

∂W
)|F , (4)

ρV IT = DKL (mask ([FS ,FT ])) +
M∑

sigmoid
(∣∣log ∣∣ ∂L

∂W

∣∣∣∣) (5)

Where W is the weight parameter, ∂L/∂W is the corresponding gradient. ∥·∥F
means the Frobenius-norm. M denotes mean operation.
Analysis of searched proxy. The discovered formulations indicate that (1)
mathematical operations like softmax, logsoftmax, sigmoid, and mask operations
benefit proxy predictability. (2) Gradient and features are vital input statistics
for instinct and interaction proxies. As shown in Figure 5, the discovered proxies
of Auto-DAS achieve significant ranking improvement.
Understanding why our Auto-DAS surpasses other NAS methods. (1)
Many training-based distillation NAS methods use weight sharing and prox-
ies, often leading to inaccurate performance estimates. Our Auto-DAS searches
proxies based on real performance, yielding one with strong ranking ability. (2)
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Table 2: Spearman correlation (%) results on the NAS-Bench-101 and NAS-Bench-201
(NB-101/201) datasets. In this context, NB-101/201-KD denotes the task of distilling
the accuracies of the architectures on the respective NAS-Bench-101/201 datasets.

Method ResNet NB-101 NB-201 NB-101-KD NB-201-KD

FLOPs 72.92 30.81 63.38 15.56 64.55
Fisher 81.37 -38.81 35.91 -33.92 4.45

Grad_Norm 82.35 -39.23 58.70 -39.16 -10.01
SNIP 85.07 -29.01 58.17 -21.78 16.91

Synflow 88.30 43.69 74.61 20.36 74.63
NWOT 45.66 32.84 64.41 22.97 35.27

DisWOT(Ms) 77.24 49.61 65.74 50.16 53.88
DisWOT(Mr) 49.38 30.74 56.46 42.94 45.27

DisWOT 91.38 46.57 72.36 52.45 64.90

Auto-DAS 98.44 71.84 87.73 85.95 74.66

Other train-free NAS methods primarily target vanilla training, not distillation.
They rely on weak correlation proxies. Ours exhibits a stronger correlation, en-
suring more efficient model discovery. While DisWOT considers distillation in its
proxy design, it is manually crafted and lacks direct optimization and feedback
from distillation results. In contrast, our Auto-DAS method not only includes
all distillation designs in the proxy search space settings but also optimizes our
proxies directly based on the distillation results. Our approach naturally outper-
forms other methods in terms of distillation performance.

3.5 Training-free Student Search

The training-free student search enables us to efficiently explore numerous can-
didate architectures without the need for costly and time-consuming training.
After obtaining an effective proxy with the aid of an evolutionary search, we em-
ploy it to conduct a training-free student search. Utilizing randomly initialized
weights, denoted as W, we seek the optimal student, represented as α∗, from the
search space A, as follows:

α∗ = argmax
α∈A

ρ∗Auto−DAS(α,W). (6)

After the search phase, we use the pre-trained teacher model to distill the optimal
student network α∗. We adopt the original knowledge distillation method [17]
as the auxiliary loss function.

4 Experimental results

In this section, we present the ranking correlation and search accuracy results of
our Auto-DAS on CNN, NAS-Bench, and ViT search space. For fair comparisons,
we employ the same search, distillation settings, KD accuracy ground truths in
DisWOT as the ground truth for correlation validation. We report mean results
based on more than 3 repeated trials.
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Table 3: Accuracy (%) of NDS-ResNet
space on CIFAR-100.

Constraints NWOT Synflow DisWOT Auto-DAS

5M-FLOPs 63.19 64.28 65.98 66.52
100M-FLOPs 70.38 72.12 72.89 73.25
0.5M-Param. 70.38 71.58 72.89 73.32
1M-Param. 72.57 73.56 74.23 74.66

Table 4: Results (%) of other KD
methods under 1M parameters.

Method FitNets AT SP RKD CRD

Random NAS 70.12 70.16 70.46 71.19 71.59
DisWOT 74.85 74.5 74.95 74.62 75.25
Auto-GAS 75.28 74.98 75.55 75.31 75.86

Table 5: Top-1 accuracy ( %) results on ImageNet.

Models Baseline Baseline+WSLD Baseline+DIST Random NAS+KD Zen-NAS+KD DisWOT Auto-DAS

ResNet18 69.7 72.04 72.07 71.68 71.88 72.08 72.58
ResNet50 77.1 NA 78.45 77.48 77.80 78.62 79.25

4.1 Experiments on CNN models

Architecture space and methodology. For CNN validation, we focus on
ResNet variants, encompassing both cifar-ResNet and NDS-ResNet domains.
Our cifar-ResNet space, inspired by He et al. [15], comprises three phases with
1,3,5,7 block options, tailored for CIFAR-100. We also explore the NDS-ResNet
realm for both CIFAR-100 and ImageNet-1k search trials. Across all models,
we employ our discovered ρCNN without additional proxy exploration. During
knowledge transfer, all identified student networks undergo training using CRD
protocols [48], with ResNet56 serving as the mentor model. For ImageNet-1k,
we investigate ResNet18/50-caliber students under equivalent parameter restric-
tions.
Findings on compact datasets. Our ranking analysis is rooted in individ-
ual knowledge transfer outcomes within the cifar-ResNet domain, as provided
by DisWOT. Table 2 demonstrates that Auto-DAS achieves a notably higher
Spearman coefficient compared to Fisher, SNIP, FLOPs, and NWOT. Our ex-
ploration experiments, conducted in the NDS-ResNet realm, pit our approach
against Synflow, NWOT, and DisWOT, under 0.5M and 1M parameter limits,
as well as 50M and 100M FLOPs thresholds. As illustrated in Table 3, Auto-
DAS surpasses previous state-of-the-art methods by 0.9%∼2.0%↑ under identical
constraints. Furthermore, we evaluate Auto-DAS across various KD techniques
(refer to Table 4). The results affirm our method’s efficacy, consistently outper-
forming DisWOT across different KD approaches.
ImageNet performance analysis. Table 5 presents the effectiveness of stu-
dent models identified by Auto-DAS on ImageNet, with ResNet34/101 acting as
teacher networks. For the ResNet18 variant, Auto-DAS attains 72.58% accuracy,
outperforming both DisWOT and other KD+NAS methodologies. Similarly,
with the ResNet50 model, Auto-DAS achieves a leading accuracy of 79.25%.
These findings underscore the superior capability of our Auto-DAS approach in
enhancing model precision across various architectures.
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Table 6: Evaluation of Architectures on CIFAR-10, CIFAR-100, and ImageNet-16
in NAS-Bench-201 [11]. Distilled Accuracy (%) represents the classification accuracy
of the discovered architecture after distillation training. Search Time (s) denotes the
computational cost (in GPU-seconds) during the search phase. The performances of
NWOT and TE-NAS are obtained from their respective publications. Our proposed
Auto-DASapproach demonstrates superior accuracy with rapid search speed.

Type Model CIFAR-10 CIFAR-100 ImageNet-16-120
Dis. Acc(%) Time (s) Speed-up Dis.Acc(%) Time (s) Speed-up Dis. Acc(%) Time (s) Speed-up

Multi-trial

RS 93.63 216K 1.0× 71.28 460K 1.0× 44.88 1M 1.0×
RL [3] 92.83 216K 1.0× 71.71 460K 1.0× 44.35 1M 1.0×

BOHB [13] 93.49 216K 1.0× 70.84 460K 1.0× 44.33 1M 1.0×
RSPS [25] 91.67 10K 21.6× 57.99 46K 21.6× 36.87 104K 9.6×

0ne-shot GDAS [10] 93.39 22K 12.0× 70.70 39K 11.7× 42.35 130K 7.7×
DARTS [35] 89.22 23K 9.4× 66.24 80K 5.8× 43.18 110K 9.1×

Zero-shot NWOT [37] 93.73 2.2K 100× 73.31 4.6K 100× 45.43 10K 100×
EZNAS [2] 93.63 2.2K 100× 69.82 4.6K 100× 43.47 10K 100×

Zero-shot DAS
DisWOT 93.55 1.2K 180× 74.21 9.2K 180× 47.30 20K 180×

DisWOT(Mr) 93.49 0.72K 300× 73.62 18.4K 300× 45.63 40K 300×
Auto-DAS 93.96 1.8K 180× 74.73 13.8K 180× 47.50 30K 180×

4.2 Experiments on NAS-Bench

Experimental setup and search space. The NAS-Bench-101 [53] and NAS-
Bench-201 [11] datasets serve as crucial benchmarks for assessing the efficacy
of various NAS algorithms. DisWOT offers knowledge distillation outcomes for
architectures within the NAS-Bench-101/201 search spaces (referred to as NB-
101-KD and NB-201-KD). Adhering to these benchmark protocols, we apply
the identified ρCNN to model search and validate distillation rankings without
additional proxy searches. Comprehensive implementation details are available
in the Appendix.
Performance analysis. Table 2 illustrates that our Auto-DAS method achieves
superior ranking performance, significantly outperforming DisWOT. Further-
more, we evaluate the standard correlation in NAS-Bench-101/201, with the
ranking outcomes highlighting Auto-DAS’s versatility through substantial im-
provements over existing techniques. Regarding search trials presented in Ta-
ble 6, Auto-KD demonstrates remarkable gains in the accuracy-efficiency trade-
off compared to multi-trial NAS approaches (such as Random Search (RS) and
Reinforcement Learning (RL)) and Gradient-based One-shot NAS methods (like
GDAS and DARTS), which typically incur substantial search costs. Our method
also consistently enhances distillation accuracy when compared to other Zero-
shot NAS techniques (including NWOT, TE-NAS, and DisWOT). These excep-
tional ranking and search results underscore the robust generalization capabili-
ties of our approach across challenging NAS-Bench datasets.

4.3 Experiments on Vision Transformer

Architecture space and methodology. To assess the ranking consistency of
zero-cost proxies for ViT structures, we develop a benchmark called ViT-Bench.
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Table 7: Results (%) of Ranking Correlation on CIFAR-100, Flowers, and Chaoyang.

Search Space Proxy CIFAR-100 Flowers Chaoyang
Kendall Spearman Pearson Kendall Spearman Pearson Kendall Spearman Pearson

PiT

GraSP -42.02 -58.71 -31.53 -50.66 -69.64 -40.90 -16.00 -22.94 -19.07
SynFlow 69.79 87.05 70.80 62.22 79.98 71.66 30.96 42.66 39.24
TENAS -2.13 -3.21 -1.68 -2.86 -4.23 -3.33 -3.34 -5.04 -3.55
NWOT -2.61 -4.13 -0.52 2.67 3.69 0.71 4.73 6.87 4.43
TF-TAS 63.83 82.20 58.37 64.48 82.91 67.23 37.99 52.92 42.68
DisWOT -19.05 -28.83 -28.56 -19.57 -30.33 -18.01 -3.36 2.40 15.22

Auto-DAS 72.81±1.68 90.32±1.79 77.76±2.58 76.42±1.12 93.09±1.85 87.63±1.36 48.36±2.46 66.13±1.58 66.58±1.86

Table 8: Comparing the performance of our proposed Auto-DAS approach across three
diverse datasets - CIFAR-100, flowers, and Chaoyang - using the PiT search space, we
have achieved competitive results while incurring the lowest search cost, measured in
time cost on a single GPU.

Search Space Proxy
CIFAR-100 Flowers Chaoyang

Param(M) Dis.Acc(%) Search Cost Param(M) Dis.Acc(%) Search Cost Param(M) Dis.Acc(%) Search Cost

PiT

Random 5.33 75.84 N/A 4.88 65.30 N/A 5.24 82.94 N/A
GraSP 4.53 76.03 1.24 h 3.72 66.58 1.85 h 4.63 83.87 0.86 h

SynFlow 11.05 77.13 1.08 h 5.23 68.12 0.99 h 4.93 83.73 0.70 h
TENAS 6.93 76.09 5.14 h 4.26 68.03 5.14 h 6.76 83.64 5.07 h
NWOT 5.21 76.64 3.02 h 10.77 67.72 3.09 h 6.37 83.31 3.08 h
TF-TAS 16.07 77.06 1.21 h 10.30 68.21 0.95 h 4.32 84.34 0.71 h
DisWOT 10.38 75.82 0.88 h 8.76 67.58 0.88 h 5.85 83.42 0.88 h

Auto-DAS 12.42 77.88 1.28 h 10.52 69.32 1.28 h 4.88 84.83 1.28 h
Auto-DAS (G-free) 11.35 77.72 0.82h 10.88 69.45 0.82h 5.25 84.98 0.82h

This benchmark provides ground-truth accuracy for ViTs on compact datasets
(CIFAR-100 [22], Flowers [39], and Chaoyang [58]). Inspired by [24], which shows
ViTs gain significantly on small datasets when distilled from an efficient CNN
teacher, we concentrate on the distillation accuracy of student ViTs on these
datasets with a predetermined teacher. We randomly sample ViTs from PiT [16]
search spaces and train them individually using the distillation settings from [24].
ResNet56 serves as the CNN teacher. ViT-Bench encompasses 5k KD accuracy
ground truths per dataset. We divide the benchmark into validation and test
sets at a 4:3 ratio. For the proxy search phase, we configure EA parameters (P,
T , r, k) in Alg. 1 as (20, 100, 0.9, 5) and evaluate proxy candidates’ ranking per-
formance in the validation set each iteration. Post-search, we equitably compare
the Auto-DAS proxy with conventional ones by random sampling in the test set.
Our validation and test sets are distinct to ensure unbiased proxy comparisons.

Findings on compact datasets. Table 7 presents the rank consistency results
of existing proxies across three datasets. Our proposed Auto-DAS surpasses other
notable proxies in metrics like Kendall’s tau [1], Spearman’s rho [44], and Pear-
son’s correlation coefficient [4], showcasing its efficacy and superiority in achiev-
ing consistent and precise ViT architecture search. To further demonstrate Auto-
DAS’s effectiveness, Table 8 displays search trial results. Our approach achieves
superior distillation outcomes and faster search speeds across all three datasets.
These empirical findings highlight the importance of effective zero-cost proxies
and the role of our proposed Auto-DAS in optimizing ViT architecture search
performance.
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Table 9: Results of different ViT models on ImageNet.

Model Method Param. Top-1 Acc. Model Method Param. Top-1 Acc.

DeiT-Tiny

Baseline+KD 5.7M 74.5%

Swin-Tiny

Baseline+KD 29.0M 81.7%
TF-TAS+KD 5.7M 74.7% TF-TAS+KD 29.2M 82.0%
DisWOT 5.8M 75.3% DisWOT 29.0M 82.2%
Auto-DAS 6.1M 75.9% Auto-DAS 29.2M 82.9%

PiT-Tiny

Baseline+KD 4.9M 73.2%

PiT-Small

Baseline+KD 23.5M 79.9%
TF-TAS+KD 4.9M 73.5% TF-TAS+KD 24.2M 80.1%
DisWOT 4.6M 73.6% DisWOT 23.8M 80.3%
Auto-DAS 4.8M 74.2% Auto-DAS 24.5M 81.0%

Table 10: Spearman correlation (%) on optimal proxy in our search space with vanilla
inputs or operations.

Methods Settings ResNet NB-101 NB-201 NB-101-KD NB-201-KD PiT-CIFAR-100 PiT-Flowers PiT-Chaoyang

Auto-DAS Auto-DAS 98.44 71.84 87.73 85.95 74.66 90.32 93.09 66.13

Auto-DAS (instinct)

Activations 70.28 65.89 78.96 66.35 60.85 74.86 76.85 52.86
Gradients 77.53 72.68 86.92 73.55 66.38 80.56 82.75 56.67
weights 60.35 52.75 70.25 58.67 55.25 60.89 65.82 41.25
Unary 78.85 74.25 88.25 77.42 66.53 82.83 84.38 58.69
Binary 62.52 58.87 72.89 64.35 58.96 65.45 70.25 48.46
All 80.52 75.86 89.62 78.56 68.55 83.25 86.52 60.12

Auto-DAS (interaction)

Feature 90.35 47.96 62.68 76.33 66.38 81.95 85.39 59.68
Embed 88.65 46.55 60.75 74.85 63.28 80.25 83.27 56.88
Logits 85.47 42.58 55.86 70.53 58.62 76.83 78.96 52.45
Transform 92.35 48.88 64.66 78.95 68.65 87.25 76.55 61.35
Distance 89.63 46.53 63.85 75.82 65.86 82.69 84.56 58.75
All 92.82 50.88 65.88 80.56 70.48 85.42 88.73 63.38

Computational cost analysis. (1) Like most train-free NAS methods, Auto-
DAS involves minor additional gradient computations compared to DisWOT. To
address this, we explore a gradient-free version of Auto-DAS in Table 8 (labeled
Auto-DAS (G-free)). Results indicate that our gradient-free Auto-DAS achieves
better accuracy-efficiency trade-offs than DisWOT. (2) While DisWOT is effi-
cient and yields good results on certain datasets, it lacks generalizability across
various models and tasks. In contrast, Auto-DAS is automated, versatile, and
effective, better suiting diverse application needs. Moreover, given the low cost
of training-free approaches, the small additional time investment in searching is
justified by the consistent performance gains achieved.

ImageNet performance analysis. Examining the results in Table 9, it’s clear
that Auto-DAS outperforms other methods across various models. For DeiT-
Tiny, Auto-DAS achieves 75.9% accuracy, surpassing Baseline+KD (74.5%), TF-
TAS+KD (74.7%), and DisWOT (75.3%). Similarly, Auto-DAS excels with the
Swin-Tiny model. This trend persists for PiT-Tiny and PiT-Small models, where
Auto-DAS consistently outperforms other methods. These findings underscore
the effectiveness and adaptability of our Auto-DAS method in enhancing accu-
racy across different ViT architectures.
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Figure 6: Correlation visualization for Auto-DAS on NAS-Bench-101, NAS-Bench-201
and ViT-Bench (from left to right).

4.4 Ablation Studies

Proxy search space. We conduct experiments in Table 10 to analyze different
components in our proxy search space. The results show that Auto-DAS (interac-
tion) outperforms Auto-DAS (instinct) overall. The feature input and transform
operations are particularly important for Auto-DAS (interaction), while weight
input and binary operations contribute weakly. On the other hand, gradient in-
put and unary operations show promising results for Auto-DAS (instinct). Dif-
ferent ops have varying impacts on the proxies’ accuracy, and combining them
enhances the performance of Auto-DAS approaches. These findings highlight the
significance of considering different ops and their interactions in the search space
for optimal performance.
Search algorithm. We use the EA with adaptive-elite selection for proxy
search. As shown in Figure 4, the EA adaptive-elite selection obtains better
final search results than EA and random search in the proxy search process.
Correlation visualization.. To intuitively observe the proxy’s predictability,
we visualize the score of Auto-DAS and the ground-truth performance in Fig-
ure 6. These visualizations demonstrate that Auto-DAS effectively detects the
true distillation results.

5 Conclusion

We present Auto-DAS, a novel training-free framework for distillation-aware
student architecture search. It includes proxy search and training-free student
search. With discovered proxies, Auto-DAS enables efficient search without train-
ing costs. This significantly outperforms handcrafted proxies in distillation per-
formance. Comprehensive results on NAS benchmarks, ViT, and CNN spaces
over multiple datasets illustrate our method’s superior ranking and distillation
abilities. We hope our novel investigations will give more insight and new direc-
tions for the knowledge distillation and NAS research communities.
Iimitation. We mainly evaluate the same benchmarks as other NAS methods
for fair comparison. We will continue to expand Auto-DAS for more tasks in
future work. Social impact. Our Auto-DAS focuses on technology improvement
without social and ethical implications.
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