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CarFormer: Self-Driving with Learned
Object-Centric Representations

Supplementary Material

Abstract. In this Supplementary, we first provide the details about
the architecture (Section 1) and training (Section 2) for reproducibility.
We then provide additional quantitative results in Section 3 on ab-
lating our decision to use a lighter architecture in slot extraction and on
the effect of enlarging slots and block attention in terms of forecasting
performance. We also report the inference time and the number of
parameters of our model at the end of Section 3. We visually com-
pare slot reconstructions between different versions of SAVi as well as
forecasting results by our model to ground truth and SAVi in Section 4.
Finally, we provide a road map for future work to autoregressively gen-
erate rollouts with block attention in Section 5. Please also see the video
in the zip for a visualization of our model’s driving performance.

1 Architectural Details

Slot Extraction: To extract slots, we build on SAVi [32] based on its imple-
mentation in [51]. Additionally, we process the input BEV representations by
assigning a different color to each vehicle, which we found to help in slot extrac-
tion. To color the vehicles, we sample a random color per vehicle from a set of
14 colors and fix this color by the vehicle ID. To use enlargement, we enlarge
any vehicles that are less than 4.9m × 2.12m to 4.9m × 2.12m. In the absence
of privileged information, we detect vehicles in BEV space by finding connected
components in the BEV occupancy grid. Then, to enlarge vehicles, we contin-
uously dilate the connected component until we surpass an area threshold. We
experimentally set this area threshold to 8m2, corresponding to 200 pixels in
our 5 pixels per meter setting. To randomly color objects, we similarly assign
a random color per connected component. To maintain color per vehicle across
time steps, we compare the current BEV to the previous time step and reuse the
color of the previous connected component if the previous connected component
covers over 50% of the area of the current connected component.

We provide the hyper-parameters for different versions of the model in Ta-
ble 8. Due to computational requirements increasing with the number of slots, we
proposed a lighter version of the base SAVi model we start with. In the light ver-
sion, we reduced the number of parameters in the decoder and the encoder MLP.
Using the lighter version, we train SAVi with up to 30 slots in our experiments.
We highlight the differences between the versions in bold in Table 8.

Quantization: We quantize the traffic light status, speed, waypoints, and tar-
get points using k-means to assign them to the cluster index. For waypoints
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Attribute #Clusters (kattr)

Speed 14
Light Status 2
Waypoints 48 (24 per dim.)
Target Points 32 (16 per dim.)

Table 5: Number of Clusters used in K-means. We use separate clusters for each
dimension in the case of multi-dimensional attributes. Although light status is binary,
we use k-means with 2 clusters for consistency across attributes.

Hyper-param Value

Hidden Dim. 768
MLP Dim. 3072
Attention Heads 12
Number of Layers 6
Weight Initialization distilgpt2 [44]

Table 6: Hyper-parameters of the GPT-2 Backbone. We initialize the weights
using the publicly available checkpoint of distilgpt2 [44].

and target points, which are both 2-dimensional, we apply k-means clustering
on every dimension separately and quantize them into two indices in a similar
manner. We list the number of clusters for each attribute in Table 5.

GPT Backbone: We use a slightly modified version of GPT-2 [41] as the back-
bone. We use the Transformers library [50] and modify the embedding layer and
the attention layers to implement block attention. We list the hyper-parameters
for the GPT-2 model used in Table 6.

2 Training Details

Hyper-param Value

Epochs 100
Warmup Epochs 5
Learning Rate 5e-5
Optimizer AdamW
Weight Decay 1e-4
Effective Batch Size 512
Grad. Norm Clip 1.0

Table 7: Training Hyper-parameters of CarFormer.
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SAVi-30-light SAVi-7-light SAVi-7-base

Effective Batch Size 256 256 256
Training Steps 80000 80000 80000
Optimizer Adam Adam Adam
Learning Rate 1e-4 1e-4 1e-4
Gradient Clip 5e-2 5e-2 5e-2
Warmup steps 4000 4000 4000
Context Length 2 frames 2 frames 2 frames
Data FPS 2 fps 2 fps 2 fps
Num. Slots 30 7 7
Slot Size 128 128 128
Slot MLP size 256 256 256
Slot Attn. Iterations 2 2 2
Enc. Filter Sizes (64, 64, 64, 64) (64, 64, 64, 64) (64, 64, 64, 64)
Enc. Kernel Sizes (5, 5, 5, 5) (5, 5, 5, 5) (5, 5, 5, 5)
Enc. Strides (2, 1, 1, 1) (2, 1, 1, 1) (1, 1, 1, 1)
Enc. MLP dim. 128 128 256
Dec. Init. Resolution (128, 24, 24) (128, 24, 24) (128, 24, 24)
Dec. Filter Sizes (64, 32, 16, 8) (64, 32, 16, 8) (64, 64, 64, 64)
Dec. Kernel Sizes (5, 5, 5, 5) (5, 5, 5, 5) (5, 5, 5, 5)
Dec. Strides (2, 2, 2, 1) (2, 2, 2, 1) (2, 2, 2, 1)
Pred. Type Transformer Transformer Transformer
Pred. Layers 2 2 2
Pred. MLP Size 512 512 512
Pred. Attn. Heads 4 4 4

Table 8: Hyper-parameters of SAVi. We refer to the version of the encoder with a
light decoder as SAVi-30-light and SAVI-7-light. We refer to the original SAVi model as
SAVi-7-base. We show the hyper-parameters that are different across models in bold.

We train our model for 100 epochs on the full dataset and pick the checkpoint
with the best validation loss to evaluate. We use a setup of either 4× A6000s
or 4× A100s to train our models. We keep the effective batch size as 512 across
runs. Moreover, we weigh the two loss terms by multiplying the forecasting loss
by 40 as shown in (7). We list the other hyper-parameters in Table 7.

L = 40 Lforecast + Lwp (7)

3 Additional Quantitative Results

Ablation of Light SAVi: We modify the architecture of SAVi to be able to
increase the number of slots while keeping slot extraction feasible. Specifically, we
propose a lighter decoder by decreasing the number of parameters. To measure
the effect of these changes quantitatively, we train our model with the light
decoder while keeping the number of slots constant at 7. Note that, training the
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slot extraction model is prohibitively slow with the original decoder when we
increase the number of slots to 30.

Method #Slots LD #Steps ARI↑ mIoU↑

SAVi
7 ✕ - 0.905 0.856
7 ✓ - 0.911 0.860
30 ✓ - 0.924 0.874

CarFormer

7 ✕ 1 0.742 0.644
7 ✓ 1 0.704 0.602
30 ✓ 1 0.795 0.702
7 ✕ 4 0.513 0.436
7 ✓ 4 0.462 0.385
30 ✓ 4 0.540 0.454

Input-Copy - - 1 0.641 0.561
- - 4 0.412 0.375

Table 9: Forecasting Results with Light Decoder (LD). We show the results for
SAVi reconstruction, which serve as the upper bound as the model has access to ground
truth. We compare six versions of our model, with each of the three SAVi versions (7-
base, 7-light, 30-light), and trained to predict 1 or 4 timesteps into the future. Finally,
we show the results of predicting the current BEV to forecast the future as a baseline.

We evaluate the forecasting performance of the model in Table 9. Although
the performance degrades slightly with the light decoder in the case of 7 slots,
increasing the number of slots to 30 improves performance noticeably. Increasing
the number of slots is not only crucial to improve the performance in terms of
slot extraction, it also proves to be crucial in terms of driving performance as
we show in the main paper (Table 3). To further evaluate its effect on driving
performance, we compare CarFormer using the original SAVi checkpoint with 7
slots (full decoder) as well as the light decoder version with 7, 14, and 30 slots
in Table 10. The results show that increasing the number of slots improves the
driving performance and the best driving performance is achieved with 30 slots
which was only made possible with the light decoder.

The Effect of Enlarging Slots on Forecasting: Slot extraction is particu-
larly difficult for small objects due to the nature of the reconstruction loss being
dominated by larger objects. As a simple fix, we enlarge small vehicles in the
BEV input before slot extraction. In particular, we enlarge any vehicle that is
smaller than 4.9 m in length or 2.12 m in width to a length of 4.9 m and a width
of 2.12 m, respectively. We set the dimensions according to Lincoln MKZ, the
default ego vehicle on CARLA.

We evaluated the effect of enlarging slots on the driving performance in the
main paper (Table 3). Here, we investigate its effect on forecasting. We compare
two models, one with the base SAVi with 7 slots (SAVi-7-base), and our version
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LD #Slots DS↑ IS↑ RC↑

✕ 7 60.82±0.87 0.73±0.02 79.44±1.62
✓ 7 62.93±6.78 0.73±0.07 80.20±1.87
✓ 14 69.75±8.03 0.78±0.04 86.17±2.79
✓ 30 74.89±1.44 0.79±0.02 92.90±1.28

Table 10: Driving Performance with Light Decoder (LD). We test three differ-
ent SAVi versions. Light refers to the lighter version of SAVi we propose, and the base
version otherwise. #Slots refers to the number of slots used in the model. We report
mean±std of 3 different runs on the Longest6.

Method #Slots Enlarge #Steps ARI↑ mIoU↑

SAVi 7 ✕ - 0.900 0.846
✓ - 0.905 0.856

CarFormer 7

✕ 1 0.712 0.611
✓ 1 0.742 0.644
✕ 4 0.487 0.412
✓ 4 0.513 0.436

SAVi 30 ✕ - 0.910 0.850
✓ - 0.924 0.873

CarFormer 30

✕ 1 0.765 0.664
✓ 1 0.795 0.703
✕ 4 0.508 0.422
✓ 4 0.540 0.454

Table 11: Forecasting Results by Enlarging Slots. We compare the forecasting
performance of the base SAVi model for the 7-slot case (SAVi-7-base) and the light
version for the 30-slot case (SAVi-30-light) for predicting 1 or 4 steps ahead.

of SAVi with the light decoder and 30 slots (SAVi-30-light) in Table 11. Enlarging
small vehicles consistently improves forecasting performance in all settings and
in terms of all metrics.

The Effect of Block Attention on Slot Forecasting: In Table 2 of the
main paper, we show that block attention (BA) between slots improves driving
performance, and hypothesize that this allows us to better model the relation-
ship between objects. To further validate the role of BA in relating objects, we
evaluate the forecasting performance with and without BA in Table 12. The
model with BA results in consistent improvements in forecasting performance
with both 14 and 30 slots, which shows its positive effect by allowing more inter-
action between objects in the autoregressive model compared to regular causal
attention. We outline how we can retain the ability to autoregressively rollout
future time steps in Section 5.
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BA #Slots ARI↑ mIoU↑

✕ 14 0.511 0.432
✓ 14 0.533 (+0.022) 0.449 (+0.017)

✕ 30 0.509 0.428
✓ 30 0.540 (+0.031) 0.454 (+0.026)

Table 12: Forecasting Results with Block Attention (BA). We evaluate Car-
Former with our optimized SAVi with either 14 or 30 slots as the slot extractor back-
bone. The model with BA results in consistent improvements in all forecasting metrics.

Input Feature
TP S TL O R DS↑ IS↑ RC↑

✕ ✕ ✕ ✓ ✓ 74.89±1.44 0.79±0.02 92.90±1.28
✕ ✕ ✕ ✓ ✕ 75.06±2.10 0.80±0.01 90.99±1.26
✕ ✓ ✓ ✓ ✕ 70.01±2.79 0.79±0.02 86.23±1.71
✓ ✓ ✓ ✓ ✓ 72.34±2.53 0.78±0.02 91.21±1.07

Table 13: Block attention design ablation. We compare placing different inputs
into the attention block. Since our design contains only one block, a tick mark means
the feature is included in the block. Results are of 3 runs on Longest6. TP: Target
Point, S: Speed, TL: Traffic Light, O: Objects (attributes/slot features), R: Desired
route.

Ablating the Design of Block Attention: In our main model, we place the
object level features, whether in the form of slots or as attributes, in the same
block as the desired route r1t , r

2
t . We ablate different possible options for the

block in Table 13. Although removing the desired route from the block leads to
slight performance gains in DS, we include the desired route in the block due to
a lower standard deviation in driving score.

Ablation of Target Point Input: In our approach, we feed the next target
point in the desired route as an input to the backbone. With the desired route
being also given as input, this could possibly be redundant. We compare the
results with and without the target point in Table 14. The inclusion of the next
target point improves the DS, IS, and the RC of the agent.

TP DS↑ IS↑ RC↑

✓ 74.89±1.44 0.79±0.02 92.90±1.28
✕ 72.34±0.35 0.77±0.00 90.70±0.66

Table 14: Difference with versus without target point as input We compare
CarFormer with and without using target points as input. Results are of 3 runs on
Longest6.
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Increasing the Input Context Size: In all the experiments in the main paper,
the model only sees the information from the current time step. Although BEV
from previous time steps is used within SAVi, we only use the slot features of
the current time step. To explore the effectiveness of extending our model to
multiple time steps, we train the model using a context length of up to 4 and
evaluate the forecasting performance in Table 15. We observe consistent gains in
both forecasting metrics as we increase the context length, showing the model is
able to utilize information from previous timesteps to guide its future prediction.

Context Length
1 2 4

ARI mIoU ARI mIoU ARI mIoU

0.795 0.702 0.816 0.728 0.824 0.740
Table 15: Effect of input context length on forecasting: Increasing the context
length consistently improves forecasting performance in all metrics, showing that the
model is able to use the information from previous timesteps to better predict the
future.

Effect of Forecasting Steps: To further investigate the effect of forecasting,
we experiment with the number of steps into the future that we forecast or f in
(4). As can be seen in Table 16, increasing the number of forecasting steps results
in improvements in both infraction score and route completion, and consequently
a higher driving score. As a result, unless otherwise specified, all our models have
been trained to predict timestep t+ 4.

Effect of Forecasting Weight: We evaluate the effect of varying the weight of
the forecasting term, α in the loss function (6) on driving performance in Fig. 3.
While initially increasing the importance of forecasting improves the driving
performance, the performance peaks around 40 and drops for larger values of α.
This could be because the training signal from forecasting eventually dominates
the parameter updates to the model, reducing the relative importance of the
actual driving task.

Efficiency: In Table 17, we list the inference time in milliseconds (ms) and the
number of parameters in millions (M), trainable parameters in parenthesis, for
different versions of our model compared to PlanT. We measure the inference
time for all models on a machine with i9-10900K CPU and RTX 3090 GPU. For
our models, we report the results with object attributes similar to PlanT, with
VQ-VAE, and with 7, 14, and 30 slots. All our models can run in real-time, with
over 60 FPS. We also report the results without SAVi to show that around half
of the time is spent on slot extraction. The inference time can be significantly
improved with more efficient slot extraction techniques.
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#Steps DS↑ IS↑ RC↑

1 71.40±0.74 0.78±0.01 89.25±0.99
4 74.89±1.44 0.79±0.02 92.90±1.28

Table 16: Varying Forecasting Time steps. We compare varying the number of
timesteps into the future that we forecast.

00.5 1 2 5 20 40 50 100
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65
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95
Driving Metrics vs Alpha value

DS
IS
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Fig. 3: Ablation of Forecasting Weight. We visualize the effect of varying the
hyper-parameter α, the weight of forecasting in the loss function, on driving perfor-
mance. While initially increasing the contribution of forecasting improves the driving
performance, it peaks around 40. We use CarFormer with SAVi-30-light as the encoder
backbone for all experiments.

4 Additional Qualitative Results

4.1 Effect of Increasing the Number of Slots

We visually compare the reconstructions of the different versions of SAVi to
better understand the effect of increasing the number of slots. As can be seen in
Fig. 4, the SAVi model we use with 7 slots cannot capture all the vehicles in the
scene. Some vehicles are either missing completely as in b, e, or replaced with
blurry regions as in a, f. The SAVi model with 14 slots faces the same issue,
albeit to a lesser extent. For example, there is a missing vehicle in the top right
of b, as well as multiple missing vehicles in e and f, including one very close to
the ego vehicle in e, which could result in a collision.

When increasing the number of slots to 30, the model can capture all vehicles
to some extent. One side effect of increasing the number of slots to 30 is that
multiple slots can bind to a single vehicle, which can be seen in the reconstruc-
tions. For example, the vehicles in the bottom of c appear to be reconstructed as
multiple blobs. However, the model can capture all vehicles in the scene, which
empirically improved driving performance and infraction scores.
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Model Time (ms) #Params

PlanT 6.41 42M

Obj. Attributes 7.31 53M
VQ-VAE 8.51 60M (43M)
7 Slots 13.87 54M (44M)
14 Slots 13.94 54M (44M)
30 Slots 14.02 54M (44M)

7 Slots w/o SAVi 7.46 54M (44M)
14 Slots w/o SAVi 7.37 54M (44M)
30 Slots w/o SAVi 7.44 54M (44M)

Table 17: Inference Time and Number of Parameters. We show inference time
(in ms) and the number of parameters (in M) for different versions of our model com-
pared to PlanT Medium [12]. When using slots as well as a VQ-VAE, we use a frozen
backbone. In addition to the number of parameters, we show the number of trainable
parameters in parenthesis.

4.2 Additional Slot Forecasting Visualizations

We provide additional samples of the model’s future predictions in Fig. 5. In ad-
dition to future predictions using our main CarFormer model with SAVi-14-light,
we also provide future predictions and SAVi reconstructions from our model with
SAVi-7-base.

In b and i, the vehicle in the center of the scene is at an intersection. However,
in the current timestep, the vehicle has yet to initiate the process of turning.
Given only this information, the vehicle could end up taking either a right turn
or a left turn. As a result, we see both models predicting a slight right turn
while keeping the vehicle orientation the same. Due to the architecture of our
model and the way future slot representations are predicted, we are not able to
accurately capture multi-modality. As a result, the models predict the mean of
two modes. This can also be seen with the vehicle on the left side in c and j
making a right turn at the intersection.

The inability of the SAVi-7-base model to capture vehicles in scenes with
many vehicles is highlighted in e and g. Due to the insufficient number of slots,
the model outputs inaccurate predictions with blurry blobs. On the other hand,
the SAVi-14-light model, with twice the number of slots, does not face the same
problem as can be seen in l and m. The model accurately captures individual
vehicles, and subsequently, predicts accurate future states.

5 Autoregressive Rollout with Block Attention

Using block attention breaks the causality within these blocks, which is typically
required for generating rollouts autoregressively and reliably. If we limit block
attention to the training only, we cause a distribution shift during test time
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(c)

(d)
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Fig. 4: Comparison of Slot Extraction by Varying the Number of Slots.
Within each sub-figure, the columns correspond to ground truth BEV followed by
SAVi-light reconstructions with 7, 14, and 30 slots, respectively.

which is not ideal. As a result, we briefly outline here how we can autoregres-
sively generate rollouts, which is necessary for certain RL approaches such as
Trajectory Transformer [24]. Note that to do this, we need to add a loss term
to the loss function for next-word prediction, which is trivial as all inputs other
than the scene representation are discretized.

In CarFormer, we use block attention exclusively in the scene representation
part of the input. As this representation comes from another perception or fea-
ture extraction module, we can treat it as a unit. As a result, we assume we
always begin with at least one set of features before we start generating rollouts.
For the case of slots, at test time, we can start with the initial input trajectory
as:

τinp = {gxt , g
y
t , lt, vt, z

1
t , . . . , z

K
t , r1t , r

2
t} (8)

We would like to rollout future trajectories given this initial context. In
this specific trajectory, we use block attention within the scene representation
{z1t , . . . , zKt , r1t , r

2
t}.

To begin, we can autoregressively predict the actions for the current timestep
{q1t , . . . , q2Wt } as well as the goal and initial part of the state of the next timestep
{gxt+1, g

y
t+1, lt+1, vt+1}. This is a regular autoregressive next token prediction and

does not require any modification. The only difference is that part of the input
context contains block attention, which is similar to a variant introduced in [31]
with non-causal attention within part of the prompt, typically the start of the
prompt.

Next, to generate the slot features for time t+1, remember that we train our
backbone with a forecasting objective for the scene-level representation at time
t+ f . As a result, we can do this if we set f to 1 when training the CarFormer
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model. Given the forecasting head, we can get the next scene-level representation
{z1t+1, . . . , z

K
t+1}. Moreover, we also need to predict the route representations for

the next time step, which can be done in the same way we currently predict slots
to get {r1t+1, r

2
t+1}. Although we currently limit the forecasting loss to only slot

features, nothing is limiting us from also predicting these next route features by
modifying the forecasting loss. Finally, as we know the entire representation for
the next scene representation at time t + 1, we can append it to the trajectory
and continue autoregressively predicting the next time steps as required.

One downside of predicting the next time step in language modeling entirely
in one shot as a block is that the individual predictions are not conditioned
on each other, especially because the outputs in language are typically discrete
tokens that are either greedily chosen or sampled according to the output prob-
abilities from the language modeling head. However, since object-level features
are continuous in our case, this is likely less of a problem as there is no sampling
step and the features interact with each other up to the attention layer in the
last transformer layer. For the case of VQ-VAE and other discretized scene rep-
resentations, we refer the reader to Non-Autoregressive Transformers (NATs),
which are proposed in [19] for machine translation and other use cases.
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Fig. 5: Additional Visualization of Slot Forecasting Results for CarFormer
with SAVi-7-base (left half) and CarFormer with SAVi-14-light (right half).
Each sub-figure shows an example of input (dark grey)-output (light grey) objects in the
first column, SAVi reconstructions in the second column, and our model’s predictions
in the third column. The top left corner of each column shows the mIoU compared to
the ground truth. For comparison, we overlay the three in the last column where the red
channel (R) is the ground-truth location, the green channel (G) is SAVi reconstruction,
and the blue channel (B) is our prediction. In the case of perfect alignment between the
three, we see the vehicles in white, and different errors can be seen from combinations of
R-G-B colors such as yellow (R+G) indicating misses and blue indicating false positives
for our model (B).
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