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Fig. 1: Comparison with baselines. UniDream presents clear albedo textures, com-
pletely smooth surfaces, and advanced relighting capabilities. The ‘Albedo’ column
demonstrates the albedo and normal properties of the 3D objects generated using our
method. Meanwhile, the ‘Relighting-I’ and ‘Relighting-II’ columns demonstrate the
effect of relighting on the generated PBR materials under white and purple lighting
conditions, respectively.

Abstract. Recent advancements in text-to-3D generation technology
have significantly advanced the conversion of textual descriptions into
imaginative well-geometrical and finely textured 3D objects. Despite
these developments, a prevalent limitation arises from the use of RGB
data in diffusion or reconstruction models, which often results in mod-
els with inherent lighting and shadows effects that detract from their
realism, thereby limiting their usability in applications that demand ac-
curate relighting capabilities. To bridge this gap, we present UniDream,
a text-to-3D generation framework by incorporating unified diffusion pri-
ors. Our approach consists of three main components: (1) a dual-phase

* Equal contributions
† Corresponding author



2 Liu et al.

training process to get albedo-normal aligned multi-view diffusion and
reconstruction models, (2) a progressive generation procedure for ge-
ometry and albedo-textures based on Score Distillation Sample (SDS)
using the trained reconstruction and diffusion models, and (3) an inno-
vative application of SDS for finalizing PBR generation while keeping
a fixed albedo based on Stable Diffusion model. Extensive evaluations
demonstrate that UniDream surpasses existing methods in generating
3D objects with clearer albedo textures, smoother surfaces, enhanced re-
alism, and superior relighting capabilities. The project homepage is at:
https://UniDream.github.io.

Keywords: Text-to-3D Generation · Multi-view Diffusion · PBR Mate-
rial

1 Introduction

The creation of high-quality 3D content, characterized by intricate geometric
and textural details, holds important applications in various domains, including
gaming, AR/VR, and artistic content creation. However, these applications gen-
erally require generated 3D objects to be relightable under particular lighting
conditions, which is essential for their realism. The current 3D models produc-
tion methods that can meet these application requirements mainly rely on 3D
artists, which brings a huge workload.

Recent methods [4,18,24,34,45,55] have been exploring the generation of 3D
assets from textual descriptions under the supervision of 2D diffusion models [37,
38,60]. For example, DreamFusion [34] defines a learnable Neural Radiance Fields
(NeRF) [25] and optimizes it based on the Score Distillation Sampling (SDS).
To enhance generation quality, subsequent studies have diversified the pipeline,
focusing on aspects like 3D representations [18], loss functions [45], 3D prior [54],
and 2D diffusion models [40, 58]. Although these methods achieve impressive
results, they cannot generate relightable objects, as they typically represent the
underlying illumination and texture of an object as a holistic appearance, as
shown in the first four columns in Fig.1, which results in inherent lighting and
shadows baked into the texture of the generated object. When relighting, the
inherent highlights and shadows on these textured surfaces can affect the realism
of the object.

In this paper, we present UniDream, a novel framework that allows gener-
ating relightable objects from textual descriptions. Fig.2 shows the fundamen-
tal difference between our method and other existing methods. Our key idea
is training a diffusion model that can provide both Physically-Based Rendering
(PBR) material prior and multi-view geometry prior. Specifically, we first de-
velop an albedo-normal aligned multi-view diffusion model (AN-MVM) for con-
sistent multi-view image generation, which is trained on a set of paired albedo
and normal data rendered from 3D object datasets. Then, following the sim-
plified Diesney BRDF model [2], we define a 3D representation that includes
albedo, normal, roughness, and metallic properties, which are optimized based

https://yg256li.github.io/UniDream/
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on the trained diffusion model and Stable Diffusion [37] model. Compared with
previous text-to-3D methods [18,34,40,45,55], our approach is able to disentan-
gle the illumination and PBR material, achieving high-quality relightable objects
under different ambient lighting conditions, as shown in last three columns of
Fig.1.
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Fig. 2: Comparison of UniDream with other methods. (a) The existing RGB-based
text-to-3D generation process; (b) UniDream’s multi-stage generation process.

To robustly obtain 3D objects with PBR from 2D diffusion models, we
have further developed a three-stage generation pipeline. Initially, we utilize
the albedo-normal aligned diffusion model (AN-MVM) to generate multi-view
albedo and normal images. Subsequently, we adapt a transformer-based recon-
struction model (TRM) to convert multi-view albedo images to a 3D coarse
model, and perform SDS refinement based on AN-MVM. Finally, we fix the
albedo and normal properties of the 3D model and optimize its roughness and
metallic characteristics using the Stable Diffusion [37] model. Experiments in
Sec.4, demonstrate the superior capability of our three-stage pipeline in produc-
ing 3D objects with PBR property.

Overall, we propose a novel text-to-3D generation framework that can sta-
bly generate high-quality 3D objects through a multi-stage generation strategy
utilizing SDS refinement based on multi-view diffusion and reconstruction mod-
els. Extensive experiments have demonstrated UniDream’s superiority in three
critical areas: (1) Realistic Materials: By disentangling lighting from textures,
UniDream accurately generates PBR materials that approximate real-world tex-
tures and can be relit in various lighting conditions, greatly enhancing realism.
(2) Complete Geometry: Incorporating normal supervision into our optimization
process, UniDream excels at generating more comprehensive geometric details
than other existing methods, leading to more geometrically complete 3D objects.
(3) Stable Generation: Due to the introduction of 3D prior from reconstruction
model and normal supervision in SDS process, UniDream’s effectiveness in gen-
erating 3D objects is ahead of other methods.

2 Related Works

2.1 Text-to-3D Generation

In recent years, the field of text-to-3D content generation has seen significant
advancements, largely inspired by the advancements in text-to-image genera-
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tion. These advances have particularly been driven by methods employing CLIP-
based guidance or score distillation. Methods like [14, 26, 51] utilize the text-
image relationship inherent in vision-language pre-trained models [3,44], such as
CLIP [36] to facilitate general text-to-3D content creation. Another innovative
approach, pioneered by DreamFusion [34], employs score distillation to enhance
the robustness of text-to-3D generation, which also has been further developed
and expanded in subsequent works [18, 42, 45, 55]. The central to both of these
paradigms is the use of pre-trained text-to-image diffusion models as a founda-
tion, enabling the creation of diverse and imaginative 3D content. Furthermore,
recent advancements have been developed by works [19,21,40,58], which innova-
tively employ models derived from the Objaverse [7] 3D dataset. These models
are used to render 2D RGB images, aiming to train text-to-multi-view image
diffusion models. This approach represents a significant stride in optimization-
based 3D model generation, as it enables the simultaneous generation of multiple
coherent images. Such a technique effectively addresses the challenge of incon-
sistent directions in geometric optimization, thereby enhancing the consistency
and quality of 3D model generation.

In a different paradigm, some methods have shifted towards training diffusion
or reconstruction models directly on paired text-3D data. This strategy enables
the creation of 3D models that inherently possess text-like semantics. A vari-
ety of techniques [6, 9, 10, 13, 15, 30, 59] fall under this category of 3D diffusion
generation. In these models, textual information serves as a conditional input,
guiding the generation process. This approach emphasizes the manipulation of
the underlying 3D data representation, ensuring that the resulting models are
both semantically rich and accurate representations of the text descriptions.
Moreover, innovative strides have been taken in the realm of 3D reconstruc-
tion methods, particularly those grounded in transformer models, exemplified
by [12,17,43,46,47,50,53,56,61]. These methods introduce a novel perspective,
enabling the generation of high-quality 3D models from text or images within
seconds, courtesy of their efficient reconstruction networks. The adoption of 3D
diffusion and reconstruction methodologies has gained prominence due to their
impressive speed in generating 3D objects.

The 2D multi-view diffusion approach and the 3D reconstruction technique
utilizing 3D data have provided substantial inspiration. UniDream deeply re-
thinks the essential principles of these methods and constructed with integrating
the strengths of them.

2.2 Materials Generation

Estimating surface materials proposes a fundamental challenge in the field of
computer vision. The Bidirectional Reflection Distribution Function (BRDF), as
the predominant model, characterizes how the light is reflected off surfaces [31].
Early work focused on BRDF recovery concentrated on controlled lighting [1,29],
yet they were less effective in real-world applications. However, recent advances
in neural implicit methods [8, 41, 57] have demonstrated potential in accurately
estimating lighting and BRDF from image sets. These methods utilize neural 3D
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Fig. 3: Overview of UniDream. Left: the multi-view diffusion model generates multi-
view images based on input text. Middle: first, four view albedo maps obtain 3D prior
by the reconstruction model, and then the multi-view diffusion model performs SDS
optimization based on the 3D prior to generate a 3D object with albedo texture. Right:
using Stable Diffusion model to generate PBR material.

reconstruction techniques to model complex lighting effects, simultaneously esti-
mating shape, BRDF, and lighting. This achieves a more comprehensive decom-
position of these elements. Nevertheless, the implicit representation of materials
still poses limitations in their application. The recent advancement in differen-
tiable rendering methods [27] addresses this issue by incorporating an explicit
surface mesh optimization pipeline, allowing for the simultaneous estimation of
BRDF and lighting.

Drawing inspiration from recent material estimation techniques, newer re-
search has focused on generating surface materials for 3D objects. For instance,
Fantasia3D [5] combines a physical differential rendering pipeline with SDS to
produce detailed 3D objects with realistic surface materials. However, this ap-
proach sometimes mixes albedo with reflected light, resulting in blurred material
property distinctions. To address this, MATLABER [52] employs a latent BRDF
auto-encoder, trained on an extensive dataset, to more effectively differentiate
these properties. Building upon this, our method initiates with fixed albedo
and normal generation and progressively incorporates other BRDF parameters,
achieving a more natural and effective decomposition of surface material of 3D
objects.

3 Methodology

Overview. As illustrated in Fig.3, UniDream can be structured into three stages
and four modules. Firstly, upon receiving a text input, the pre-trained albedo-
normal aligned multi-view diffusion model generates four view consistent albedo
and normal maps (detailed in Section 3.1); secondly, these albedo maps are then
fed into a transformer-based reconstruction model, which reconstructs a coarse
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3D model to serve as an initial prior (as described in Section 3.2); thirdly, build-
ing on this preliminary coarse model, SDS optimization is employed, using the
albedo-normal aligned multi-view diffusion model to refine and produce a fine 3D
object with detailed mesh and albedo texture (explained in Section 3.3); finally,
we fix the albedo and geometric shapes, and then use a Stable Diffusion [37]
model to generate the corresponding materials (outlined in Section 3.4).

3.1 Albedo-Normal Aligned Multi-view Consistent Diffusion Model

Our approach represents a departure from traditional methods that utilize RGB
data to train diffusion models. We train an albedo-normal aligned text-to-multi-
view diffusion model (AN-MVM) using albedo and normal maps rendered from
3D data. Based on the Stable Diffusion [37] model framework, we perform multi-
view and multi-domain diffusion modeling in the UNet module to establish multi-
view consistency and multi-domain consistency. Specifically, within the UNet
module design, we address three critical aspects: ensuring multi-view consistency,
aligning the albedo with normal domains, and maintaining the semantic integrity
of information from text to generated images.

Multi-view Self-Attention. To ensure robust generalization, our AN-MVM
model expands upon the capabilities of the pre-trained Stable Diffusion [37]
model by adapting it for multi-view training. This process, inspired by MV-
Dream [40], initiates with the randomly selected four orthogonal views x ∈
RN×H×W×C from the rendered multi-view dataset. We then encode the cam-
era parameters c ∈ RN×12 of these views using a two-layer MLP network. This
procedure generates feature vectors Fc with the same dimensions as time-step.
These camera features are then added to the time-step features Ft, facilitating
effective modulation of variance across different views.

In the architecture of our UNet module, we consolidate multi-view data
within an additional dimension and perform self-attention mechanism between
multiple views just before the cross-attention layer. This strategic design enables
mutual constraints among the various multi-view inputs, effectively reinforcing
consistency across multiple views during the diffusion process.

Multi-Domain Self-Attention. Based on multi-view consistency and sharing
a similar perspective to recent work [22], we further introduce multi-domain con-
sistency. Specifically, we introduce a distinct class label L for the normal domain,
and use a two-layer multi-layer perceptron (MLP) to encode this class label L to
obtain feature Fl with the same dimension with the time-step features Ft, and
Fl is added to Ft to control the generation process within the normal domain.
Subsequently, we apply the self-attention mechanism to the corresponding views
between the albedo and normal domains to ensure domain consistency.

It is important to highlight that achieving multi-view consistency in normal
maps is notably straightforward, primarily due to the simplicity of their seman-
tic content and the consistency of values at identical positions across various
views in the world coordinate system. This inherent consistency in normal maps
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significantly facilitates the convergence process. Furthermore, the constraints we
apply between the albedo and normal maps contribute to a quickly convergence
in controlling multi-view albedo, streamlining the overall generation process.

Text and Image Semantic Alignment. In order to solve the problem of po-
tential semantic generalization loss caused by only using less 3D synthetic data
during AN-MVM training, we use joint training to combine the 2D LAION-
Aesthetics data with the published 3D data. Specifically, in line with the ap-
proach used by MVDream [40] during our training process, each batch is ran-
domly composed by 3D data or 2D data based on a probability distribution:
there’s a 70% chance of using 3D data and a 30% chance of incorporating 2D
LAION-Aesthetics data. In this setting, while the normal domain is distinguished
by class label, the albedo and 2D LAION-Aesthetics data are not. Moreover, to
further differentiate between 3D and 2D data, we add the phrase ", 3D asset"
to the captions of 3D data. This strategic inclusion of a significant proportion of
2D data plays a crucial role in enhancing the semantic alignment between the
generated image content and the corresponding input text.

3.2 Transformer-Based Reconstruction Model

Inspired by LRM [12] and Instant3D [17], we have integrated reconstruction
models into our text-to-3D generation pipeline, aiming to provide an initial 3D
prior for enhancing text-to-3D generation performance. As illustrated in the
TRM module of Fig.3, for each object in the AN-MVM training dataset, we
randomly select four views Ii, identical elevation but orthogonal views. Along
with these views, the corresponding camera parameters, Ci, are used as inputs
to the model. In this framework, the pre-trained ViT-based DINO-v2 [32] model,
denoted as F is employed to extract image features, Fi, from the albedo images
of the four selected views. Concurrently, a learnable camera modulation module
processes the camera parameters for each view using MLPmod(Ci) and seamlessly
integrates these encoded parameters into the image features. Then we employ
learnable tokens, denoted as Th, as input to the transformer model. These tokens
are designed to undergo cross-attention with the image features, allowing for an
effective fusion of the input image information. Subsequently, this is followed
by the integration of cross-attention and self-attention modules and a multi-
layer perceptron (MLP) to form a transformer block. Multiple such transformer
blocks work in sequence to decode the input tokens Th into refined triplane
representations T ′

h. The representations correspond to the semantic information
of the input image. Finally, we decode these triplane representations using a
MLP decoder of NeRF to reconstruct the final 3D model, denoted as Gen3D.
This entire process is detailed in Eq.1. And M is the number of transformer
layers.

Fi = MLPmod(Ci)⊗ F (Ii)

T ′
h = MLP(SelfAttn(CrossAttn(Th, Fi)))×M

Gen3D ⇐ MLP(T ′
h)

(1)
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Our approach differs from the configurations used in Instant3D in several key
aspects to better adapt our model’s requirements. Firstly, we remove the in-
trinsic camera parameters of the input multi-view images and only normalize
and encode the extrinsic parameters to adapt the multi-view images output
by AN-MVM. Furthermore, we use albedo instead of RGB for training to pre-
vent the impact of lighting and shadows in RGB images on the triplane-NeRF
reconstruction results. Additionally, in order to increase the resolution of recon-
structed model and save training cost, we resize the reference views between
128 × 128 and 256 × 256 resolution, and randomly crop 128 × 128 images from
the resized views to supervise the aligned region of rendered images. Finally, in
the supervision, we not only render albedo for supervision but also incorporate
normal supervision to significantly accelerate the model’s convergence speed and
promote the geometry details. These strategic enhancements enable our TRM
to deliver superior reconstruction results while reducing the training cost, which
will effectively increase the effectiveness of subsequent modules.

3.3 Score Distillation Sample (SDS) Refinement

After acquiring the triplane-NeRF representation of the 3D model from TRM,
we further refine it using our AN-MVM in conjunction with score distillation
sample (SDS) to obtain higher quality 3D results.

When given a text input, a cascaded inference using AN-MVM and TRM
produces a 3D coarse model represented by a triplane-NeRF x = g(θ), where θ
is MLP network of NeRF, g(·) is the renderer, and x is the generated view at a
given camera pose. Subsequently, we employ AN-MVM with SDS to refine the 3D
coarse model. In details, the albedo and normal maps of four orthogonal views
xanmv are rendered from the coarse model each iteration. After adding noise
ϵanmv, the frozen albedo-normal aligned multi-view diffusion model ϕAN−MVM

is used to predict the noise ϵ̂ϕAN-MVM(xanmv,t; y, t) for all views across both do-
mains simultaneously, where t is the time-step representing noisy level, y is the
text condition, and xanmv,t is the noised image. Subtracting the predicted noise,
ϵ̂ − ϵ, offers a signal for aligning the rendered view xanmv with the text input
y, as perceived by the AN-MVM. UniDream updates the NeRF’s MLP parame-
ters by backpropagating the gradient through the rendering process using Score
Distillation Sampling (SDS), as depicted in Eq.2.

∇θLSDS(ϕAN-MVM, g(θ)) =

Et,ϵ

[
w(t)(ϵ̂ϕAN-MVM(xanmv,t; y, t)− ϵanmv)

∂x
∂θ

] (2)

Here, w(t) is a weighting function that depends on the timestep t. When calcu-
lating the final loss, we use weights of 0.8 and 0.2 for the two domains of albedo
and normal respectively for weighted summation to ensure that fine geometry
can be quickly optimized without neglecting the optimization of texture.

In order to get a better mesh, we adopt a strategy similar to Magic3D [18],
incorporating DMTet [39] refinement from NeRF representation to enhance mesh
quality.
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3.4 Physically-Based Rendering (PBR) Material Generation

Different from RichDreamer [35] generating route of PBR material, based on
the geometry and albedo from the DMTet refinement, we employ the Stable
Diffusion [37] model to generate the PBR material. We adopt the PBR material
and illumination representations in Nvdiffrec [28], which is recognized for its
speed and efficiency.

For any 3D point, we predict its BRDF parameters, including the diffuse
kd, roughness kr, and metalness km. In our approach, following the DMTet
refinement, where a hash grid and a multi-layer perceptron (MLP) are used
to predict kd, we introduce an additional hash grid and MLP to predict the
roughness and metalness parameters, kr and km, respectively. In accordance
with Nvdiffrec [28], we calculate the final rendering using:

L = kd(1− km)Ld(ωo, n) + ksLs(kr, ωo, n) (3)

where kd(1 − km)Ld corresponds to the diffuse shading, while ksLs means the
specular shading. The terms Ld and Ls in the equation represent the diffuse and
specular light components. Please refer to [16] for more details.

Due to the high quality performance of the previous stage, we fixed the albedo
and normals. The model parameters are optimized based on the SDS loss. To
better accommodate the supervision from the Stable Diffusion model, we allow
the ambient light to be optimized alongside the BRDF parameters, which is
different from Fantasia3D [5] that fixes the lighting and MATLABER [52] that
uses a set of ambient light during training. To avoid potential color interference
that might arise from the Stable Diffusion model, we constrain the ambient light
optimization to a single channel. This channel only represents the magnitude of
the lighting, effectively circumventing the introduction of any misleading color
information.

4 Experiments

4.1 Implementation Details

Training Dataset Setup. Like most of previous work [20,21,40], we employed
the public available 3D dataset Objaverse [7] for training. To enhance data qual-
ity, we implement a series of filtering rules as follows: no texture map; not a
single object; accounting for less than 10% of the picture; low quality; no caption
information is provided in Cap3D [23]. After filtering, approximately 300K ob-
ject remain, and then we follow the MVDream [40] method to render multi-view
albedo and normal data.

Multi-View Diffusion Model Training Details. We follow Tune-A-Video [49]
to implement our multi-view diffusion model. During training, we use 32 A800
GPUs with 256× 256 image resolution and a per-GPU image batch size of 128
(16 objects × 2 domains × 4 views) to train 50k iterations, which takes about 19
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"Daenerys Targaryen from game of throne, full body, blender 3d, artstation
and behance, Disney Pixar, Mobile game character, clash royale, cute"

“a DSLR photo of a terracotta bunny”

“Viking axe fantasy weapon blender 8k HD”

“a DSLR photo of a football helmet”

“a DSLR photo of a group of dogs playing poker”

“a DSLR photo of an overstuffed pastrami sandwich”

“a DSLR photo of a humanoid robot using a laptop”

“a DSLR photo of edible typewriter made out of vegetables”

“a DSLR photo of a kitten standing on top of a giant tortoise”

“a DSLR photo of a lion reading the newspaper”

“a wide angle zoomed out DSLR photo of 
a skiing penguin wearing a puffy jacket”

“a DSLR photo of a plush triceratops toy studio lighting 
high resolution”

“a zoomed out DSLR photo of a red rotary telephone”

Albedo Normal Albedo NormalPBR PBR

Fig. 4: Illustrative overview of our method’s capabilities. We demonstrate the perfor-
mance of 3D objects generated by our method in three dimensions: albedo, PBR, and
normal.

hours. In addition, the learning rate used is 1× 10−4, and 10 times the learning
rate is used for camera encoder’s parameters.

3D Reconstruction Model Training Details. We use random four views of
256×256 images as input and produce 1, 300×768 image features. The learnable
tokens are a sequence of (3×32×32)×512. The image-to-triplane decoder are of
10 layers transformer with hidden dimentions 512. We train the reconstruction
model on 32 A800 GPUs with batch size 96 for 70,000 steps, taking about 3
days to complete. We set the coefficient λ = 2.0 for Llpips and use the AdamW
optimizer with a weight decay of 0.05 to train our model. And we use a peak
learning rate of 4×10−4 with a linear 3K steps warm-up and a cosine scheduler.

Score Distillation Sample(SDS) Refining Details. We implement the re-
finement stages of NeRF and DMTet based on the Threestudio3. Specifically, we
render four-view albedo and normal maps at the same time for SDS training.
In the NeRF and DMTet refinement stages, we train 5,000 and 2,000 iterations
respectively. During training, the loss weights of the albedo and normal domains
are 0.8 and 0.2, and an ‘unsharp’ operation [48] is used in the last 500 iterations
of each stage.

3 https://github.com/threestudio-project/threestudio
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PBR Material Generation Details. In the PBR material generation stage,
the texture hash grid, derived from DMTet refinement, is repurposed and du-
plicated for the isolated learning of the parameters {kr, km}, while maintaining
a fixed parameter for the albedo texture. A new MLP is initialized for {kr, km}
learning. The value ranges of these parameters are constrained within [0.0, 0.9]
for kr and [0.08, 0.9] for km to prevent erroneous PBR properties. We set the
learning rate for the hash grid to 1 × 10−4, while that of MLP is 0.1. Addi-
tionally, the learning rate for the environment map is also set to 0.01, coupled
with total variation regularization. The environment map commences from an
initialized studio lighting High-Dynamic-Range Imaging (HDRI) map. Image
rendering resolution is 512×512, and the model is trained for 2,000 iterations.

4.2 Qualitative Comparisons

We present representative results of UniDream in Fig.4, showcasing the albedo,
PBR, and normal maps of the generated 3D objects. The text-to-3D objects
created by UniDream, exhibit more complete and smoother geometric surfaces,
clearer albedo in texture color distribution, and more realistic lighting effects.
These features represent significant advancements over many previous methods.

In Fig.1, we compare the results generated by DreamFusion [34], Magic3D [18],
ProlificDreamer [45], MVDream [40], and UniDream. We utilized the results
from DreamFusion’s official website for its first four cases. For the other cases,
including those from Magic3D and ProlificDreamer, we employed Threestudio’s
implementation to acquire the results. The comparison reveals that UniDream
produces semantically clearer 3D geometries and does not exhibit the ’Janus
problem’. In comparison with the methods, especially MVDream [40], illustrated
in Fig.1, UniDream demonstrates a more complete and smoother geometric sur-
face, attributed to the implementation of normal supervision. Moreover, an anal-
ysis of the last three columns in Fig.1 reveals that UniDream possesses unique
capabilities not typically found in existing methods. These include the ability to
disentangle lighting and texture, exhibit relighting effects under various lighting
conditions, and enhance the realism of the generated 3D objects.

4.3 Quantitative Evaluations

We conducted a quantitative evaluation of text-to-3D generation quality using
CLIP Score [11, 36] and CLIP R-Precision [33] following methodologies from
Dream Fileds [14], DreamFusion [34], and Cap3D [23]. Specifically, we gen-
erated 3D objects using 68 different prompts sourced from the DreamFusion
and MVDream websites, employing DreamFusion, Magic3D, MVDream, and
our UniDream. For the evaluation, four views (front, back, left, right) of each
generated 3D object were rendered. We extracted text and image features using
the CLIP ViT-B/32 model [36] and calculated the CLIP score by averaging the
similarity between each view and the corresponding text prompt. The detailed
results, presented in Tab.1, demonstrate that UniDream significantly surpasses
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Table 1: Quantitatively compare UniDream with text-to-3D baseline methods by
CLIP Score, CLIP R-Precision and user study.

Methods User study CLIP CLIP R-Precision (%) ↑
(%) ↑ Score (↑) R@1 R@5 R@10

DreamFusion [34] 7.1 71.0 54.2 82.2 91.5
Magic3D [18] 10.5 75.1 75.9 93.5 96.6
MVDream [40] 32.1 75.7 76.8 94.3 96.9
Ours 50.3 77.9 80.3 97.4 98.5

DreamFusion, Magic3D, and MVDream in terms of CLIP Score and CLIP R-
Precision. This indicates that UniDream is more effective at producing 3D results
that are consistent with the text prompts.

Additionally, we performed a user study evaluating 68 results generated by
each method, focusing on geometric texture quality and realism to discern the vi-
sual quality differences among the methods. Involving 22 participants, UniDream
was distinguished as the preferred choice, securing 50.3% of the votes. This out-
come highlights the superior overall quality of our approach.
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Fig. 5: Comparison of multi-view results generated by MVDream (Row-1) and
UniDream (Row-2-3).

5 Ablation and Analysis

Comparison of Multi-view Diffusion Models. Generating multi-view im-
ages is a fundamental aspect of 3D content creation. To evaluate this, we com-
pared the multi-view results produced by UniDream’s AN-MVM with those of
MVDream’s multi-view diffusion model. For MVDream, we utilized the ‘sd-
v2.1-base-4view’ model based on its open-source inference code4. In addition,
the same negative prompt used in MVDream’s SDS optimization was applied
for the multi-view inference in both MVDream and UniDream. As depicted in
Fig.5, UniDream successfully maintains light and texture disentangling in its 2D
output and produces normal maps with impressive consistency.

Step-by-Step Comparison of Visualization During 3D Generation. By

4 https://github.com/bytedance/MVDream
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“army Jacket, 3D scan”

“A product photo of a toy tank”

” pig wearing a back pack”

“saber from fate stay night, 3D, girl, anime”

TRM AN-MVM-SDS-Albedo AN-MVM-SDS-Normal SD-SDS-PBR

Fig. 6: Intermediate results of the UniDream generation process. From left to right:
the results of TRM reconstruction, the albedo results and the normal results via SDS
refinement based on the TRM result using the AN-MVM model, and the PBR result vis
SDS generation based on the albedo and normal results using Stable Diffusion model.

employing multiple views (as depicted in Fig.5) as input, UniDream’s step-by-
step 3D generation results are shown in Fig.6. The left group shows the recon-
struction results of TRM. Although the results are relatively rough, they still
maintain fairly clear texture and geometric boundaries. The middle two groups
present the generated albedo and normal results through SDS refinement using
the AN-MVM model, based on the TRM results. After refinement, they exhibit
a high quality of 3D models. The right group displays the generated PBR results
by SDS optimization using the Stable Diffusion model with fixed albedo and nor-
mals, showcasing realistic 3D textures. The quality improves progressively from
left to right, reflecting the excellent 3D generation capabilities of UniDream.

Comparison of Generated PBR Materials. As shown in Fig.7, we present
the results of PBR material generation in comparison with Fantasia3D [4]. It
is evident that Fantasia3D struggles to disentangle lighting and textures, often
resulting in lighting and shadows being baked into the appearance of 3D objects.
Conversely, our method effectively disentangle lighting and textures, enabling the
generation of realistic, relightable 3D objects.

Relighting Comparison Driven by Environment Maps. Fig.8 shows the
different environment maps used by UniDream. Fig.8(a) is the environment map
used by Fig.7 and the visualize of UniDream’s overall capabilities as shown in
Fig.4. Fig.8(b) and Fig.8(c) are the environment maps used by ’Relighting-I’ and
’Relighting-II’ in the teaser of UniDream respectively. Changing different envi-
ronment maps will produce different rendering results, which reflects UniDream’s
excellent relightability.

6 Conclusion

In this paper, we propose for the first time a relightable text-to-3D generation
paradigm, UniDream, which is based on an albedo and normal aligned multi-
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Normal AlbedoPBR Roughness Metallic AlbedoPBR Roughness Metallic

Fantasia3D-PBR UniDream-PBRInput

“Darth Vader helmet, highly detailed”

“A DSLR photo of a frog wearing a sweater”

“A zoomed out DSLR photo of a 3d model of an adorable cottage with a thatched roof”

“A DSLR photo of a steam engine train, high resolution”

“A DSLR photo of a tiger made out of yarn“

Fig. 7: Results comparison of generated PBR materials. Left: the same geometry in-
put; Middle: the PBR material components generated by Fantasia3D; Right: the PBR
material components generated by UniDream.

(a) (b) (c)

Fig. 8: Different environment maps used by UniDream.

view diffusion model. Thanks to the disentangling of lighting and textures, the
3D models generated by our method can be relit, thereby enhancing their realism
and usability. We provide a detailed discussion and analysis of each module in
UniDream, and extensive results underscore the superiority of our approach.

Limitations and future work. While UniDream demonstrates clear advan-
tages from multiple perspectives, it also has certain limitations due to being
trained on only approximately 300k Objaverse [7] data. Primarily, there may
be constraints in semantic generalization, leading to potential challenges with
complex combinational concepts. Additionally, issues in material generalization
could arise, such as in accurately simulating materials with transparent prop-
erties. Our subsequent work will primarily concentrate on enhancing the gen-
eralization of the pipeline. Moreover, there is a critical demand to upgrade our
rendering pipeline, aiming to boost the realism and visual fidelity of the gener-
ated 3D models. By incorporating path tracing, renowned for its realistic sim-
ulation of lighting and shadow effects, we anticipate a substantial improvement
in rendering quality.
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