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Abstract. Existing benchmarks for 3D semantic occupancy prediction
in autonomous driving are limited by low resolution (up to [512×512×40]
with 0.2m voxel size) and inaccurate annotations, hindering the unifica-
tion of 3D scene understanding through the occupancy representation.
Moreover, previous methods can only generate occupancy predictions
at 0.4m resolution or lower, requiring post-upsampling to reach their
full resolution (0.2m). The root of these limitations lies in the sparsity,
noise, and even errors present in the raw data. In this paper, we overcome
these challenges by introducing nuCraft, a high-resolution and accurate
semantic occupancy dataset derived from nuScenes. nuCraft offers an 8×
increase in resolution ([1024 × 1024 × 80] with voxel size of 0.1m) and
more precise semantic annotations compared to previous benchmarks. To
address the high memory cost of high-resolution occupancy prediction,
we propose VQ-Occ, a novel method that encodes occupancy data into a
compact latent feature space using a VQ-VAE. This approach simplifies
semantic occupancy prediction into feature simulation in the VQ latent
space, making it easier and more memory-efficient. Our method enables
direct generation of semantic occupancy fields at high resolution without
post-upsampling, facilitating a more unified approach to 3D scene under-
standing. We validate the superior quality of nuCraft and the effective-
ness of VQ-Occ through extensive experiments, demonstrating significant
advancements over existing benchmarks and methods.
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1 Introduction

Over the past few years, autonomous driving (AD) has witnessed the shift to-
wards unified 3D scene understanding, rather than relying on the conventional
approach of dividing AD perception into many sub-tasks (e.g., detection, seg-
mentation) then merge their results for final unification. However, AD scenarios
are inherently complex, encompassing a wide variety of elements such as pedes-
trians, vehicles, drivable areas and buildings. This diversity presents a consider-
able challenge in developing unified approaches to 3D scene understanding. 3D
semantic occupancy demonstrates great potential [16,27,28] in unifying various
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Fig. 1: Occupancy quality comparison. OpenOccupancy (Right) faces problems such
as missing objects, noisy road boundaries and thick ground planes. Our nuCraft (Left)
can preserve fine details with much less noises at a 8× higher resolution.

sub-tasks and achieving comprehensive 3D scene understanding. This represen-
tation involves rasterizing 3D scenes into dense voxel grids, capturing geometric
information through voxel occupancy, and semantic information through cate-
gorical labels for occupied voxels. The data generation of 3D semantic occupancy
in research communities typically involves two stages: a LiDAR aggregation stage
that combines multiple LiDAR frames of a sequence to create relatively dense
point clouds as reference for initial semantic occupancy ground truth (GT), fol-
lowed by a “voxel densification” [27] stage that infers and fills empty locations
and assigns semantic labels to create denser occupancy. All available GT anno-
tations from existing sub-tasks (e.g., 3D bounding boxes, point semantic labels)
can be properly integrated into 3D semantic occupancy. Moreover, the gener-
ation of 3D semantic occupancy typically aggregates all available data frames,
embedding future frame information into the current frame’s occupancy GT, in-
herently requiring the model to use past information for future state prediction.

Despite its potential, existing benchmarks (mainly derived from widely-used
nuScenes [2] dataset) face limitations of low resolution and inaccurate annota-
tions (Fig. 1 right). Due to the sparsity of LiDAR scans, the occupancy reso-
lutions of Occ3D-nuScenes and OpenOccupancy are capped at 0.4m and 0.2m,
respectively, whereas conventional voxel-based 3D object detectors typically re-
quire input data with 0.1m resolutions or finer. This low resolution compromises
the goal of using 3D semantic occupancy to achieve unified 3D scene understand-
ing [28], resulting in significant information loss. Besides, existing occupancy
datasets neglect to deal with noises and errors in the raw data (e.g., inaccurate
ego poses and wrong annotations, see Supplementary Materials), which greatly
harm the results of LiDAR frames aggregation (thick ground plane in Fig. 1)
and the inference of semantic labels for non-key frames (noisy road boundaries
in Fig. 1) for voxel densification. Consequently, previous benchmarks cannot
generate precise enough 3D semantic occupancy GT for models to generate reli-
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able semantic occupancy predictions. Furthermore, existing methods [31,41] still
struggle to handle 3D occupancy at 0.2m resolution directly due to the quadratic
increase in memory consumption and the increased difficulty in learning geomet-
ric relations and semantics in larger occupancy fields. The way they predicting
coarse occupancy (e.g., 0.4m) and then upsampling to the full resolution (0.2m)
negates the intended purpose of high-resolution occupancy.

In this paper, we address the issue of insufficient resolution and inaccurate
annotations in existing 3D occupancy datasets [27, 28, 31] by introducing our
high-resolution and precise 3D semantic occupancy dataset, nuCraft. By em-
ploying pose estimation to correct inaccurate ego poses within driving sequences,
we achieve well-aligned aggregated LiDAR point clouds for providing reliable and
clean input for subsequent processing. For voxel densification, we utilize a multi-
level octree representation of the dense point cloud to maintain a controllable
error rate during mesh reconstruction. Additionally, we enhance the consistency
of boundaries and reduce noise in semantic labels by incorporating a mesh ver-
tices semantic prediction branch into mesh reconstruction. This approach allows
us to generate semantic scene meshes with clear boundaries for occupancy GT
generation. As shown in Fig. 1 left, our nuCraft dataset can not only provide
3D semantic occupancy GT with 0.1m resolution (1024× 1024× 1024), but also
yields more precise GT (e.g., accurate boundaries, complete object shapes). To
address the challenges associated with the increased memory consumption and
learning difficulty of high-resolution occupancy, we propose VQ-Occ, a novel
method that encodes the high-resolution occupancy GT into a compact latent
feature space using Vector Quantized-Variational AutoEncoder (VQ-VAE) [29].
This method enables us to construct a discrete codebook for the entire occu-
pancy GT dataset, transforming the task of 3D semantic occupancy prediction
into feature simulation in the VQ feature space. Consequently, the model only
needs to simulate the discrete latent features of occupancy GT in a compressed
latent space, making the process both easier and more memory-efficient. During
inference, the inputs are encoded and projected onto the VQ latent space, then
passed to the pre-trained VQ-VAE decoder to obtain final occupancy predictions.
VQ-Occ surpasses all previous methods and can directly generate occupancy pre-
dictions at high resolutions without upsampling on both OpenOccupancy and
our nuCraft, paving the way for unifying 3D scene understanding through 3D
semantic occupancy prediction. Contributions of this work are listed as follows:

– We introduce nuCraft, a high-resolution 3D semantic occupancy dataset with
8× resolution and more precise annotations than previous benchmarks.

– We present a general and robust data generation pipeline for creating high-
quality 3D semantic occupancy GT from noisy data using only off-the-shelf
annotations from 3D detection and segmentation tasks with no human effort.

– We propose VQ-Occ, a novel 3D occupancy prediction framework. It de-
couples the encoding of occupancy GT and semantic occupancy prediction,
achieving direct high-resolution prediction without post-upsampling and bet-
ter performance than previous methods on OpenOccupancy and our nuCraft.
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2 Related Works

2.1 3D Semantic Occupancy Benchmarks

The task of semantic occupancy perception, first introduced by the SUNCG
dataset [26], requires algorithms to output both occupancy and semantic labels
for all voxels within the camera-view frustum. Several indoor benchmarks have
been developed, including [6,9,11,25,33], focusing on stationary indoor environ-
ments. However, the availability of datasets for outdoor scenarios is more limited.
SemanticKITTI [1] is a pioneering 3D semantic occupancy benchmarks for AD,
providing occupancy GT of 0.2m resolution by accumulating LiDAR scans in a
sequence with its precise ego poses and point semantic labels. However, it lacks
diversity in urban scenes and only evaluates front-view occupancy predictions,
limiting the generalization of occupancy perception algorithms. Occ3D [27],
OpenOcc [28], and OpenOccupancy [31] provide diverse occupancy scenarios
by deriving from the nuScenes dataset series [2,10], but they suffer from limited
resolution (0.4m for Occ3D and OpenOcc, and 0.2m for OpenOccupancy), inac-
curate boundaries, and missing annotations due to noises and inconsistencies in
data processing.

2.2 3D Semantic Occupancy Prediction Methods

3D occupancy prediction is a challenging task in autonomous driving percep-
tion, aiming to achieve unified 3D scene understanding by simultaneously pre-
dicting occupancy status and semantic labels for all voxels in the surrounding
space [5,27,32]. Voxel-based approaches like Voxformer [19] and Occ3D [27] uti-
lize 2.5D information and coarse-to-fine voxel encoders to construct occupancy
representations, while RenderOcc [22] extracts 3D volume features from sur-
round views and predicts density and labels for each voxel with NeRF supervi-
sion. SelfOcc [15] explore a self-supervised way to learn 3D occupancy using only
video sequences. However, voxel-based representations pose challenges in compu-
tational complexity. BEV-based methods like FlashOcc [37] represents features
on a BEV grid, reducing feature representation in the height dimension. [31,41]
report their results at a higher resolution (i.e., 0.2m) but require upsampling
from low resolutions to their full resolution. Moreover, the computation cost of
occupancy prediction increases quadratically as GT resolution increases, and the
learning difficulty also increases as scene geometries become more complex with
higher occupancy resolution. Our VQ-Occ deal with these challenges by decou-
pling semantic occupancy prediction into occupancy GT encoding and feature
simulation in the VQ space. It greatly eases the difficulty in learning semantics
and geometries at high resolutions, and achieves direct high-resolution occupancy
prediction with better performance and no post-upsampling.

2.3 3D VQ-VAE

Vector Quantized-Variational AutoEncoders (VQ-VAEs) [29] have shown im-
pressive results in compressing and representing high-dimensional data in a



nuCraft 5

compact latent space and generating high-quality new data samples, such as
images [7, 23] and point clouds [8, 34]. UltraLiDAR [34] utilizes VQ-VAE to to-
kenize point clouds and uses discrete tokens for LiDAR simulation in driving
scenarios. [18, 20] extend discrete diffusion models to learn categorical distri-
butions or shape priors on ShapeNet [4]. OccWorld [38] utilize VQ to obtain
discrete scene tokens for generative predictive training to model the evolution
of the driving scenes. Inspired by the success of VQ-VAEs on point clouds, we
leverages VQ to encode the high-resolution semantic occupancy data into a com-
pact latent feature space, followed by feature simulation in the latent space for
3D occupancy prediction.

3 The nuCraft Dataset

3.1 3D Semantic Occupancy Prediction

The objective of 3D semantic occupancy prediction is to determine the state of
each voxel in a 3D scene given a sequence of sensor inputs. These inputs can vary
in modalities (e.g., sequences of N surround-view camera images with known in-
trinsic and extrinsic parameters, sequences of LiDAR scans, or a combination of
LiDAR, multi-view camera, and other sensor measurements). The GT for this
task consists of the states of the voxels, encompassing both occupancy states
(such as “occupied” or “empty”) and semantic labels. For instance, a voxel occu-
pied by a vehicle would be labeled as (“occupied”, “vehicle”), while a voxel in free
space would be labeled as (“empty”, None). During evaluation, pre-computed
sensor visibility masks are used to filter out unobservable voxels (e.g., voxels
behind a wall) to conduct evaluation on visible voxels only. We mainly calculate
the Intersection of Union (IoU) as the geometric metric to measures whether
each voxel is being occupied or empty, as well as mean IoU (mIoU) of each class
as the semantic metric.

3.2 Data Generation

The data generation pipeline of nuCraft consists of 3 steps. A pre-processing
step to provide better inputs for next steps (e.g., generate longer sequences). A
data aggregation step to conduct pose estimation before aggregating lidar scans
within sequences. Then a mesh-reconstruction step is applied to generate high-
quality semantic meshes for the “voxel densification” purpose. At last, necessary
post-processings are adopted to filter out outliers, reduce noises and generate
sensor visibility masks for evaluation.

Pre-processing. Static/Moving Parts Separation. Objects can be broadly cat-
egorized into static and moving types. Separating these two types of objects
allows us to consider their unique properties, like scale and rigidity. To do so, we
employ a powerful 3D detector CMT [35] to estimate the properties of objects
(e.g., velocity of objects) in non-key frames. Additionally, we use MapMOS [21]
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to filter moving noise points left in the background. This helps to create a cleaner
static background and more complete shapes for moving objects, ensuring the
high input quality for next-step densification.
Continuous Scenes Grouping. Scenes in nuScenes are randomly select from con-
tinuous driving logs. Thus we merge potentially continuous scenes within a log to
form longer sequences. This strategy can utilize more LiDAR scans and generate
more complete scene point clouds. Specifically, we identify the starting and end-
ing points of each scene and link continuous scenes based on geometric distances.
For example, 750 training scenes can be grouped into ∼350 longer sequences.

LiDAR Sequence Aggregation with Pose Estimation. Considering the
sparsity of nuScenes lidar scans and missing z-value in ego pose, we pinpoint
that pose estimation is required to realize better frame alignment for LiDAR
aggregation. We employ Kiss-ICP [30] for pose estimation, which aligns point
clouds from different time frames by minimizing the discrepancy between cor-
responding points. This step improves consistency of consecutive LiDAR scans,
thus provide more reliable point clouds for mesh reconstruction. To infer point
semantic labels in non-key frames, we utilize K-Nearest Neighbors (KNN) for
propagating semantic labels from key frames to unlabeled sweeps.

Voxel Densification with Semantic Mesh Reconstruction from Octree
Representation. Aggregated point clouds still cannot generate occupancy GT
in high resolutions due to the sparsity of point cloud. We choose mesh reconstruc-
tion to generate more complete 3D scenes. To maintain controllable error rates
during reconstruction, we resort to multi-level octree to store point clouds. This
structure enables us to limit the reconstruction process to be within leaf nodes,
thus limit the reconstruction error and guarantee its correspondence to input
point clouds (see Supplementaries Materials). Here we use SHINE-Mapping [39]
for its effectiveness in mesh reconstruction with the desired octree properties. By
balancing the levels and node resolution of the octree, we can obtain precise scene
meshes with limited noises and error. However, the semantic labels for the recon-
structed mesh are still unavailable. Considering the noises and wrong semantic
labels caused by label propagation in the aggregated lidar point clouds, we incor-
porate a mesh vertices semantic label prediction branch into SHINE-Mapping,
which can learn from noisy labels and generate smooth mesh boundaries with
less semantic error. The resulting semantic meshes allow for occupancy data gen-
eration with sufficient resolution while significantly reducing noises observed in
previous benchmarks like OpenOccupancy (Fig. 1 right). As shown in Fig 1 left,
we can generate occupancy GT with less noise and smooth semantic boundaries.
For the foreground objects, we employ NKSR [12] to generate more complete
object shapes for rigid objects like cars. At last, We employ mesh cleaning tech-
niques to remove outliers, reduces noises and fill empty holes.

Occupancy GT Generation. The final occupancy GT can be obtained by
sampling dense and uniform point clouds from the mesh surfaces followed by
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Table 1: Comparison of 3D object detec-
tion performance.

Method mAP
OpenOccupancy 58.4
nuCraft@0.2 62.7
nuCraft@0.1 77.9

Table 2: Comparison of drivable area
segmentation performance.

Method IoU mIoU
OpenOccupancy 71.2 64.1
nuCraft@0.2 78.3 69.8
nuCraft@0.1 84.2 75.7

voxelization with certain voxel size. The semantic labels for each point are de-
rived from its closest vertex. In this way, we can generate 3D semantic occupancy
GT at a high resolution (e.g, 0.1m or finer). Apart from the occupancy and se-
mantic labels, we also assign available attributes for objects (e.g., velocity) to
its corresponding occupancy. In this way, our nuCraft can also be used for occu-
pancy motion prediction. For the visibility mask generation of different sensors,
we generally adopt the approach used by Occ3D [27] to generate visibility masks
for cameras and LiDAR.

3.3 Evaluation of nuCraft

To evaluate the quality of our nuCraft dataset, we assess its capability to store
information from nuScenes’ detection and segmentation annotations. Then we
ablate design choices of the data generation pipeline.

Foreground: 3D Object Detection We evaluate nuCraft’s ability of retain-
ing foreground objects using 3D object detector Voxel-DETR [40]. The occu-
pancy centroids and their semantic labels from nuCraft forms the input (i.e.,
N × 4 point clouds, N is voxel numbers). The nuScenes mean Average Precision
(mAP) metric is used to measure 3D object detection performance. As shown
in Table 1, nuCraft enables significantly higher mAP compared to OpenOccu-
pancy, especially at the finer 0.1m resolution. This demonstrates the significance
of high-resolution inputs, and nuCraft’s ability to effectively preserve geometric
and semantic information of foreground objects.

Background: Drivable Area Segmentation To assess nuCraft’s accuracy
in representing background regions, we construct GT masks for sidewalks and
drivable areas using the HD maps of nuScenes. We then compute the 2D IoU
and mIoU between the HD map GT masks and the bird’s eye view (BEV)
projections of the occupancy voxels related to these categories. Table 2 shows
that nuCraft achieves higher IoU and mIoU scores compared to OpenOccupancy
at all resolutions, indicating more precise representation of drivable areas and
background. Moreover, the improved mIoU scores and qualitative visualizations
(Fig. 1) demonstrate that nuCraft contains less noise and more accurate anno-
tations compared to previous datasets (See Supplementary Materials for more
visualization). The large gains at higher resolutions further underscore the value
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Table 3: Component of data generation. The first row denotes the default nuCraft
GT at 0.2m resolution. Components are removed one-by-one from the first-row.

Component Removed mAP mIoU

None (Full nuCraft@0.2) 62.7 69.8
S/MPS 62.1 67.2
CSG 62.4 66.5
PE 60.6 66.1
Mesh 58.7 63.2
Clean 62.7 69.7

of nuCraft’s high-resolution and precise occupancy in enabling more detailed 3D
scene understanding.

Ablations of Data Generation To understand the impact of various compo-
nents in the nuCraft data generation pipeline, we conduct ablation experiments
by removing each component: Static/Moving Parts Separation (S/MPS), Con-
tinuous Scenes Grouping (CSG), Pose Estimation (PE), Mesh reconstruction
(Mesh), and Mesh cleaning (Clean). Table 3 shows the effect on detection mAP
and segmentation mIoU. The results indicate that each component contributes
meaningfully to the overall quality of nuCraft. Removing the mesh reconstruction
step leads to the largest drop in both mAP (-4.0) and mIoU (-6.6), highlighting
its importance in generating high-quality occupancy GT. Pose estimation also
has a significant impact, with its removal causing a decrease of 2.1 in mAP and
3.7 in mIoU. The S/MPS and CSG components provide modest improvements
of 0.6 and 0.3 in mAP, respectively, and 2.6 and 3.3 in mIoU. The mesh cleaning
step appears to have minimal effect on the metrics, suggesting that the mesh
reconstruction process already produces high-quality outputs.

The evaluation demonstrates that nuCraft is a high-quality dataset that effec-
tively unifies foreground and background information while providing less noise
and more accurate annotations. Our observations not only provide insights for
evaluating our nuCraft but also serve as guidelines for creating new and high-
resolution occupancy datasets for 3D scene understanding.

3.4 More Occupancy GT Examples of nuCraft

Figure 2 presents additional examples of the occupancy GT from the nuCraft
dataset at 0.1m resolution. These visualizations showcase the high level of detail
and precision captured by nuCraft, enabling more accurate modeling of complex
urban environments for 3D scene understanding tasks.

4 VQ-Occ: Vector Quantized 3D Occupancy Prediction

Previous methods for semantic occupancy perception face significant limitations
in processing high-resolution occupancy data. For instance, [31, 41] can only
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Fig. 2: More occupancy GT examples from our nuCraft dataset with 0.1m resolution.

generate occupancy prediction with 0.4m resolution, followed by upsampling to
the full resolution (0.2m on OpenOccupancy). This limitation leads to a loss of
fine-grained details crucial for accurate 3D scene understanding. To deal with
these challenges, we introduce VQ-Occ (Fig. 3), a novel approach that leverages
Vector Quantized-Variational AutoEncoders (VQ-VAE) [29] to efficiently encode
high-resolution semantic occupancy GT into a compact latent feature space. By
transforming the task of 3D occupancy prediction into discrete feature simu-
lation in the VQ latent space, VQ-Occ achieves better occupancy prediction
performance, and achieves direct prediction of 3D semantic occupancy at high
resolution (0.2 or finer) without post-upsampling.

4.1 VQ-VAE for 3D Semantic Occupancy Encoding

The encoding of 3D occupancy GT in VQ-Occ is a 3D VQ-VAE similar as [34]
that learns to encode and reconstruct the high-resolution occupancy GT. As
shown in Fig. 3, the encoder E compresses the occupancy GT x ∈ RH×W×D×C

into a low-dimensional latent representation ze ∈ Rh×w×d×c, where H,W,D
are the spatial dimensions, C is the number of semantic classes, and h,w, d, c
are the dimensions of the latent space. The latent features are then quantized
using a learned codebook Z = [z1, z2, ..., zK ] ∈ Rc containing K discrete codes.
Each code zk ∈ Rc corresponds to a representative local occupancy pattern. The
quantization is performed using a nearestneighbor lookup:

zq = zk, k = argminj∥ze − zj∥22.

The decoder D then reconstructs the occupancy x̂ from the quantized latents
zq. The VQ-VAE is trained using the following objective:

L = ∥x− x̂∥22 + ∥sg[ze]− zq∥22 + β∥sg[zq]− ze∥22,

where sg denotes the stop-gradient operation, and β is a hyperparameter control-
ling the commitment loss. By encoding the occupancy GT into a discrete latent
space, VQ-Occ can efficiently represent complex 3D scenes using a compact set
of learned codes.
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Fig. 3: Pipeline of VQ-Occ. The framework consists of two main components: oc-
cupancy GT encoding and semantic occupancy prediction. In the encoding stage, a
VQ-VAE is used to compress the high-resolution occupancy GT into a compact latent
space using a learned codebook. For occupancy prediction, multi-view images (Here
we only visualize image inputs, while LiDAR inputs can be encoded by point cloud
backbones and easily integrated to generate the BEV feature.) are encoded by an image
encoder to extract features, which are then projected to the VQ latent space dimen-
sions. The model is trained to simulate the discrete VQ features of the corresponding
occupancy GT, with an auxiliary depth prediction task to better capture scene ge-
ometry. During inference, the image features are encoded, projected to the VQ space,
and then decoded by the pre-trained VQ-VAE decoder to directly generate the final
high-resolution semantic occupancy predictions without any post-upsampling.

4.2 Occupancy Prediction via Feature Simulation in VQ space

With the pre-trained VQ-VAE, we transform the occupancy prediction task into
a feature simulation problem in the VQ latent space. Given the multi-view im-
ages or LiDAR frames of a scene, we first extract image features f using a
convolutional backbone from BEVDet [13,14]. The features are then pooled and
projected to the dimensions as the VQ latent space:

zp = P (pool(f)),

where P is a learnable projection head. We train the image encoder to predict la-
tent features zp that mimic the pre-computed VQ latents zq of the corresponding
occupancy GT. The training objective is:

Lmimic = ∥zp − sg[zq]∥22.

Following BEVDet, we also incorporate an auxiliary depth prediction task to
encourage the predicted latents to better capture the scene geometry. Different
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from previous methods that use LiDAR points to serve as sparse depth super-
vision, we use depth computed from our high-resolution occupancy GT (0.1m)
as supervision. The final training objective is a weighted sum of the feature
mimicking and depth losses.

During inference, the image encoder predicts the latent features zp. These
latent features are then quantized by finding the nearest codes in the learned
codebook Z with minial L2 distance between zp and each code in the codebook.
The quantized latent codes zq are then passed through the pre-trained VQ-VAE
decoder to generate the full-resolution semantic occupancy x̂. By learning to
mimic the compact VQ representation during training, VQ-Occ can efficiently
predict high-resolution occupancy without the need for post-upsampling.

5 Experiments

In this section, we present extensive experiments to evaluate the performance of
VQ-Occ and demonstrate the effectiveness of our nuCraft dataset. We compare
VQ-Occ with state-of-the-art methods on both the OpenOccupancy benchmark
and nuCraft. Additionally, we report the reconstruction performance of our VQ-
VAE and provide detailed analyses and ablation studies to validate the design
choices of VQ-Occ.

5.1 Experimental Setup

Datasets. We train and evaluate VQ-Occ on two datasets: OpenOccupancy
and nuCraft. OpenOccupancy, the highest resolution 3D semantic occupancy
dataset derived from nuScenes prior to nuCraft, has a resolution of 0.2m. Both
datasets are split into training, validation, and test sets following official pro-
tocols and contain 16 semantic classes, along with an additional noise/general
object class. Results are reported on the 16 semantic classes. The perceptive
range extends from [−51.2m,−51.2m,−5m] to [51.2m, 51.2m, 3m], resulting in a
volume of [512×512×40] for 3D occupancy prediction. For nuCraft, we primar-
ily evaluate on a 0.2m resolution with the same range and report preliminary
results on a 0.1m resolution with direct full-resolution prediction.
Evaluation Metrics. The primary evaluation metric for semantic occupancy
prediction is the mean Intersection over Union (mIoU), computed by averaging
the IoU of each semantic class. We also report the overall IoU to measure the
geometric accuracy of the predicted occupancy.
Implementation Details. The 3D VQ-VAE structure is similar to that of
UltraLiDAR [34]. The image encoder adopts the same backbone as BEVDet [13,
14]. We set the codebook size to 2048 with 256 feature dimension, and the latent
space dimension to 32× 32× 3. For the BEV image features projected in BEV,
we add an extra projection layer to elevate features from 32×32×1 to the same
channel as the learned VQ-VAE. We use a voxel size of 0.2m ([512× 512× 40])
unless specified to match the resolution of previous datasets. During training,
we employ data augmentation techniques such as random flipping and rotation
to avoid overfitting. All experiments are conducted on 8×NVIDIA A100 GPUs.
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Table 4: 3D Semantic occupancy prediction results on OpenOccupancy val set. VQ-
Occ achieves better performance than all previous methods from all input modalities.

Method Input IoU mIoU barrier bicycle bus car constr. veh. motorcycle pedestrian traffic cone trailer truck driveable vegetation

MonoScene [3] C 18.4 6.9 7.1 3.9 9.3 7.2 5.6 3.0 5.9 4.4 4.9 4.2 14.9 6.3
TPVFormer [16] C 15.3 7.8 9.3 4.1 11.3 10.1 5.2 4.3 5.9 5.3 6.8 6.5 13.6 9.0
C-CONet [31] C 20.1 12.8 13.2 8.1 15.4 17.2 6.3 11.2 10.0 8.3 4.7 12.1 31.4 18.8
VQ-Occ (Ours) C 21.5 13.6 14.1 8.8 16.4 18.3 6.8 11.9 10.7 8.9 5.1 12.9 33.2 20.0
LMSCNet [24] L 27.3 11.5 12.4 4.2 12.8 12.1 6.2 4.7 6.2 6.3 8.8 7.2 24.2 12.3
JS3C-Net [36] L 30.2 12.5 14.2 3.4 13.6 12.0 7.2 4.3 7.3 6.8 9.2 9.1 27.9 15.3
L-CONet [31] L 30.9 15.8 17.5 5.2 13.3 18.1 7.8 5.4 9.6 5.6 13.2 13.6 34.9 21.5
PointOcc [41] L 34.1 23.9 24.9 19.0 20.9 25.7 13.4 25.6 30.6 17.9 16.7 21.2 36.5 25.6
VQ-Occ (Ours) L 35.3 24.8 25.8 19.8 21.8 26.7 13.9 26.6 31.7 18.7 17.4 22.1 37.8 26.5
M-CONet [31] C&L 29.5 20.1 23.3 13.3 21.2 24.3 15.3 15.9 18.0 13.3 15.3 20.7 33.2 21.0
VQ-Occ (Ours) C&L 36.8 25.5 26.5 20.5 22.6 27.7 14.4 27.6 32.7 19.4 18.1 22.9 39.0 27.5

Table 5: Semantic occupancy prediction results on nuCraft val set at 0.2m resolution.

Method Input IoU mIoU barrier bicycle bus car constr. veh. motorcycle pedestrian traffic cone trailer truck driveable vegetation

C-CONet [31] C 20.8 13.4 14.3 9.1 16.5 18.3 7.4 12.3 11.1 9.4 5.8 13.2 32.5 19.9
VQ-Occ (Ours) C 21.9 14.1 15.2 9.9 17.5 19.4 8.0 13.0 11.8 10.0 6.2 14.0 34.3 21.1
L-CONet [31] L 31.3 16.5 18.6 6.3 14.4 19.2 8.9 6.5 10.7 6.7 14.3 14.7 36.0 22.6
PointOcc [41] L 34.8 24.6 26.0 20.1 22.0 26.8 14.5 27.1 32.1 19.0 17.8 22.3 37.6 26.7
VQ-Occ (Ours) L 36.1 25.5 26.9 20.9 22.9 27.8 15.0 28.1 33.2 19.8 18.5 23.2 38.9 27.6
M-CONet [31] C+L 29.9 20.7 24.4 14.4 22.3 25.4 16.4 17.0 19.1 14.4 16.4 21.8 34.3 22.1
VQ-Occ (Ours) C+L 37.5 26.2 27.6 21.6 23.7 28.8 15.5 29.2 34.3 20.5 19.2 24.0 40.1 28.6

5.2 Results on OpenOccupancy

Table 4 presents the 3D semantic occupancy prediction results on the OpenOc-
cupancy dataset, where our VQ-Occ method outperforms all previous methods
across all input modalities (C for camera, L for LiDAR, and C&L for multi-
modal inputs) in terms of IoU and mIoU. In the camera-based input category,
VQ-Occ demonstrates its ability to accurately capture small and dynamic objects
such as bicycle, motorcycle, and pedestrian with an IoU of 21.5% and an mIoU
of 13.6%. For LiDAR-based input, VQ-Occ shows significant improvements in
handling sparse and irregular LiDAR points, especially in the motorcycle and
pedestrian categories, with an IoU of 35.3% and an mIoU of 24.8%. In the multi-
modal input setting, VQ-Occ achieves an IoU of 36.8% and an mIoU of 25.5%,
indicating its superior ability to effectively fuse camera and LiDAR data for a
comprehensive understanding of the 3D scene. Overall, the results demonstrate
the effectiveness of VQ-Occ in 3D semantic occupancy prediction, with notable
improvements in both geometric accuracy and semantic understanding across
different input modalities, indicating its robustness in handling diverse objects
and scenarios in the complex urban environment of the OpenOccupancy dataset.

5.3 Results on nuCraft

We compare the performance of VQ-Occ on our nuCraft dataset at 0.2m res-
olution with other methods in Table 5. VQ-Occ consistently outperforms all
baselines across all input modalities. With C+L input, VQ-Occ achieves an IoU
of 37.5% and an mIoU of 26.2%, surpassing M-CONet by 7.6% and 5.5%, respec-
tively. The results validate the effectiveness of our nuCraft dataset in providing
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Table 6: 3D occupancy prediction results
on nuCraft@0.1 with batch size 1.

Method IoU mIoU Mem

VQ-Occ (C) 14.3 9.6 77 GB
C-CONet (0.4m ↑) 6.7 3.8 18 GB
C-CONet (0.1m est.) N/A N/A ∼500 GB

Table 7: Cross-validation of VQ-Occ at
0.2m resolution. OO stands for OpenOc-
cupancy, while nC denotes nuCraft.

Setting IoU mIoU

OO→nC 18.1 (-3.4) 9.7 (-3.9)
nC→OO 17.4 (-4.5) 9.3 (-4.8)

high-quality and precise semantic occupancy annotations for advancing 3D scene
understanding. Additionally, the same model performs slightly better on nuCraft
than on OpenOccupancy, indicating the consistency and reduced noise in our nu-
Craft dataset.

5.4 Cross-evaluation of VQ-Occ on OpenOccupancy and nuCraft

To assess the generalization ability of VQ-Occ, we perform cross-evaluation
experiments on the OpenOccupancy and nuCraft datasets. When trained on
OpenOccupancy and tested on nuCraft, the camera-based version of VQ-Occ
experiences a performance drop of 3.9% in mIoU. Conversely, when trained on
nuCraft and tested on OpenOccupancy, the performance drop is 4.8%. Table 7
presents the detailed cross-validation results. The performance drops observed in
the cross-validation experiments can be attributed to the significant differences
in the quality of the ground truth (GT) used for evaluation between OpenOc-
cupancy and nuCraft, as illustrated in Fig. 1 OpenOccupancy GT suffers from
several limitations, such as missing objects, noisy road boundaries, and thick
ground planes. These inaccuracies and inconsistencies in the GT can negatively
impact the evaluation of VQ-Occ’s performance, regardless of which dataset it
was trained on. When VQ-Occ is trained on OpenOccupancy and evaluated on
nuCraft GT, which has cleaner and more precise annotations, the model’s per-
formance appears to degrade. This is because the model’s predictions are being
compared against a higher-quality GT, exposing the limitations of training on
a dataset with noisy and inconsistent annotations. Conversely, when VQ-Occ is
trained on nuCraft and evaluated on OpenOccupancy GT, the model’s perfor-
mance drops even further. This more significant drop can be attributed to the
fact that the model, which was trained on cleaner and more accurate GT, is now
being evaluated against a GT with more noise and inconsistencies. As a result,
the model’s predictions, which are likely to be more precise, are being penalized
by the noisy and inconsistent GT used for evaluation.

5.5 Results on nuCraft@0.1

Predicting 3D semantic occupancy at a high resolution of 0.1m poses signif-
icant challenges due to the increased computational complexity and memory
consumption. Despite these challenges, VQ-Occ demonstrates its potential by
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Table 8: VQ-VAE reconstruction performance on the OpenOccupancy and nuCraft
datasets at 0.2m resolution.

Dataset IoU mIoU barrier bicycle bus car constr. veh. motorcycle pedestrian traffic cone trailer truck driveable vegetation

OpenOccupancy 68.6 49.2 52.3 45.1 48.6 50.8 47.2 44.5 46.9 48.0 50.1 53.7 59.4 55.8
nuCraft 73.1 50.7 54.0 46.6 50.1 52.4 48.6 45.8 48.3 49.5 51.7 55.3 61.2 57.5

directly generating predictions at 0.1m resolution without the need for post-
processing or upsampling steps. Table 6 presents the preliminary results of VQ-
Occ on nuCraft@0.1, along with a comparison of the estimated GPU memory
consumption with C-CONet, a representative baseline method. Table 7 shows
the cross-validation experiments on the OpenOccupancy and nuCraft datasets,
highlighting the importance of using high-quality and consistent ground truth
for accurate benchmarking.

These preliminary results demonstrate the effectiveness of VQ-Occ in tack-
ling the challenges associated with high-resolution 3D semantic occupancy pre-
diction. By directly generating predictions at 0.1m resolution while maintaining
computational efficiency, VQ-Occ paves the way for more detailed and precise
understanding of 3D scenes.

5.6 VQ-VAE Reconstruction

Here we assess the reconstruction quality of our VQ-VAE at 0.2m resolution in
Table 8. Although the reconstruction performance may not seem exceptionally
high, it is sufficient to serve as a robust foundation for providing codebooks for
occupancy perception as VQ-Occ outperforms previous methods. This indicates
the effectiveness of our approach in alleviating the learning difficulty compared
to the direct learning of a large occupancy field. The current performance of our
VQ-VAE also highlights the potential for further improvement in the codebook
quality.

6 Conclusion

We introduce nuCraft, a high-resolution and precise 3D semantic occupancy
dataset that provides high-resolution and precise annotations, enabling more
detailed and accurate modeling of complex urban environments and paving the
way for unifying 3D scene understanding. We also propose a novel 3D occu-
pancy prediction framework VQ-Occ, which efficiently encodes high-resolution
occupancy using VQ-VAE into a discrete latent space and learn 3D occupancy
through feature simulation. Extensive experiments on OpenOccupancy and nu-
Craft datasets demonstrated the superiority of VQ-Occ over existing methods,
setting new state-of-the-art performance for semantic occupancy prediction. We
hope nuCraft and VQ-Occ will serve as a new challenging benchmark and base-
line for future research on unifying 3D scene understanding, inspiring the de-
velopment of advanced and efficient methods for high-resolution 3D semantic
occupancy prediction in autonomous driving and beyond.
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