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Abstract. Video reasoning typically operates within the Video Question-
Answering (VQA) paradigm, which demands that the models understand
and reason about video content from temporal and causal perspectives.
Traditional supervised VQA methods gain this capability through metic-
ulously annotated QA datasets, while advanced visual-language models
exhibit remarkable performance due to large-scale visual-text pretraining
data. Nevertheless, due to potential language bias and spurious visual-
text correlations in cross-modal learning, concerns about the reliability
of their answers persist in real-world applications. In this paper, we fo-
cus on the grounded VQA task, which necessitates models to provide
answers along with explicit visual evidence, i.e., certain video segments.
As temporal annotation is not available during training, we propose a
novel bi-directional reasoning framework to perform grounded VQA in
a weakly-supervised setting. Specifically, our framework consists of two
parallel but dual reasoning paths. They conduct temporal grounding
and answering based on the video content, approaching it from two dual
directions that are symmetrical in terms of temporal order or causal rela-
tionships. By constructing a cycle-consistency relationship between these
two branches, the model is prompted to provide self-guidance supervision
for both temporal grounding and answering. Experiments conducted on
the Next-GQA and Env-QA datasets demonstrate that our framework
achieves superior performance in grounded VQA and can provide rea-
sonable temporal locations that validate the answers.

Keywords: Grounded Video Question Answering · Video Reasoning ·
Weakly-supervised Learning · Video Grounding

1 Introduction

Video Question Answering (VQA) has emerged as a critical method for assess-
ing the capabilities of multi-modal models [15, 24, 29], aiming to understand
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proposed grounded VQA via bi-directional reasoning.

and reason about video content. Thanks to large-scale pretraining on visual-
text data [19] and advancements in visual backbones [4], visual-language models
have achieved remarkable performance across various VQA tasks. Despite these
achievements, it remains an open question whether these models genuinely derive
their answers from the relevant video content or if they predominantly rely on
language biases inherited from large language models [3,21–23], or the spurious
visual-text correlations [28] learned during multi-modal pretraining [15,19,24].

While the reliability of multi-modality models has been a subject of investiga-
tion in image understanding for some time, exploring these concerns within the
context of video remains less examined. To this issue, recent developments have
introduced the task of visually Grounded Video Question Answering (GVQA)
as outlined in NExT-GQA [27]. This task requires models not only to answer
questions but also to identify and provide relevant video moments as visual ev-
idence supporting their answers, as illustrated in Fig. 1(b). This benchmark is
notably executed under a weakly-supervised setting, where only the validation
and test sets come with ground-truth temporal annotations for evaluation.

There are some VQA methods have attempted to offer implicit grounding by
applying temporal or spatial attention mechanisms across video frames [7,11–13].
VGT [28] attempted to explicitly ground key frames from videos from a novel
causal perspective. Recently, NExT-GQA presented a simple solution, which
learning a single Gaussian distribution for answer generation. However, this
method falls short in providing directed supervision for accurate moment local-
ization. SeViLA [30] explored the use of BLIP-2 [15] models to generate pseudo-
labels for both grounding and answering, enhancing the grounding aspect of
VQA. Despite this innovative approach, it necessitates additional, costly pre-
training on the TSG video grounding dataset and employs a multi-stage train-
ing process. Therefore, how to build up a reliable GVQA model in a weakly-
supervised setting still remains challenging.

In this paper, we introduce a novel framework, TimeCraft, designed to ad-
dress the task of weakly-supervised GVQA through bi-directional reasoning
( Fig. 1(c)). This framework enables accurate self-supervision for both grounding
and answering without the need for additional grounding annotations. Specif-
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ically, by leveraging advanced Large Language Models (LLMs), we generate a
dual question and answer (Q&A) pair for each ground-truth Q&A in the training
set. This dual pair reverses the original Q&A in causal or temporal aspects. Uti-
lizing the original and its dual Q&A pair, we develop a bi-directional reasoning
framework comprising an efficient Transformer-based GVQA model and a cycle-
consistency training pipeline. The model first identifies key temporal moments
using learnable Gaussian functions. It then grounds these moments to provide
answers and reconstructs the dual question from the input question. This process
is executed concurrently from two reasoning paths during training, starting from
the original and the dual questions, respectively. All intermediate outputs (e.g.,
grounded moments, reconstructed questions) related to the same concept from
both paths are encouraged to be consistent. This self-guided supervision enables
our GVQA model to achieve precise grounding and enhanced, more dependable
QA performance. We conduct comprehensive experiments on the new GVQA
benchmark, NExT-GQA [27], and the traditional VQA dataset, Env-QA. The
results highlight the significant effectiveness of our proposed framework.

2 Related work

2.1 Video Question Answering

Video Question Answering (VQA) stands as a cornerstone in the realm of multi-
modal video understanding. It requires models to deliver precise answers drawn
from video content. Traditionally, VQA benchmarks concentrated on fundamen-
tal aspects of video content recognition and understanding, including binary
selection, counting, and scene recognition tasks. However, the landscape has
evolved with the introduction of new benchmarks aimed at evaluating the rea-
soning capabilities of models, particularly in areas of causal and temporal rea-
soning [6, 9, 25, 26]. In response, a variety of fully-supervised VQA methodolo-
gies have been developed, seeking to improve performance through enhanced
context learning, temporal modeling, the implementation of attention mech-
anisms [7, 11, 14], and the learning of causal representations [28]. The recent
breakthroughs achieved by large language models [21,23] have significantly pro-
pelled vision-language models (VLMs) [5,15,19,24,29] forward, notably improv-
ing VQA performance, especially in the context of zero-shot QA settings. Di-
verging from traditional supervised training methods, these models hone their
video reasoning and understanding abilities through the analysis of extensive
text-video datasets. Nonetheless, a critical inquiry persists regarding the extent
to which the responses generated by such techniques are genuinely grounded
in the pertinent video content, rather than being influenced by the linguistic
biases inherent in large language models or the spurious vision-language (VL)
correlations that may emerge through cross-modal pretraining.

2.2 Weakly-supervised Video Grounding

As annotating temporal boundaries is costly, weakly-supervised video grounding
(WSVG) has garnered considerable attention. It focuses on localizing the refer-
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ent with only video-level annotations (i.e., language queries). Current WSVG
methods fall into two categories: multiple instance learning (MIL) based meth-
ods [8,10,17,18] and reconstruction-based methods [16,20,31]. MIL-based algo-
rithms align visual-language pairs by attracting matched pairs and repelling mis-
matched ones. On the other hand, reconstruction-based methods rank proposals
based on a reconstruction distance or loss, considering the proposal that best
reconstructs the language query as the matching one. Early WSVG approaches
depended on sliding windows across the temporal dimension to generate multi-
scale proposals, which proved to be computationally expensive. Consequently,
more advanced methods have predominantly employed learnable Gaussian func-
tions to generate proposals.

2.3 Weakly-supervised Grounded Video Question Answering

Some VQA [7,11,14] approaches implicitly analyze the reliability of VQA models
by employing temporal or spatial attention mechanisms. For instance, MIST [7]
attempted to identify key frames at the feature level by framing this process as
a spatial-temporal attention mechanism. Similarly, VGT [28] explicitly learned
to ground key frames from a causal perspective. Recently, SeViLA [30] inte-
grated BLIP-2 to develop a grounded VQA model. This involves a two-stage
training process: the first stage localizes keyframes based on questions and pro-
vides answers based on these frames, while the second stage refines the frame
localizer with generated pseudo labels for the frames. Moreover, SeViLA un-
dergoes pre-training on large-scale video grounding datasets to acquire strong
prior knowledge for grounding. Recently, Xiao et al. [27] expanded the original
NExT-QA [26] video dataset into a weakly supervised grounded VQA bench-
mark, NExT-GQA. This enhanced dataset includes additional temporal labels
(start and end timestamps) tied to the questions in the QA pairs for the vali-
dation and test sets. Furthermore, it introduces a straightforward solution for
grounded VQA, employing MIL learning between constructed positive and neg-
ative questions to learn single Gaussian weights. In this paper, we primarily
conduct our experiments on the NExT-GQA dataset.

3 Method

3.1 Beyond single-directional Q&A

Standard Q&A pairs typically follow a single-directional reasoning process (as
shown in Fig. 1(a)(b)), from the question to the answer. However, due to the lim-
ited variety of Q&A text combinations, this singular mapping often overlaps sig-
nificantly with language biases or common sense knowledge [27]. Consequently,
VLMs might exploit these shortcuts, relying on biases or leveraging pre-existing
knowledge from LLMs to furnish answers. Motivated by this observation, we
introduce a novel transformation strategy for Q&A pairs, aiming to expand the
reasoning pathways beyond the conventional question-to-answer direction.
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Task: Create a question that mirrors the given answer in causal or temporal structure to generate a dual Q&A pair. 
Ensure the generated Q&A consists of both question and answer. For some Q&A pairs that you cannot well transfer 
to a complete dual Q&A, just maintain the original Q&A. Here are some examples:

<Example-1> 
# Given Q&A: Why did the boy touch the front wheel after looking up? Prevent himself from falling. 
# Generated Q&A: How the boy prevent himself from falling? Touch the front wheel after looking up. 
<Example-2>
# Given Q&A: What did the man in black shirt do as he stood behind the baby? Smile into the camera.
# Generated Q&A: What did the man in black shirt do as he smile into the camera? Stood behind the baby.
<Example-3>
# Given Q&A: Where is the man playing this game? Living room.
# Generated Q&A: What are the man doing in the living room? Playing game.

Fig. 2: Prompt for LLMs to generation dual Q&A. 3-shot examples are presented here.

Dual Q&A We define the dual Q&A pair as a Q&A pair that mirrors the
original Q&A pair in causality and temporal structure. For example, the follow-
ing two Q&A pairs are dual, where both of them focus on the same events while
their reasoning path is symmetrical.
Q1: Why did the adult move his spoon to the girl’s bowl?
A1: Pretend to take her food.
Q2: How did the adult pretend to take the girl’s food?
A2: Move his spoon to the girl’s bowl.

Promoting LLMs for dual Q&A transformation Facilitated by the great
text understanding ability of large language models (LLMs), we can easily gen-
erate dual Q&A pairs by prompting LLMs. To achieve this, we first employ a
circle-prompting strategy, initially providing a small set of original pairs and
their dual pairs as hints and querying an LLM (e.g., Llama-2) for prompts that
can generate such dual Q&A results. We subsequently conduct iterative tests of
prompts for better results and manually correct LLM errors in the loop to ensure
that our prompts generate accurate dual Q&A pairs. This iterative process seeks
to achieve a balance between precision and conciseness. An example prompt we
adopted is specified in Fig. 2, where the standard few-shot prompting strategy
is utilized. It’s worth noting that the process described is not particularly tricky
in practice, given that most modern large language models can handle this task
with relative ease. In this way, each original ground truth Q and A in training
set can be transformed into a dual Qd and Ad. In this way, we augment the VQA
training set into a more complete set in both causality and temporal structure.
More results of our generated dual Q&A can be found in the supplementary.

3.2 Bi-directional reasoning

Transformer-based VQA We adopt the widely-used Transformer-based ar-
chitecture for Video Question Answering (VQA) to construct our framework.
Specifically, for a given video v and question q, the model aims to predict the
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Fig. 3: The architecture of Transformer-based VGQA model.

correct answer a∗ from a set of candidate answers A. Initially, the visual and tex-
tual inputs are tokenized using pre-trained video and text encoders, respectively.
These tokens are then concatenated and input into a multi-modal Transformer
network, which extracts essential information from both visual and textual in-
puts to predict the final answer. This process can be formulated as follows:

a∗ = argmaxa∈AΩ(a|(v, q), A) (1)

As suggested by [27], we adopt a dual-style Transformer as Ω for efficiency.

Ground, then answer We formulate the grounded VQA as two sub-tasks:
grounding and QA answering. As for temporal grounding, we adopt the learnable
Gaussian function to explicitly learn the moment location t based on the cues
provided by the video content v and question q, which can be formulated as:

t∗ = G(t|(v, q)) (2)

where G denotes the grounding module. To enable a differentiable end-to-end
training, t is represented by a learnable Gaussian function N(µ, σ2) in the tem-
poral dimension, where µ and σ stands for the mean and standard deviation. In
practice, based on the Transformer-based VQA model, we append a Gaussian
predictor, which consists of linear transformation layers for efficiency. It receives
the fusion multi-modal outputs to predict these two Gaussian parameters. Then,
given the predicted Gaussian function, the question and video tokens tied with
Gaussian attention weights t ∼ N(µ, σ2) are fed back to a QA round. Specifically,
a Gaussian-conditioned attention mechanism [32] is applied to the Transformer
for final answering, which plays its role by aggregating contextual video informa-
tion within the frames highlighted by the Gaussian distribution. In this round,
Ω takes a more localized moment to predict the final answer embedding.

Given the above process, our grounded VQA model can be formulated as:

a∗, t∗ = argmaxa∈AΩ(a|(vt), q, A) (3)
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Fig. 4: The overall training pipeline of our bi-directional reasoning framework.

An illustration of the above grounded VQA model is presented in Fig. 3.

Cycle-consistency between bi-reasoning path The most critical problem
for weakly-supervised grounded VQA is how to supervise the grounding phase
without any temporal labels during training.

In this paper, we address this issue by devising a bi-directional reasoning
framework, which achieves a cycle consistency between two dual reasoning paths
to obtain reliable supervision for both grounding and QA.

Illustrated in Fig. 4, our training pipeline is structured around two parallel
yet counter-directed reasoning paths for each video. The forward path begins
with the original question q, and the inverse path with its dual q̃. Within each
path, the GVQA model sequentially executes grounding and then answering
processes. Building on the foundational GVQA model, we introduce an auxil-
iary task named dual question reconstruction. This task compels the model
to reconstruct the dual question utilizing both the original question and the
grounded key moment. This approach not only necessitates the inclusion of cues
present in the original answer but also demands an understanding of the deep
causal or temporal relationships between the question and answer, moving be-
yond mere correlation. In practice, we deploy a lightweight linear transformer
layer as the reconstruction head, positioned after the final projection layers in
Ω. Then, the same GVQA model further receives the reconstructed dual ques-
tion as input, performing the subsequent GQA process, which outputs grounded
moments and a predicted answer for the dual question.

The same "GQA-reconstruction-GQA" process proceeds simultaneously in
another reasoning path, where all inputs and intermediate outputs are dual
with the former path. Given all intermediate outputs from two reasoning paths,
we can set a cycle consistency between the outputs belonging to the same con-
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Fig. 5: The illustration of inference phase of our framework.

cept. For example, the moment grounded from the original question to answer
and the moment grounded from the reconstructed original question to answer.
Specifically, we collect all the intermediate outputs from the forward reason-
ing path: (t[q→a], a, q̃r, t[q̃r→ã]) and from the inverse path: (t[q̃→ã], ã, qr, t[qr→a]),
where tq→a indicates the grounded moment for answering a given the question
q, qr and q̃r indicate the reconstructed question (and dual question), ∼ indi-
cates the dual question and answer. The cycle consistency in the bi-directional
reasoning framework can be achieved in the following goals.

First, for grounded moment t parameterized by Gaussian distribution N (µ, σ2),
we encourage them to be consistent by minimizing the KL divergence between
two Gaussian distributions:

Lground = KL(t[q→a]||t[qr→a]) + KL(t[q̃→ã]||t[q̃r→ã]) (4)

where the KL divergence between two Gaussian distributions is calculated as:

KL(t1 ∥ t2) = log

(
σ2

σ1

)
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
(5)

Note that Eq. (5) is not symmetry and we set the moments grounded from the
real q and q̂ as the target distributions, i.e., the former item in Eq. (5).

Second, we build the consistency between reconstructed questions and the
original one from two paths. It is achieved by minimizing the L2 distance be-
tween the text embeddings f of the real question (or real dual question) and the
reconstructed question embedding:

Lrecon = L2(fq̃, fq̃r ) + L2(fq, fqr ) (6)

Finally, we performed the standard QA losses LQA between all predicted
answers and their corresponding answer target. For multiple-choice QA, the
cross-entropy loss is selected as LQA.

In this way, we could achieve a cycle-consistency between two dual reason-
ing paths. Leveraging the generated dual Q&A, the cycle-consistency criterion
ensures that both grounding and QA learning processes are self-supervised and
self-verified, with reconstruction serving as a pivotal bridge.
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3.3 Optimization and inference

Optimization The overall loss for training is formulated as:

L = LQA + αLrecon + βLground (7)

where α, β are the hyper-parameters that balance the priority of different loss
terms. Ablation studies on these hyper-parameters can be found in our supple-
mentary. The overall framework is trained in an end-to-end manner.

Inference During inference, the bi-directional reasoning process is not necessary
and we directly feed the given question and video into a single GVQA model
Ω to generate results (Fig. 5(a)). Therefore, our proposed training framework
will not impact the overall inference efficiency. The grounding is achieved by the
confidence interval t = (µ−γσ, µ+γσ)∗d, where hyper-parameters γ control the
width of the confidence interval, d is the total duration of the video. Moreover, by
virtue of our modular pipeline, besides the standard inference, we could obtain
different styles of grounded results by appending a grounded module (sharing
the same weight) to the standard inference pipeline (as shown in Fig. 5(b)).
Please see Sec. 4.3 for more experiments and discussion.

4 Experiments

4.1 Experimental setting

Implementation details In theory, our framework can be built upon most of
the pre-trained multi-modal Transformers. For fair comparisons, we adopt the
Temp[CLIP] [27] and FrozenBiLM [29] as our backbones following [27]. For each
video, we sample 32 frames uniformly for VQA models. AdamW is utilized to
optimize the model training, with an initial learning rate 1e-5. Early stopping is
also adopted if the results on the validation set do not increase in 5 epochs. The
overall training process contains 30 epochs and is conducted on A6000 GPUs.
The details of the dual Q&A pairs generation can be found in our supplementary.

Dataset We mainly evaluate our framework on the recently proposed grounded
VQA benchmark NExT-GQA [27]. Due to the lack of more available GVQA
datasets, we further evaluate our method on VQA dataset Env-QA [6].

Evaluation metrics We adopt four metrics for GVQA evaluation following [27]:
(1)mIoP: It estimates whether the predicted temporal window lies inside the
ground truth. (2)mIoU: It calculates the temporal overlap between the pre-
dicted moment and the ground truth. (3)Acc@GQA: A new metric proposed
in [27] for grounded GQA task, which inspects the percentages of questions that
are correctly answered and also visually grounded (i.e., IoP ≥0.5). (4)Acc@QA:
Standard metric for QA task, which denotes the percentage of correctly answered
questions. For both mIoP and mIoU, results are reported with the mean values
and values with thresholds of 0.3 and 0.5.
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Table 1: Grounded VQA results on NExT-GQA test set. “CM” indicates whether the
backbone model is pre-training on cross-modal data. BT: BERT. RBT: RoBERTa. FT5:
FLAN-T5-XL [2], DBT: DeBERTa-V2-XL. For a fair comparison, we de-emphasize
the method that were pre-trained on large-scale video grounding annotations. “Model”
indicates the multi-modal Transformer model.

Method Model T
Enc

V
Enc Acc@GQA Acc@QA mIoP IoP@0.3 IoP@0.5 mIoU IoU@0.3 IoU@0.5

Human - - - 82.1 93.3 72.1 91.7 86.2 61.2 86.9 70.3
Random - - - 1.7 20.0 21.1 20.6 8.7 21.1 20.6 8.7
SeViLA BLIP-2 FT-5 ViT-G 16.6 68.1 29.5 34.7 22.9 21.7 29.2 13.8

IGV - BT ResNet 10.2 51.3 21.4 26.9 18.9 14.0 19.8 9.6
MIST Temp[CLIP] BT ViT-L 12.1 60.5 23.6 29.3 20.7 11.4 16.3 7.0

VGT RBT RCNN 14.4 57.7 25.3 26.4 25.3 3.0 3.6 1.7
VLOLETv2 BT VSWT 12.8 57.2 23.6 25.1 23.3 3.1 4.3 1.3PH
Temp[CLIP] RBT ViT-L 15.2 62.5 25.4 28.2 25.5 6.6 9.3 4.1
FrozenBiLM DBT ViT-L 15.8 71.8 22.7 25.8 22.1 7.1 10.0 4.4

NG+ Temp[CLIP] RBT ViT-L 16.0 63.3 25.7 31.4 25.5 12.1 17.5 8.9
FrozenBiLM DBT ViT-L 17.5 73.1 24.2 28.5 23.7 9.6 13.5 6.1
Temp[CLIP] RBT ViT-L 18.2 65.6 28.1 35.1 27.8 15.6 21.2 9.6TimeCraft

(Ours) FrozenBiLM DBT ViT-L 18.5 74.7 26.3 32.7 24.9 13.2 18.6 8.4

4.2 Main results

Competitors We compare our framework with three GVQA approaches: (1)
SeViLA [30], (2) Post-hoc(PH) [27], (3) NG+ [27]. Additionally, to provide a
comprehensive comparison, we further implement the advanced VQA method
MIST [7] into the GVQA setting, we consider its selected segment with the
highest score as the grounded moment.

Comparison results and analysis Table 1 presents the GVQA results on
the NExT-GQA dataset. Analysis of the performance highlights that while ad-
vanced pre-trained Visual Language Models (VLMs), such as FrozenBiLM and
VIOLETv2, demonstrate commendable QA performance, their grounding capa-
bilities (e.g., mIoU, Acc@GQA) are notably lacking. This underscores a pref-
erence for relying on common sense knowledge derived from pretraining data
rather than engaging with the relevant visual content tied to the Q&A, aligning
with our initial hypothesis and motivation.

Our model, TimeCraft, sets a new benchmark by achieving superior GQA
performance and elevating QA accuracy to a new state-of-the-art. A particu-
larly notable advancement is observed in the mIoU metric, signifying that our
bi-directional reasoning framework effectively directs the QA model to priori-
tize the pertinent temporal moments providing visual evidence. However, the
extent of improvement varies across different multimodal-transformer models.
For instance, Temp[CLIP], a dual-transformer model trained from scratch on
the NExT-GQA dataset, exhibits significant gains in QA accuracy parallel to its
grounding performance enhancements. Conversely, FrozenBiLM, which largely
retains weights from a pre-trained LLM and has been pre-trained on cross-
modal data, shows a modest improvement in QA, especially when compared
to Temp[CLIP]. It is also critical to note that although FrozenBiLM secures the
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Table 2: Performance on NExT-GQA dataset of different types of questions. Note
that NExT-GQA has removed the descriptive question in its test set.

Method Causal Temporal
Acc@GQA Acc@QA mIoP mIoU Acc@GQA Acc@QA mIoP mIoU

NG+ Temp[CLIP] 17.3 64.7 27.8 12.2 14.1 61.8 22.9 11.8
FrozenBiLM 19.5 78.4 25.6 9.1 15.3 68.0 22.8 10.4

TimeCraft Temp[CLIP] 19.0 66.5 30.2 17.4 18.0 64.7 26.2 13.8
FrozenBiLM 19.7 79.5 27.2 11.3 17.3 70.1 25.4 15.1

Table 3: QA accuracies on Env-QA test set. Question types that require temporal
understanding are emphasized. Results of TimeCraft is reported with Temp[CLIP].

Method Attribute State Event Order Number All
ST-VQA [11] 41.66 48.98 33.87 54.09 38.54 41.97
STAGE [14] 39.49 49.93 34.52 55,32 37.98 42.53

AIO [24] 41.78 52.98 37.57 55.16 38.50 44.86
Temp[ATP] [1] 42.87 53.49 38.35 55.25 38.65 45.43

TSEA [6] 42.96 56.73 39.84 55.53 39.35 47.06
MIST[CLIP] [7] 44.05 58.13 42.54 56.83 40.32 48.97

TimeCraft (Ours) 43.74 58.20 43.86 58.37 39.94 49.02

highest Acc@GQA, this achievement is primarily attributed to its QA capabili-
ties and does not necessarily indicate superior performance in VGQA.

Per-category results To evaluate the efficacy of our proposed framework com-
prehensively, we conducted performance tests across different types of Q&A, with
the results summarized in Tab. 2. It is noteworthy that our framework outper-
forms NG+ with a significant margin in both causal and temporal reasoning,
which inherently demands precise temporal content for accurate responses. This
performance not only showcases the superior capabilities of our framework but
also reinforces its effectiveness in guiding the model to identify and leverage key
moments crucial for providing correct answers.

Effectiveness on standard VQA Given the scarcity of VGQA datasets, we
extended the application of our framework to a standard VQA dataset to assess
its adaptability and effectiveness. The results on the Env-QA dataset, as detailed
in Tab. 3, demonstrate that TimeCraft facilitates improvements across various
question types, with particularly notable enhancements in event and ordering
reasoning. This underscores the value of integrating moment grounding into the
VQA model, showcasing its potential to elevate QA performance. Additionally,
it’s observed that our framework contributes to incremental improvements even
in question types less reliant on grounding (e.g., attribute), highlighting its broad
applicability and the nuanced benefits it offers to general VQA tasks.

4.3 Ablation study

Breakdown ablation To study the effectiveness of different components within
our bi-directional reasoning framework, we trained our model using various com-
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Table 4: The breakdown analysis of each part in our framework. “Dual Q&A” indicates
whether we generate dual Q&A pairs for original Q&A.

Setting Acc@GQA Acc@QA mIoP mIoUDual Q&A Lrecon Lground

15.5 59.4 25.8 7.7
✓ 15.8 60.8 26.1 9.2
✓ ✓ 16.7 62.5 26.8 12.1
✓ ✓ 15.6 59.8 25.5 8.4
✓ ✓ ✓ 18.2 65.6 28.1 15.6

Table 5: Performance on NExT-GQA dataset using different grounded outputs.

Setting Causal Temporal
Acc@GQA mIoP mIoU Acc@GQA mIoP mIoU

(I) Answer-critical 66.5 30.2 17.4 64.7 26.2 13.8
(II) Question-critical 64.2 28.7 15.9 60.2 21.7 10.0

(III)Union 66.3 29.1 18.6 63.8 26.5 12.9

binations of losses and detailed the results in Tab. 4. Notably, even when dis-
abling all optimization objectives for grounding and reconstruction, merely in-
tegrating the dual Q&A into standard QA training enhances the baseline. This
suggests that the generation of dual Q&A questions can serve as an effective
augmentation strategy for VQA tasks, mitigating the spurious correlations in-
troduced by static QA pairs. Regarding the reconstruction and grounding losses,
we observed that the former plays a more critical role in improving performance.
This aligns with our expectations, as the alignment of grounded moments from
both reasoning paths heavily depends on the accurate reconstruction of dual
questions. By implementing all optimization objectives, our framework demon-
strated superior performance, underscoring the importance of complete cycle
consistency within our bi-directional reasoning framework.

Grounding question or answer? As discussed in Sec. 3.3 and Fig. 5, we in-
troduce variations to the standard inference path by incorporating a grounding
module, yielding three distinct and plausible grounded outcomes:(i) The stan-
dard results, identified as answer-critical moments, (ii) Moments determined by
the second grounder, tagged as question-critical moments, (iii) The union of ar-
eas from both (i) and (ii), which synthesizes information from both the question
and answer. We evaluated the efficacy of these grounded outcomes on the test
set, categorizing the results by question types in Tab. 5. The evaluation reveals
notable differences across various metrics. Interestingly, outcome (iii) achieves
the best mIoU in the causal reasoning category, which often requires comprehen-
sive information from both the question and answer for more accurate moment
grounding. This finding underscores the potential of our framework in effectively
grounding both question text and answer evidence. Further visualization results
related to this observation are available in our supplementary materials.
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Table 6: Results on NExT-GQA with
leveraging different LLMs to generate dual
QA. All results are reported with Time-
Craft (Temp[CLIP]).

LLM Acc@GQA Acc@QA mIoP mIoU
Llama-2 7B [23] 17.3 64.0 26.4 34.2
Llama-2 13B [23] 18.2 65.6 28.1 35.1

Gemini [21] 17.8 65.0 26.9 35.3
InternLM [22] 17.5 64.8 27.6 34.8

Table 7: The results of incorpo-
rating the dual QA as augmented
data for training. All results are re-
ported with Temp[CLIP].

Setting Acc@GQA Acc@QA mIoP mIoU
PH 15.2 62.5 25.4 7.1

+ Dual QA 15.8 63.2 25.8 8.7
NG+ 16.0 63.3 25.7 12.1

+ Dual QA 16.3 64.0 26.1 12.9
TimeCraft 18.2 65.6 28.1 15.6

Impact of LLMs for dual Q&A generation We generate dual Q&A pairs
by prompting advanced LLMs. In this section, we explore how the choice of
LLM influences our final results. Specifically, we considered Llama-2, Gemini,
and InternLM as candidates. Results are summarized in Tab. 6. Contrary to
expectations, incorporating dual Q&A generated by Llama-2 achieves the best,
despite Llama-2 being the smallest LLM among candidates. Upon analyzing the
outputs from different LLMs, we observed that Gemini and InternLM possess a
broader base of common sense knowledge than Llama-2. This often leads them
to introduce potentially irrelevant content into the generated dual Q&A, which
could be detrimental to our cycle-consistency training. Therefore, we recommend
Llama-2 as a sufficiently effective and more accessible choice for this task.

Benefit of dual Q&A We further test the effectiveness of generated dual
Q&A pairs by directly adding them to the original training set and conducting
standard QA training. Experiments in Tab. 7 prove that the NG+ can be further
improved by incorporating our generated dual Q&A. It shows that the dual Q&A
generation can also be considered an effective augmentation strategy for VQA.

How does the sampled frame number impact GQA? We study the impact
of input frame length and present the results in Fig. 7. We can see that most
metrics grow with the increase of the frame number, while mIoP and mIoU
decrease when increasing the frame number to 128.

4.4 Optimization and inference

Efficiency analysis Our TimeCraft involves bi-directional reasoning during
training, which introduces twice-forward passes. Therefore, one of the limitations
of our proposed framework is the increase in training time. To quantify this issue,
we report our model efficiency in Fig. 8. It can be seen that the training time of
our framework is still acceptable considering the improvements. Moreover, most
of the other metrics still remain efficient as the backbone model.

Visualization We visualize some good and failed cases predicted by TimeCraft
in Fig. 6. We can see that the Temp[CLIP] tends to present a better performance
than FrozenBiLm, which is consistent with the quantization result.
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Q: Why did the black dog start running near the middle of video?
GT:                              Run away from the brown dog.  [5.8s, 11.0s]

TimeCraft (Temp):   Run away from the brown dog.  [6.3s, 13.8s]

TimeCraft (Frozen): Run away from the brown dog.  [3.2s,   8.5s]

20.0S

Q: How did the boy avoid hitting the wall?
GT:                              Turn the car.                                   [4.3s,  6.4s]

TimeCraft (Temp):   Turn the car.                                   [3.0s,  6.1s]

TimeCraft (Frozen): Turn the car.                                   [5.7s,  9.5s]

12.0S

Q: What does the lady at the back do after waving at the camera?
GT:                              Put 2 fingers up                             [3.9s,  5.8s]

TimeCraft (Temp):   Hi-five                                              [4.8s,  7.9s]

TimeCraft (Frozen): Put 2 fingers up                             [17.5s,  18.0s]

37.0S

Fig. 6: Visualization results on NExT-GQA test set. Green indicates the correct answer
or grounding, while wrong predictions are in red.
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Fig. 7: Impact of sampled
frame number (from 8 to 128).

Fig. 8: The efficiency analysis of our proposed
framework. Value of time is based on 1 epoch in
training&test, reported with 2× A6000 GPU.

Model Train
Param.

Infer
Param.

Model
Size

Train
Time

Infer
Time

TEMP[CLIP] 130.3M 130.3M 0.5G 1.8m 9.0s
+TimeCraft 130.6M 130.6M 0.5G 3.0m 9.6s
FrozenBiLM 29.7M 1.2B 3.8G 0.3h 1.0m
+TimeCraft 43.9M 1.2B 3.8G 1.7h 1.8m

5 Conclusion

This paper addresses the challenge of grounded VQA by proposing a bi-directional
reasoning framework TimeCraft. Our framework consists of dual reasoning paths
for temporal grounding and answering, and establishing cycle consistency for self-
supervision. It presents superior grounded VQA performance on the Next-GQA
and Env-QA datasets, accurately providing temporal evidence for its answers.
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