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A Light scattering and its dependency on wavelength.

Scattering is a physical process where light is redirected in various direc-
tions upon encountering microscopic constituents of materials—such as atoms,
molecules, or minute granules—that interfere with its path. When an electro-
magnetic wave encounters such a particle, it causes the electrons orbiting within
the particle’s molecules to oscillate at the same frequency as the incident wave’s
electric field [17]. This fluctuation acts as a source of electromagnetic radiation,
which is the basis for the phenomenon of light scattering.

Fig. 12: Scattering of red
light by a thumb illuminated
with a white flashlight.

The scattering of light is dependent on the
wavelength, which is observable in everyday phe-
nomena, such as the pronounced scattering of
red light by human skin when illuminated with
a white flashlight, as shown in Fig. 12. The de-
pendency can be understood through Mie scat-
tering theory [27]. Mie theory describes the elastic
scattering of electromagnetic radiation by spher-
ical particles, taking into account the size of the
particles relative to the wavelength of light. When
considering a material as an ensemble of spherical
particles embedded in a homogeneous medium, Mie theory enables the deriva-
tion of analytical expressions for the material’s scattering parameters: the phase
function p(✓), the total scattering coefficient �s, and the total extinction coeffi-
cient �t [13]. All of these parameters are expressed as functions of the wavelength
in vacuum together with the size of the spherical particles and the refractive in-
dices of the particles and the embedding medium. We summarize the notation
used in this paper in Tab. 3.

Assuming that only a single type of particles with the same radius and index
of refraction are dispersed in the dispersing medium, the phase function of Mie
theory, which specifies the normalized distribution of the scattered light for the
bulk material, can be expressed as:

p(✓) =
|S1(✓)|2 + |S2(✓)|2

4⇡K
, (8)

which is expressed with two scattering intensity functions of scattering angle ✓:

S1(✓) =
1X

i=1

2i+ 1

i(i+ 1)
(ai⇡i(cos ✓) + bi⌧i(cos ✓)) , (9)

S2(✓) =
1X

i=1

2i+ 1

i(i+ 1)
(bi⇡i(cos ✓) + ai⌧i(cos ✓)) , (10)

and the scattering coefficient function:

K =
1X

i=1

(2i+ 1)
�
|ai|2 + |bi|2

�
. (11)
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Table 3: Notation used in the theory section.

Symbol Description Units

� Wavelength of light in vacuum m
↵ Spherical particle radius m

nsph Complex index of refraction of spherical particles —
nmed Complex index of refraction of dispersing medium —
Cs Scattering cross-section coefficient of spherical particles m2

Ca Absorption cross-section coefficient of spherical particles m2

Ct Extinction cross-section coefficient of spherical particles m2

�s Scattering coefficient of bulk material m�1

�0
s Reduced scattering coefficient of bulk material m�1

�a Absorption coefficient of bulk material m�1

�t Extinction coefficient of bulk material m�1

p Phase function of the bulk material sr�1

L(x,!) Radiance at position x from direction ! Wm�2sr�1

Rf (r) Diffuse reflectance profile value at r m�2

A Internal reflection coefficient —

In Eq. (9) and Eq. (10), the functions ⇡n and ⌧n are related to the Legendre
polynomials Pn as follows:

⇡n(µ) =
dPn(µ)

dµ
, (12)

⌧n(µ) = µ⇡n(µ)� (1� µ2)
d⇡n(µ)

dµ
. (13)

ai and bi are the scattering functions, represented by:

ai =
nmed 0

i(⇠) i()� nsph 0
i() i(⇠)

nmed 0
i(⇠)⇣i()� nsph⇣ 0i() i(⇠)

, (14)

bi =
nsph 0

i(⇠) i()� nmed 0
i() i(⇠)

nsph 0
i(⇠)⇣i()� nmed⇣ 0i() i(⇠)

, (15)

where nmed and nsph are the refractive indices of the dispersing medium and
spherical particles,  and ⇠ are the size parameter incorporating the ratio between
the radius of the spherical particle ↵ and the wavelength of light in vacuum �:

 = 2⇡ nmed
↵

�
, ⇠ = 2⇡ nsph

↵

�
, (16)

and  and ⇣ denote Bessel functions of the second kind. Now, it is clear that
all of the scattering intensity, coefficient, and phase functions depend on the
wavelength �, and the refractive indices nmed and nsph, which are also dependent
on �.
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The cross-section coefficients for scattering, absorption, and extinction are
denoted by Cs, Ct, and Ca, respectively. They are calculated as follows:

Cs =
�2e�2Im()K

2⇡�|nmed|2
, (17)

Ct = 4⇡r2Re
✓
S(0)

2

◆
, (18)

Ca = Ct � Cs, (19)

where
� =

2 (1 + (a� 1)ea)

a2
, a = 2Im(), (20)

and S(0) = S1(0) = S2(0) is the amplitude in the forward direction of the scat-
tered light. The absorption coefficient of the dispersing medium �a,med expressed
as a function of the imaginary part of the complex index of refraction of medium
n⇤

med and wavelength, is required:

�a,med =
4⇡Im(n⇤

med)

�
. (21)

Consequently, �s, �t, and �a, the absorption coefficients of bulk material, are
expressed as:

�s = Csr
�3D, (22)

�t = Ctr
�3D + �a,med, (23)

�a = �t � �s, (24)

where D represents the density parameter, equivalent to the volume fraction of
spherical particles in a unit volume of the bulk material.

The correlation between spectral scattering and the physical properties of
materials is profound. Different materials have unique scattering properties due
to their distinct �s, �t, �a, and the phase function p along side the incident
light with wavelength �, allowing for material-specific spectral signatures. This
unique relationship is a cornerstone in our approach to material classification
through spectral subsurface scattering imaging.

B GRISM

Grism for spectral dispersion. Spectral dispersion for multispectral imaging has
traditionally relied on optical prisms [2]. Yet, prism-based systems encounter in-
herent refractive distortions that challenge accurately capturing scattering ker-
nels. Moreover, the refracted light paths necessitate an angled camera setup,
complicating the focusing process. Ensuring high resolution in the spectral axis
with strong dispersion necessitates a thicker prism, which will even deteriorate
those problems. To circumvent these limitations, we combined a transmissive
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diffraction grating with a prism, creating a grism. A grism is a combination of
a prism with a grating to spectrally disperse and refract incoming light. When
light from the scene passes through the diffraction grating first, it splits the
light into its spectral components, which are then refracted by the prism. The
behavior of light through the grating is governed by the grating equation:

m� = d(sin(✓m)� sin(✓i)), (25)

where m denotes the diffraction order, � the wavelength of light, d the grating’s
groove spacing, ✓m the angle of the diffracted beam, and ✓i the angle of incidence
relative to the grating’s normal. Given that the prism is placed after the grating,
the diffracted light enters the prism at an angle ✓m and refracts at an angle ✓r.
Then, Snell’s law, which describes this refraction, is given by:

n1 sin(✓m) = n2 sin(✓r), (26)

where n1 and n2 are the refractive indices of air and the prism, respectively. For
a right-angle prism with an apex angle of ✓p, if the refracted angle ✓r equals to
✓p, then the light will exit the prism perpendicularly. By searching the proper
combination of the prism’s apex angle ✓p and the grating’s groove density d, we
can engineer the grism to direct the first-order diffraction (m = 1) along the
incoming light’s path as shown in Fig. 5. Our configuration uses a right-angle
prism with an apex angle of 30� and a diffraction grating with 300 lines per
millimeter.

C Justification of the single-shot technique

In this section, we aim to present the details of Sec. 4.1. We demonstrate the
feasibility of the single-shot approach by showing the comparable optimization
results obtained from our simulated single-shot approach against those derived
from multishot S4 imaging. We employed the Farrell model, Eq. (2), as the
physics model to be fitted from the spectral scattering data derived through the
two S4 approach. This process involved a comparison between two models, one of
them was optimized using multishot S4 images, and another one was optimized
using single-shot S4 images simulated from the multishot images.

Utilizing the multishot imaging setup, we initially compiled a dataset of 11
materials—namely ceramic, egg, cotton, foam, milk, copy paper, coated paper,
toilet paper, plastic, rubber, and wet wipe. Given the assumption that the mea-
sured kernel km(x, y, i) is symmetric along the x and y axes, the diffuse re-
flectance in the i-th channel of multispectral subsurface scattering can be refor-
mulated by a coordinate transformation as follows:

Ri
f,d(r) = km(r, i), where r =

p
x2 + y2. (27)

Here, we assume that the origin of the kernel, where r = 0, (x, y) = 0, is the center
point of the kernel. We extracted the diffuse reflectance Rf,d at each channel
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along with the distance from the center point of illumination. We averaged the
scattering kernel over rotations around r to mitigate noise.

As a first optimization, we fitted the Farrell model to the extracted multi-
spectral diffuse reflectance from the multishot images. The Farrell model defined
for the optimization could be expressed as:

Rf,m(r,�0
s,�a, A, S, C) = S ⇥Rf (r,�

0
s,�a, A) + C, (28)

where S is the scaling factor accounting for the normalization of the captured
data, and C is the offset value for pixel values on the background. Each opti-
mization was performed by minimizing the following loss functions for i � th
channel:

min
�0
s(i),�a(i),

A(i),S(i),C(i)

��Ri
f,d(r)�Rf,m1(r,�

0
s(i),�a(i), A(i), S(i), C(i))

��2
2
. (29)

As a second optimization, we simulated single-shot S4 images using the dif-
fuse reflectance from multishot data and optimized the Farrell model with the
simulated images.

min
�0
s,�a,A,S,C

kP (Rf,d)� P (Rf,m2(�
0
s,�a, A, S, C))k2F . (30)

Here, as illustrated in Fig. 13, P is an operator that simulates single-shot S4

images from the diffuse reflectance and can be illustrated as:

P (Rf,m) =
16X

i=1

R̃i
f,m(x� s⇥ i, y), where R̃i

f,m(x, y) = Ri
f,m(

p
x2 + y2). (31)

Here s is a dispersion step size for each channel.
After finishing the optimization process, we computed the distance between

the diffuse reflectances from the measurements and the optimized Farrell models.
The distance was computed as:

d(Rf,d, Rf,m) =

vuut
16X

i=1

���Ri
f,d �Ri

f,m

���
2

2

,vuut
16X

i=1

���Ri
f,d +Ri

f,m

���
2

2
. (32)
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Fig. 13: Simulation of single-shot image

The comparative analysis of the dis-
tance is illustrated in Fig. 6. It is im-
portant to note that d(Rf,d, Rf,m1)
represents the minimum achiev-
able distance between Rf,d and
Rf,m2. Observing the results, we
find that d(Rf,d, Rf,m2) values are
sufficiently small and exhibit a com-
parable scale to d(Rf,d, Rf,m1) across all materials, despite the complexity intro-
duced by the image dispersion operation P . Specifically, d(Rf,d, Rf,m2) values
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range from being only 1 to 2 times larger than d(Rf,d, Rf,m1). This proximity in
values leads us to conclude that our single-shot S4 imaging method is capable
of accurately representing the diffusive reflectance model, thereby encapsulating
the unique optical properties of the materials under the measurements.

Anisotropic scattering. This paper would benefit from a discussion of anisotropic
scattering, seen in biological tissues, crystals and minerals. Our dataset didn’t
include such materials; so our analysis assumed an isotropic scattering and ex-
tracted the scattering profile by averaging the scattering kernel over rotations
around the center of illumination and fit a single scattering profile. However, it
is possible to fit an anisotropic case by adding one more parameter for fitting,
which is the anisotropy coefficient g included in the reduced scattering coefficient
�0
s = (1� g)�s, where �0

s is scattering coefficient. The g is a varying parameter
based on the angle from the illumination center.

D Spectral variation of scattering kernel shape for
material classification

Our S4 imaging method captures two key physical properties of materials: (1)
the spectral reflectance, indicated by the variations in the intensity values of the
scattering kernel across the spectral domain, and (2) the variations in the spatial
shape of the scattering kernel across the spectral domain. We can derive blurred
information of the first property, spectral reflectance, as S2 measurement by
integrating the projection of our single-shot S4 image along the row axis (spec-
tral axis). In contrast, S3 measurements, as discussed in Sec. 4.2, offer only
broadband scattering information. This is because projecting and integrating S4

image on the column axis aggregates the scattering kernel across all wavelengths,
thereby omitting the detailed spectral variations of each scattering kernel. To
rigorously assess the value of these spectral variations of scattering kernel, sep-
arate from reflectance information, we have executed a series of experiments
detailed in this section.

D.1 S2 + S3 measurement.

To evaluate the significance of the scattering kernel’s spectral variations in its
shape, we conducted an initial experiment comparing the classification accuracy
using S2, S3, and S4 against a combined S2 + S3 measurement. The S2 + S3

notation represents the concatenation of S2 and S3 vectors, resulting in a dimen-
sionality of 2048 + 1200 = 3248. Given that this concatenated vector could not
reconstruct an image of the original S4 size as described in Sec. 4.2, we applied
SVM and MLP classifiers, which accept vector inputs. Utilizing the same 25-
class white material dataset as in the preceding experiment, we performed PCA
to reduce the feature dimensionality to 375. The results, presented in Tab. 4,
reveal that the combined S2 + S3 measurement achieves higher classification
accuracy than either S2 or S3 alone, yet it falls marginally short of the S4 data
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Table 4: Averaged classification accuracy from 3-fold cross-validation for S2, S3, S2

+ S3, and S4 with different classifiers.

S2 S3 S2 + S3 S4

SVM 40.53% 46.93% 49.33% 52.27%
MLP 41.33% 52.53% 53.06% 55.20%

Normalize 
each column

-

Fig. 14: Sample image (stone-jade) of S4 and S4 � S2 measurements. S4 � S2 data
can be derived by normalizing each column of S4 image, solely encoding variation of
scattering kernel shape in spectral axis.

accuracy. The superiority of S4 beyond S2 + S3 indicates the importance of
the detailed spectral variations of scattering kernel separate from the spectral
reflectance information for material classification.

D.2 S4 � S2 measurements

The second experiment was aimed explicitly at ascertaining the informativeness
of spectral variation in the shape of the scattering kernel. We derived S4 � S2

measurements by normalizing each column within the S4 image, as shown in
Fig. 14, thus isolating the spectral subsurface scattering information from the
spectral reflectance. As indicated in Tab. 5, the S4 � S2 data outperformed S3 in
terms of classification accuracy. This result underscores the value of integrating
spectral shape variations of the scattering kernel into the classification process,
providing an enhancement over solely broadband scattering data.

E Ablation study

E.1 Search for the most informative spectral bands.

To identify the most informative spectral bands for material classification, we
conducted an ablation study. We cropped the S4 and S4 � S2 images into 16
spectral bands, each representing a different wavelength range. We then per-
formed classification using each of the 16 spectral bands with the same CNN
model and compared the classification accuracy. The results are presented in



S4 material classification 25

Table 5: Averaged classification accuracy from 3-fold cross-validation for S2, S3, S4

� S2, and S4 with the best classifier for each measurement.

S2 S3 S4 � S2 S4

41.33% (MLP) 54.13% (CNN) 56.80% (CNN) 58.80% (CNN)

Fig. 15: Classification accuracy of each spectral band cropped from S4 and S4 � S2

images. The 6th to 9th bands (pixel location in the spectral axis: 640 to 1151) showed
the highest classification accuracy for both measurements.

Fig. 15. Both measurements showed the increased classification accuracy 6th to
9th bands (pixel location in the spectral axis: 640 to 1151), which corresponds
to the wavelength range of around 635nm to 791nm. This region has the highest
signal values resulting from the spectrum of our light source and the sensitivity
of our camera. The results indicate that beyond spectral information, higher
SNR from brighter spectral bands is crucial for material classification with S4

imaging.

F Additional results
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(a) (b) (c)with Ridge with MLP with CNN 

Fig. 16: Scattering plot of predicted and actual coffee concentrations from 2-fold cross-
validation results for S2, S3, and S4 data with the best regression models.

Fig. 17: Averaged white materials classification accuracies by downsampling the spec-
tral axis in the single-shot images.
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