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Abstract. Recent advancements in large-scale foundational models have
sparked widespread interest in training highly proficient large vision
models. A common consensus revolves around the necessity of aggregat-
ing extensive, high-quality annotated data. However, given the inherent
challenges in annotating dense tasks in computer vision, such as ob-
ject detection and segmentation, a practical strategy is to combine and
leverage all available data for training purposes. In this work, we propose
Plain-Det, which offers flexibility to accommodate new datasets, robust-
ness in performance across diverse datasets, training efficiency, and com-
patibility with various detection architectures. We utilize Def-DETR,
with the assistance of Plain-Det, to achieve a mAP of 51.9 on COCO,
matching the current state-of-the-art detectors. We conduct extensive
experiments on 13 downstream datasets and Plain-Det demonstrates
strong generalization capability. Code is release at https://github.
com/ChengShiest/Plain-Det.
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1 Introduction

Large-scale datasets have fostered significant advances in computer vision, rang-
ing from ImageNet [6] for image classification to more recent datasets [9, 19]
like SA-1B [13] for image segmentation. Object detection [1,24,25], as one of the
fundamental tasks in computer vision, inherently demands large-scale annotated
data. However, annotating such extensive and densely annotated objects is both
costly and challenging. Another straightforward and practical approach is unify-
ing multiple existing object detection datasets [9,19,29] to train a unified object
detector [4,22,43]. Nonetheless, inconsistency between datasets, such as differing
taxonomies and data distributions as illustrated in Fig 1(a), poses challenges to
multi-dataset training.

In this paper, we aim to address the challenges to train an effective and
unified detector using multiple object detection datasets, with the expectation
that it should: (1) Flexibility to new datasets in a seamless and scalable
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Fig. 1: The benefits and challenges of multi-dataset object detection. (a) Var-
ious datasets span diverse taxonomies and data distributions. (b) Semantic space cali-
bration. (c) Our approach leverages the advantages of training across multiple datasets
to achieve performance enhancements through scaling up data volume.
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manner without requiring manual adjustments, complex designs, and training
from scratch. (2) Robustness in performance when incrementally incorporat-
ing new datasets, consistently leading to improved performance or, at the very
least, maintaining stable performance. (3) Training efficiency . The number of
training iterations required for multi-dataset training is no greater than that for
a single dataset. (4) Compatibility with detection families, such as Faster-
RCNN series [7, 25,31] and DETR-based detection architecture [1, 36,44].

To start, we introduce a simple yet flexible multi-dataset object detection
baseline, which boldly challenges some recent design principles while keeping
other advances. Recent works [4,22,43] explicitly unify taxonomies across differ-
ent datasets into a single, unified one. However, despite their automatic meth-
ods, they still require carefully hand-designed components and lack flexibility in
scaling to more datasets. This is primarily because 1) the mapping from dataset-
specific label spaces to a unified one, learned automatically, becomes noisier as
the label space size grows, and 2) incorporating new datasets necessitates recon-
structing the unified taxonomy. Therefore, we introduce a shared detector
with entirely dataset-specific classification heads to naturally prevent
conflicts between different taxonomies and ensure flexibility. Further-
more, following [4, 8, 41], we utilize text embeddings of category labels to build
a shared semantic space of all labels. Notably, the semantic space implicitly es-
tablishes connections between labels from different classifiers, enabling full use
of all the training data despite the dataset-specific classification head. Although
our multi-dataset baseline model demonstrates flexibility, its performance no-
tably lags behind that of the single-dataset object detector, with a −3.2% mAP
decrease observed when comparing our baseline “◦C+L+O+D” and “◦ single”
model in Table 1.

Therefore, we probe the pivotal factors impacting the success of the baseline
and offer three insights to empower it to be not only super flexible but also
highly effective:
1) Semantic space calibration is inspired by questioning whether the classi-
fier with frozen text embeddings is perfect for object detection. Fig 1(b)-“origin”
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Fig. 2: The insights for sparse proposal generation and emergent property.
(a) Difference between dense proposal generation and sparse proposal generation. (b)
Analysis of two types of proposal generation under multi-dataset object detection train-
ing. (c) The emergent property in multi-dataset training. The detector trained on
COCO+O365+LVIS shows unstable performance on LVIS.
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shows the similarity matrix of text embeddings between categories, which is
noticeably different from the one generated by learnable classification weights
(Fig 1b-“learnable”). The bias originates from CLIP’s training data distribution;
for instance, the text-image pairs in CLIP typically exhibit a long-tail distribu-
tion in the frequency of nouns. This results in a high similarity between the text
embeddings of frequently occurring nouns (such as ‘person’ in Fig 1b) and other
words (including NULL). In turn, we discover that an infrequently occurring NULL
exhibits high similarity with frequently occurring words and low similarity with
infrequently occurring ones. Therefore, we can treat the empty string NULL as
a meaningless basis to extract the basis driven by frequency, resulting in the
calibrated similarity matrix shown in Fig 1(b)-“modified”.
2) Sparse proposal generation . In object detection, object proposal gener-
ation is crucial, especially in multi-dataset scenarios. This is because the same
object proposals used as anchors to predict different object sets for different
datasets. For example, while COCO and LVIS share the same image set, there
are significant differences in annotated categories. This necessitates that the same
object proposals within the same image can anchor different objects from both
COCO’s 80 categories and LVIS’s 1203 categories. Currently, object proposal
generation methods can be broadly categorized into two types [31]: 1) dense or
dense-to-sparse proposal generation [24,25], which generates proposals across all
image grids or selects a small subset from dense proposals, and 2) sparse proposal
generation [1,31,44], which typically directly generates a set of learnable propos-
als (see Fig 2a). Therefore, we conduct preliminary experiments and comparisons
of these two types of proposal generation methods in multi-dataset object detec-
tion on the COCO and LVIS datasets. The results suggest that sparse proposal
generation methods consistently outperform the dense approach across both ob-
ject detector families, as shown in Fig 2b. One possible reason is that compared
to dense proposal generation, sparse proposals (i.e., sparse queries) [1,17,36,44]
have been demonstrated to capture the distribution of the dataset, making it
easier to learn the joint distribution from multiple datasets. However, the perfor-
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mance of multi-dataset training still falls below that of single-dataset training,
due to the need for the same queries to capture the priors of different datasets.
Therefore, we improve sparse queries to class-aware queries based on the unified
semantic space and image prior, which mitigates the challenge of a set of queries
having to accommodate multiple datasets.
3) Dynamic sampling strategy inspired by the emergent property . De-
spite the two insights above unlocking the potential of training a unified detec-
tor on multiple datasets like COCO [19] and LVIS [9], the inclusion of dataset
Objects365 [29] leads to large fluctuations in the detection performance during
training (see Fig 2b-“static sampler”), primarily due to noticeable imbalances
in dataset sizes (see Fig 2c). Surprisingly, we observe that even when the de-
tector in a given iteration has low precision on a dataset, it can substantially
enhance its precision by undergoing a few additional training iterations on that
specific dataset (see Fig 2b-“emergent”). We attribute this phenomenon to an
emergent property of multi-dataset detection training: a detector trained on
multiple datasets inherently possesses a more general detection capability than
training on a single dataset, and the ability can be activated and adapted to the
particular dataset by a few dataset-specific iterations. Inspired by the property,
we propose a dynamic sampling strategy to achieve better balance among dif-
ferent datasets, which dynamically adapts the multi-dataset sampling strategy
in subsequent iterations based on the dataset-specific loss observed previously.

Finally, we introduce Plain-Det, a simple yet effective multi-dataset object
detector that can be easily implemented by directly applying the three proposed
insights to the baseline, thanks to the baseline’s flexibility. In summary, our
contributions are:

– We offer three key insights to unlock the challenges of multi-dataset object
detection training, including the calibration of the label space, the appli-
cation and improvement of sparse queries, and the emergent property with
few-iteration dataset-specific training.

– Building upon these three insights, we introduce a simple yet flexible multi-
dataset detection framework, denoted as Plain-Det, which satisfies the fol-
lowing criteria: flexibility to accommodate new datasets, robustness in per-
formance across diverse datasets, training efficiency, and compatibility with
various detection architectures.

– We integrate Plain-Det into the Def-DETR model and conduct joint train-
ing on common public datasets, comprising 2,249 categories and 4 million
images. This integration boosts the performance of the Def-DETR model
from 46.9% mAP on COCO to 51.9%, achieving performance on par with
the current state-of-the-art object detectors. Furthermore, it establishes new
state-of-the-art results on multiple downstream datasets.

2 Related work

Multi-Dataset Object Detection is gaining prominence as a crucial step
for advancing large vision models. It aims to break down the barriers between
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datasets and empower detection models with extensive data integration. The
fundamental challenges arise from the incongruities in dataset distributions,
various taxonomies, and disparate data scales. Early works [16, 38, 39] leverage
external priors or human knowledge to construct a unified label space during
multi-dataset training. However, this approach becomes inflexible when scaling
dataset categories to thousands. Recently, with the rise of joint image-text train-
ing, Many works [4,8,22,30,33] generate label spaces using text embeddings from
pre-trained vision-language models. However, due to the imbalanced data dis-
tribution in pre-trained text corpora, the text embedding space exhibits biases
towards specific datasets. We are the first to identify and propose a solution to
address this issue during the multi-dataset training process.
Query-based Object Detection has rapidly evolved with the ascendancy of
the query-based [1, 12, 17, 31, 36, 44] framework, deriving various query initial-
ization strategies. The pioneering work DETR [1] proposes a sequence of learn-
able queries for capturing object-level information. Naive zero-initialization is
adopted originally. Later works [3,20,31,44,45], including Deformable DETR [44]
and Sparse RCNN [31], follow such design, accompanied by pixel-initialized
queries or sparse proposals. In the context of multi-dataset training, Det-Hub [22]
introduces dataset-aware queries to adapt to various data distributions. To ef-
fectively integrate the spatial and dataset priors into our model, we meticulously
devised the Class-Aware Query Compositor, initialing class-aware queries with
weak priors.
Data Sampling Strategy holds critical importance in multi-dataset train-
ing [4, 22, 43] due to substantial variations in the number of images and classes
across different datasets. For instance, LVIS [9] encompasses nearly four times
the number of categories present in Objects365 [29], while the number of images
is 17 times fewer. UniDet [43] has demonstrated that incorporating a uniform
sampling strategy for various datasets yields benefits. However, such “balance”
between different datasets solely refers to the sampled number of images. There-
fore, we propose a hardness-indicated sampling strategy to dynamically adjust
sampler weights based on the training hardness of different datasets.

3 Our Method

As shown in Fig 3, we propose a general framework and training strategy for
multi-dataset object detection, free from pursuing a particular detection archi-
tecture, and compatible with various detection families. In Sec 3.1, we first intro-
duce the preliminaries on query-based object detectors and then abstract three
primary components of multi-dataset object detection: 1) the object detector
architecture with dataset-specific classification heads and frozen classifiers (see
Section 3.2), 2) object queries generation via the class-aware query compositor
(see Section 3.3) and 3) the hardness-indicated sampler for multi-dataset training
(see Section 3.4).
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Fig. 3: Method overview. Our multi-dataset detector Plain-Det is compatible with
various query-based detection families. (a) Our multi-dataset joint training framework
for object detection. (b) Overview of query compositor: it takes images and the label
embeddings of datasets as inputs and outputs class-aware query.
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3.1 Preliminaries

Query-based object detector. By reformulating object detection as a set pre-
diction problem [1], recent query-based object detectors, such as DETR-based
methods [1, 17, 36, 44] or the Sparse-RCNN [31], leverage learnable or dynami-
cally selected object queries to directly generate predictions for the final object
set. This approach eliminates the requirement for hand-crafted components like
anchor presets [7, 25] and post-processing NMS [7, 25]. A query-based detector
consists of three components: a set of object queries, an image encoder (e.g .,
Transformer encoder [32] in DETR or CNN [11, 14] in Sparse-RCNN), and a
decoder (e.g ., Transformer decoder [32] in DETR or dynamic head [5] in Sparse-
RCNN). For a given image I, the image encoder Enc(·) extracts the image
features, which are subsequently input to the decoder Dec(·) along with the ob-
ject queries Q to predict the category C and bounding box B for each query.
Typically, the classification head Hc(·) and the box regression head Hb(·) con-
sist of several layers of multi-layer perceptrons (MLPs). The overall detection
pipeline can be viewed as follows:

Q̂ = Dec(Enc(I),Q),

C = Hc(Q̂), B = Hb(Q̂),
(1)

where Q̂ is the query feature after query refinement by decoder layer. To sim-
plify the demonstration, we use f(·) to represent the object detector, where the
encoder Enc(·), decoder Dec(·), learnable or selected queries Q, classification
head Hc(·), and box regression head Hb(·) are components of it.
Single-dataset object detection training. For training on a single dataset
D, the optimization objective of a query-based object detector can be formulated
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as follows,
argmin

Θ={Enc,Dec,Q,Hb,Hc}
E(I,B̂)∼D[ℓ(f(I;Θ), B̂)], (2)

where (I, B̂) represents a pair of image and annotations from the dataset D.
The loss function ℓ is typically the cross-entropy loss for the class predition and
the generalized intersection over union loss for the box regression [27].

3.2 Dataset-specific Head with Frozen Classifier

In this section, we introduce our multi-dataset object detection framework, which
is compatible with any query-based object detection architecture. To support
multiple datasets, our framework features a distinct dataset-specific classification
head for each dataset. Within these heads, the classifiers are pre-extracted and
frozen during training.
Object detector with dataset-specific classification head. Multiple datasets
D1, D2, ..., DM with respective label spaces L1, L2, ..., LM , may have inconsis-
tent taxonomies. For example, the “dolphin” class in the Obj365 dataset [29] is
labeled as background in the COCO dataset [19]. Recent works thus either man-
ually or automatically create a unified label space for the M datasets by concate-
nating every dataset-specific label space [4], learning mappings from each label
space to the unified one [43], or assigning soft labels to the sub-word set [22] of
class names. However, a unified label space lacks flexibility when scaling to more
datasets and tends to become noisier as the label space size grows. Therefore,
we propose to keep each label space separate to directly and naturally address
the issue of inconsistent taxonomies. Specifically, we augment the query-based
object detector by adding M dataset-specific classification heads H1

c(·), H2
c(·),

..., HM
c (·), each specializing in classifying objects within its corresponding label

space:
Q̂ = Dec(Enc(I),Q),

Cm = Hm
c (Q̂), B = Hb(Q̂),

(3)

where Hm
c (·) is the dataset Dm’s classification head on the label space Lm.

The encoder Enc(·), decoder Dec(·), object queries Q, and class-agnostic box
regression head Hb(Q̂) are shared across datasets. Notably, while our detector
is formally similar to the partitioned detector [43], our classification heads are
independently optimized with their respective objectives. In contrast, partitioned
detector [43] subsequently optimizes the outputs of the partitioned detector with
the objective of unified taxonomy.
Frozen classifiers with a shared semantic space. While dataset-specific
heads address conflicts arising from inconsistent taxonomies, they do not fully
leverage similar semantic classes, such as the common class “person”, from dif-
ferent datasets for comprehensive learning. To address this problem and transfer
the common knowledge across diverse datasets, we follow [4] to leverage the pre-
trained CLIP [23] model’s feature space as the shared semantic space for class
labels. Specifically, for each dataset Dm with label space Lm, we utilize its labels’
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Fig. 4: Comparison of different proposal generation methods and ours. (a)
Proposal generation from sparse queries. (b) Proposal generation from top-K dataset-
specific pixel features in dense image feature map. (c) Our class-aware query generation
relies on weak priors associated with the dataset and the image. Dataset-specific head
shows we use the different frozen classification heads to calculate the loss.
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CLIP text embeddings as the classifier Wm within its classification head Hm
c (·):

Wm = Enctext(Prompt(Lm)), (4)

where Prompt(Lm) generates text prompts “the photo is [class name]” for every
class in label space Lm, and Enctext(·) is the frozen text encoder of CLIP. To
correct the bias comes from CLIP’s training data distribution, We calibrate text
embeddings by removing the basis bias as follows:

Ŵm = Norm(Wm − Enctext(NULL)), (5)

where Enctext(NULL) is the text embedding of the empty string, and the Norm
is the L2 normalization.

3.3 Class-Aware Query Compositor

Object query generation, as the essential component of query-based object
detectors [1,3,17,20,31,36,44,45], has been extensively explored in single-dataset
training, yielding diverse types based on their independence from images [36].
In multi-dataset object detection, initializing object queries becomes even more
crucial due to the diversity of multiple datasets involved. This extends beyond
the scope of query initialization in single-dataset object detection, where queries
are initialized randomly or generated from input image feature map based on
dataset-specific top-K score (see Fig 4a and b). In our preliminary experiments
on multi-dataset object detection, selecting the top-K pixel features [1] from the
encoder (Def-DETR ++ [44] in Fig 2) led to a significant drop in performance,
compared to single-dataset training. This is because the top-K candidate objects
within an image depend significantly on the dataset taxonomy and are strongly
correlated with the dataset. An excessively strong dataset prior conditions the
detector towards dataset-specific decoding, which in turn hinders the decoder
from fully exploiting multiple datasets for comprehensive learning. Conversely,
dataset-agnostic query initialization (Def-DETR [44] in Fig 2) shares the same
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learnable object queries across all datasets. Based on these observations and
insights, we propose a novel query initialization method for multi-dataset object
detection (see Fig 4c). Neither dataset-agnostic nor strongly dataset-dependent,
our class-aware query initialization relies on weak priors associated with the
dataset and the image. Given an image I and its corresponding dataset Dm’s
classifier Ŵm, we first construct a dataset-specific weak query embedding Qb

based on the classifier as follows:

Qb = MLP(Ŵm). (6)

Notably, despite being dataset-specific, unlike strong priors that directly select
dataset-specific image content, we obtain a weak prior by employing its dataset-
specific classifier that shares the same semantic space across different datasets.
Through this weak prior, similar semantic labels across different datasets can
be shared. Subsequently, we opt to extract the global image feature rather than
the top-K local content features as the weak image prior. We then combine this
with dataset-specific queries as follows:

W = MLP(Max-Pool(Enc(I))),

Qc = WQb,
(7)

where Max-Pool performs max pooling over the entire image, and W can be
regarded as a weak image prior. And Qc represents the final query feature fed to
the decoder. Importantly, our modifications are solely focused on the classifica-
tion head and query initialization, making them easily applied to and compatible
with all query-based object detectors.

3.4 Training with Hardness-indicated Sampling

Apart from detector architecture adjustments discussed in Sec 3.2 and Sec 3.3
to adapt to multiple datasets, training a multi-dataset detector brings forth
additional challenges due to notable disparities in dataset distribution, image
quantities, label space sizes, and more. In this section, we first formulate the
objective of multi-dataset training and then improve the training strategy based
on our observation of the emergent property introduced in Fig 2.

In general, the optimization objective for training our multi-dataset object
detector on M datasets D1, D2, ..., DM can be formulated as follows,

argmin
Θ∈{Enc,Dec,Qc,Hb},{Hm

c }M
m=1

EDm

[
E(I,B̂)∼Dm

[ℓm(f(I,Θ;Hm
c ), B̂)]

]
, (8)

Where, except for the task-specific classification head Hm
c , the remaining compo-

nents of the object detector f(·), including the encoder Enc(·), decoder Dec(·),
lightweight MLPs for generating object queries Qc (Equ 7), and class-agnostic
box regression head Hb(·), are shared across different datasets. Thanks to our
dataset-specific classification head Hm

c (·), our loss ℓm can be naturally tailored
to the specific dataset, ensuring the preservation of the original training loss and
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sampling strategy for each dataset individually. For instance, we apply RFS [9]
to the long-tailed LVIS [9] dataset but not to the COCO [19] dataset.

Although dataset-specific losses can adapt to each dataset’s internal charac-
teristics, significant differences between datasets, such as differences in dataset
sizes, present training challenges that must be addressed. Therefore, we propose
a hardness-indicated sampling strategy to balance the number of images across
datasets and dynamically assess dataset difficulty during online training. We
first periodically record the box loss, L1, . . . , Lm, for different datasets. Then
compute the online sampling weight wm as follows:

wm =
Lm

min({Li}mi=1)
[
max({Si}mi=1))

Sm
]
1
2 , (9)

where Si means the number of images in the i-th dataset, and wm will be involved
in controlling the weight of each dataset in data sampling. The online sampler will
sample data from each dataset according to the proportion of its corresponding
weight wm.

4 Experiment

We conduct the following experiments to demonstrate the effectiveness of our
Plain-Det. We first introduce our training setups in Section 4.1. Then we analyze
Plain-Det with an increasing number of datasets in Sec 4.2, report Plain-Det on
various detection benchmarks in Sec 4.3 and Sec 4.4 and conduct ablation study
in Sec 4.6.

4.1 Training setups

Implementation details. If not mentioned, we use a partitioned (with dataset-
specific head) Deformable-DETR [44] as our default object detector and set the
number of queries to 300. Profiting from our model’s compatibility with the
detection family, we also integrate Plain-Det with other query-based detectors,
Sparse R-CNN [31], for experiments. Our implementation is based on the official
implementation in Detectron2 [34] and Detrex [26].

4.2 Performance with growing number of datasets

Strict multi-dataset training. To demonstrate the effectiveness of our Plain-
Det in multi-dataset training, showcasing how different datasets can mutually
benefit from our approach, we test our method under the strict multi-dataset
training setting. Under the strict multi-dataset training setting in Table 1, when
the number of datasets increases, the total training iteration remains the same
as the largest dataset among them. For example, we train O365 [29] for 450k
iterations separately, then we train ‘L+C+O’ for 450k iterations too. Note that
generally, increasing training iterations improves the performance of detectors.
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Table 1: Performance with growing number of datasets. We train our Plain-
DNet under a strict multi-dataset setting: when the number of datasets increases, the
total training iteration remains the same. For example, we train O365 [29] for 450k
iterations separately, then we train ‘C+L+O’ for 450k iterations too. ◦ : method w/o
our Plain-DNet, • : method w/ our Plain-DNet. Single: single-dataset training, mAP is
the mean AP across datasets.

Method COCO [19] LVIS [9] O365 [29] OID [35] mAP

◦ Single [44] 45.6 33.6 32.2 61.0 43.2
◦C+L+O+D 44.2 29.1 27.4 59.4 40.0

•L 37.2 33.3 13.4 35.3 29.8
•L+C 46.0 33.2 14.2 35.7 32.3
•L+C+O 51.8 39.9 33.2 41.7 41.7
•L+C+O+D 51.9 40.9 33.3 63.4 47.4

However, in strict settings, the performance improvement of multi-dataset train-
ing can only come from the mutual assistance of different datasets, which is
precisely our focus. An exception arises with the ‘L+C+O+D’ dataset, where
severe underfitting is observed when training only on O365 [29] iterations. Con-
sequently, we double the training iterations.
Increasing performance when increasing number of datasets. We pro-
vide the single-dataset baseline by training official Deformable-DETR [44] which
has a similar single-dataset performance (33.6% vs 33.3% on LVIS [9]). We also
provide a simple baseline for merging multi-dataset training to demonstrate that
improving performance across multiple datasets is not a trivial task. Starting
from training on a single dataset, LVIS, the performance on COCO [19] im-
proved from 37.2% to 46.0%, 51.8%, and 51.9%. The results of multi-dataset
training also surpassed the performance of single-dataset training at 45.6%. The
mAP of multi-dataset training also increased from 29.8% to 32.3%, 41.7%, 47.4%.
Moreover, compared to the multi-dataset detector baseline, Plain-Det gives much
better performance, even though overall training iteration does not extend which
means that the utilization of Plain-Det facilitated mutual assistance among dif-
ferent datasets, leading to the learning of a unified detector.

4.3 Comparison to state-of-the-art multi-dataset detectors

In Table 2, we compare Plain-Det against other state-of-the-art multi-dataset
detectors [4, 41,43]. In Table 2a, We provide the performance of different meth-
ods [4, 41] on combinations of different datasets [9, 15, 19, 28, 29] for LVIS [9]
(L) and COCO [19] (C) to demonstrate the robustness of different methods to
different datasets. In Table 2b, We present the performance gap between joint
training and individual training of different methods [4, 43] on the same multi-
dataset COCO [19] (C), Object365 [29] (O365) and OID [15] (D) to demonstrate
the benefits of different methods on the same multi-dataset.
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Table 2: Compare to state-of-the-art multi-dataset detectors.

(a) Performance of different meth-
ods [4, 41] on combinations of different
datasets [9, 15, 19, 28, 29]. We report the AP
on COCO (C), LVIS (L), and mean AP across
two datasets.

Model Dataset(s) C L mAP
Detic [41] L,C 43.9 33.0 38.4
Detic [41] L,C,IN21K 42.4 35.4 38.9
ScaleDet [4] L,C 44.9 33.3 39.1
ScaleDet [4] L,C,O365 47.0 36.5 41.7
ScaleDet [4] L,C,O365,D 47.1 36.8 41.9
Ours L,C 46.0 33.3 40.0
Ours L,C,O365 51.8 39.9 45.9
Ours L,C,O365,D 51.9 40.9 46.4

(b) Performance gap between joint train-
ing and individual training of different
methods [4,43] on the multi-dataset train-
ing. We report the AP on COCO (C), Object365
(O365), and mean AP across two datasets.

Model Dataset(s) C O365 mAP

UniDet [43]
single 42.5 24.9 33.7
multiple 45.5 24.6 35.0
∆ +3.0 +0.3 +1.3

ScaleDet [4]
single 46.8 28.8 37.8
multiple 47.1 30.6 38.9
∆ +0.3 +1.8 +1.1

Ours
single 45.6 30.0 37.8
multiple 51.9 33.3 42.6
∆ +6.3 +3.3 +4.8

Performance on different multi-datasets. Table 2a shows the comparison
between Plain-Det and previous multi-dataset detectors [4, 41] on combinations
of different datasets. Compared with ScaleDet [4], our Plain-Det consistently
outperforms ScaleDet [4] across different dataset combinations (in an apple-to-
apple comparison). The improvement increases from 0.9% for ‘L+C’ to 4.2% for
‘L+C+O’, and further to 4.5% for ‘L+C+O+D’, demonstrating that our method
scales better to larger datasets compared to ScaleDet. This also indicates that
the three proposed improvements are highly effective.
Performance increment. Table 2b presents the comparison between Plain-
Det and previous multi-dataset detectors [4, 43], showcasing the performance
gap between joint training and individual training. Compared with Unidet [43],
which learns a unified label space, Plain-Det achieves an absolute increase of
7.6% (42.6% vs. 35.0%) and a relative growth of over 3.5% (4.8% vs. 1.3%),
considering the average AP of two datasets. Compared with ScaleDet [4], which
also utilizes CLIP [23] text embeddings but overlooks the issues within text
embeddings, Plain-Det achieves an absolute increase of 5.9% (42.6% vs. 36.7%)
and a relative growth of over 2.4% (4.8% vs. 2.4%), considering the average AP.

4.4 Comparisons of performance and efficiency across different
detection families

Comparison under non-RCNN family. Table 3a shows the comparison be-
tween Plain-Det and previous multi-dataset detectors [4,41] based on non-RCNN
detectors [42, 44]. We report the number of epochs where COCO [19] appears
during multi-dataset training to represent the efficiency of the multi-dataset ob-
ject detector. A lower frequency of COCO appearances indicates higher training
efficiency. Compared with the previous SOTA method ScaleDet [4], Plain-Det
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Table 3: Comparisons of performance and efficiency across different detec-
tion families. We present the results of various multi-dataset training methods on
the COCO validation set, along with the total number of iterations where COCO data
appeared during multi-dataset training.

(a) Comparison under non-RCNN family

non-RCNN
family

multi
datasetsepoch

COCO
APbox

CenterNet2 [42] ✗ 12 42.9
+Detic [41] ✓ - 42.4
+ScaleDet [4] ✓ 192 47.1
Def-DETR [44] ✗ 50 46.9
+ Ours ✓ 36 51.9

(b) Comparison under RCNN family

RCNN
family

multi
datasetsepoch

COCO
APbox

Mask RCNN [10] ✗ 36 39.8
+RegionCLIP [40] ✓ - 42.7
Sparse RCNN [31] ✗ 12 43.0
+ Det-Hub [22] ✓ 12 45.3
+ Ours ✓ 12 46.1

Table 4: Results of zero-shot transfer on 5 individual datasets on ODinW.
R, T: ResNet50 [11], Swin-Tiny [21]. GoldG: 0.8M grounding data curated by
MDETR [12], cap4M: 4M image-text pairs [2].

Model Datasets #Data #1 #2 #3 #4 #5 mAP

GLIP-T [18] O+GoldG+Cap4M 5.5M 18.4 50.0 49.6 57.8 44.1 44.0
ScaleDet-R [4] L+C 0.2M 9.1 2.1 12.4 41.2 25.5 18.1
ScaleDet-R [4] L+C+O 1.9M 8.7 1.4 25.0 47.3 20.8 20.6
ScaleDet-R [4] L+C+O+D 3.6M 23.2 45.1 38.9 48.3 40.6 39.2

Ours-R L+C 0.2M 16.0 7.0 15.5 45.9 26.6 22.2
Ours-R L+C+O 1.9M 16.5 13.3 31.4 49.4 52.8 32.7
Ours-R L+C+O+D 3.6M 27.9 43.3 47.3 58.1 54.1 46.1

achieves superior performance (51.9% vs 47.1%) while utilizing fewer instances
of COCO data (36 vs 192). Compared to our underlying object detector Def-
DETR [44], the advantages of multi-dataset training are also significant. We
achieved a notable performance boost of 5.0% in COCO validation AP while
using only 72% of the data.
Comparison under RCNN family. Table 3b presents the comparison be-
tween Plain-Det and previous multi-dataset detectors [22, 40] based on RCNN
detectors [10, 31]. Sparse RCNN, as the first work to introduce queries into the
RCNN series, has shown significant improvements in both performance and ef-
ficiency. By integrating Plain-Det into Sparse RCNN and utilizing the same
quantity of COCO data, we achieved a performance increase of 3.1%, reaching a
COCO validation performance of 46.1%, matching the best multi-dataset object
detector under the RCNN series, Det-Hub [22].

4.5 ODinW benchmark

Zero-shot transfer on ODinW. Following ScaleDet [4], table 4 shows the
zero-shot transfer performance on 5 individual datasets from Object Detection in
Wild (ODinW [37]). For an apple-to-apple comparison, our method significantly
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Table 5: Ablation on partition head, class-aware query and sampler.
(a) We ablate the partition head, sparse query on
C+L, and sampler on C+L+O.

Par Que Tex C [19] L [9] mAP
1 ✗ ✗ ✓ 39.3 23.8 31.6
2 ✓ ✗ ✓ 38.1 24.0 31.1
3 ✓ ✓ ✗ 44.2 28.7 36.5
4 ✓ ✓ ✓ 45.3 30.2 37.8
Sampler C [19] L [9] O365 [29] mAP

4 ✗ 43.5 26.8 25.5 31.9
5 ✓ 47.1 32.4 25.6 35.0

(b) Analysis on ratio w.
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surpasses the previous state-of-the-art ScaleDet [4] in various training dimensions
(+4.1% in L+C, +12.1% in L+C+O, +6.9% in L+C+O+D). In comparison to
GLIP [37], which was trained on a much larger combination of multi-datasets,
our method still outperforms GLIP with the use of fewer data (3.6M vs 5.5M),
achieving a higher performance of 46.1% compared to 44.0%.

4.6 Ablation Study

Ablation on partition head, sparse query, and label corr. As we gradually
introduce the components proposed, including Que (class-aware query) and Tex
(label space correction), the mAP steadily increases from 31.1% to 36.5% and
then to 37.8%. One exception is the partition head. With the introduction of
the partition head, there is a slight performance decrease (-0.5%). However, we
want to emphasize that a partition head is essential for the flexibility of scaling
up datasets. Therefore, a minor performance loss is deemed acceptable.
Ablation on sampler. We conducted experiments on samplers using three
datasets with highly uneven sizes (C+L+O), where L has the most categories
and O has the most annotations and our online sampler results in a 4.1% in-
crease in mAP. As shown in Fig 5b, the online sampler oversampled from L and
undersampled from O, which aligns with our prediction of the difficulty levels of
the L and O datasets.
5 Conclusion and Limitations

We introduce Plain-Det, an efficient multi-dataset detector, that meets the fol-
lowing requirements: adaptability to incorporate new datasets, consistency in
performance across a wide range of datasets, efficiency in training, and compat-
ibility with different detection architectures. We validated our conclusions using
over 17 datasets and achieved consistent improvements across multiple datasets.
Limitations: Given that our semantic label space is derived from the CLIP [23]
models, we acknowledge that biases and controversies inherent in the training
data for these models may be introduced into our model. Acknowledgment:
This work was supported by the National Natural Science Foundation of China
(No.62206174) and MoE Key Laboratory of Intelligent Perception and Human-
Machine Collaboration (ShanghaiTech University).
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