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Abstract. Semi-supervised medical image segmentation has shown promise
in training models with limited labeled data. However, current dominant
teacher-student based approaches can suffer from the confirmation bias.
To address this challenge, we propose AD-MT, an alternate diverse teach-
ing approach in a teacher-student framework. It involves a single stu-
dent model and two non-trainable teacher models that are momentum-
updated periodically and randomly in an alternate fashion. To mitigate
the confirmation bias via the diverse supervision, the core of AD-MT lies
in two proposed modules: the Random Periodic Alternate (RPA) Up-
dating Module and the Conflict-Combating Module (CCM). The RPA
schedules an alternating diverse updating process with complementary
unlabeled data batches, distinct data augmentation, and random switch-
ing periods to encourage diverse reasoning from different teaching per-
spectives. The CCM employs an entropy-based ensembling strategy to
encourage the model to learn from both the consistent and conflicting
predictions between the teachers. Experimental results demonstrate the
effectiveness and superiority of AD-MT on the 2D and 3D medical seg-
mentation benchmarks across various semi-supervised settings.

Keywords: Semi-supervised Learning · Medical Image Segmentation ·
Alternate Diverse Teaching · Random Periodic Alternate

1 Introduction

Medical image segmentation is a pressing task in computer-aided diagnosis, as
it plays a crucial role in medical image reasoning [4,27,36]. Current methods for
medical image segmentation heavily rely on deep neural networks, which necessi-
tates a substantial amount of annotated data for training. However, annotating
pixel-wise medical images is challenging and time-consuming, often requiring
expert annotators [33,39]. In response to this challenge, several studies have fo-
cused on the development of semi-supervised medical image segmentation (SS-
MIS) techniques, aiming to train models using a limited amount of labeled data
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Fig. 1: Frameworks of different SSMIS methods. Crucial distinctions arise from how
the unlabeled data is leveraged. a) the plain teacher-student framework, b) a two-
student co-training paradigm that enforces mutual learning, c) a two-teacher ensemble
framework where two differently initialized and updated teacher models supervise the
training of the student model in a average manner, d) our proposed alternate diverse
mean-teacher (AD-MT) framework. Our framework involves two teacher models that
are updated periodically and randomly, using complementary unlabeled data batches,
distinct data augmentation strategies, and randomized switchable periods, to enlarge
their disagreement. Additionally, our Conflict-Combating Module (CCM) encourages
the student model to learn from the conflict predictions of the teacher models rather
than dropping conflicts directly. “sg" denotes “stop gradient".

and a larger amount of unlabeled data [2, 17, 31]. It is evident that the key lies
in effectively leveraging the unlabeled data to assist the labeled data for model
training [10,13,15].

Recent SSMIS studies are dominated by consistency regularization (CR)
based approaches, which encourage the model to generate consistent predic-
tions from disagreements on the same unlabeled input [12,32,40]. Various works
adopt a teacher-student framework with weak and strong data augmentation
strategies and encourage the exponential moving average (EMA) teacher model
to provide supervision for unlabeled training. However, as discussed in many
semi-supervised studies [2, 18, 29], a single model can inevitably produce noisy
and even wrong pseudo-labels, resulting in the model suffering from the so-called
confirmation bias issue [1].

In the literature, early studies like DTC [17], SASS-Net [12], and SS-Net [31],
tend to introduce extra training constraints to tackle the confirmation bias in an
indirect manner. Differently, recent works turn to increasing diverse supervision
signals to alleviate the bias directly. Studies along this line can be divided into
two categories, i.e., the multi-student co-training method [5,18,32] and the multi-
teacher ensembling method [15]. The co-training framework aims at introducing
another diverse student model and encouraging both models to supervise each
other mutually, as shown in Figure 1b. However, in addition to introducing
extra training efforts and losing the EMA stability, these methods using the
same network structure cannot produce a sufficient discrepancy between co-
training models by only using different initialization and learning rates. On the
other hand, the multi-teacher ensembling methods encourage the student model
to update different teacher models iteratively, avoiding extra training costs, as
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shown in Figure 1c. However, a key issue in such methods is the teacher model
updating strategy, which has not been carefully designed to generate diverse
supervision. Besides, existing ensembling methods typically adopt an average
strategy and train the model only from their consistent predictions. Few studies
have explored the potential benefits of learning from the conflicts.
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Fig. 2: We compare our proposed AD-MT with
recent SSIMS methods in terms of the Dice score
on 2D ACDC, 3D LA and Pancreas datasets with
3, 4, and 6 labeled instances, respectively. Our
end-to-end AD-MT can consistently outperform
the current state-of-the-art BCP (which requires
an additional pre-training stage).

Facing these issues, in this
paper, we propose a novel alter-
nate diverse teaching approach
in a teacher-student framework,
dubbed AD-MT, for SSMIS. As
shown in Figure 1d, AD-MT in-
volves a single trainable student
model and two non-trainable
teacher models that are up-
dated directly by the EMA of
the student weights. In specific,
two teachers are updated pe-
riodically and randomly in an
alternate fashion. To encourage
diverse reasoning from differ-
ent teaching perspectives, AD-
MT enlarges the discrepancy
by using complementary data
batches, distinct data augmen-
tation strategies, and random-
ized switchable periods. This al-
ternating diverse updating pro-
cess is scheduled by our pro-
posed Random Periodic Alter-
nate Updating (RPA) Module. Furthermore, instead of discarding conflict-
ing predictions of the teacher models, we design an entropy-based Conflict-
Combating Module (CCM) that separates the consistent and conflicting pre-
dictions and also encourages the model to learn from the disagreements between
the teachers. Thanks to our proposed two modules, AD-MT, as shown in Fig-
ure 2, can consistently outperform current state-of-the-art (SOTA) BCP by a
large margin, achieving a 6.38% Dice improvement on the Pancrease with 10%
labeled data. Our contributions are summarized as follows,

– We propose AD-MT, an alternate diverse teacher-student approach for SS-
MIS, which enforces diverse teaching models to mitigate the impact of con-
firmation bias.

– We design a novel Random Periodic Alternate updating module to enlarge
the diversity of the two teacher models and a Conflict-combating module to
learn from both consistent and conflicting predictions of the two teachers.

– Without introducing additional constraints and extra training costs, AD-MT
achieves the new SOTA performance on the 2D and 3D SSMIS benchmarks.
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2 Related work

As highlighted by various works [7,9,25,44–46], the effective utilization of unla-
beled data plays a crucial role in tackling the semi-supervised problem. Among
the existing studies, consistency regularization (CR) based approaches have
emerged as the dominant direction in SSMIS. These methods aim to produce
disagreements on the same unlabeled inputs, thereby training the model to gen-
erate consistent predictions [14,15,37,38,41,43]. Previous methods along this line
have focused on introducing perturbations and generating pseudo-labels using
stable predictions as supervision for unstable ones [21,38,42]. Mean-teacher [26],
as shown in Figure 1a, is a widely adopted semi-supervised learning framework in
SSMIS studies. Latter studies explored the significance of weak and strong aug-
mentation strategies to produce sufficient prediction disagreement [2,25,34,43].
However, the supervision signal derived from the predictions of the unlabeled
data is inherently noisy, which can lead to an issue known as confirmation
bias [1]. The bias issue can negatively impact the training stability and hinder
the model’s recognition ability. On top of Mean-teacher, UAMT [40] proposed
an uncertainty-aware training scheme to alleviate the bias. SASS-Net [12] posed
a geometric shape constraint upon the segmentation outputs, and SSNet [31] de-
signed additional contrastive losses to enhance the model’s discriminative ability,
which both tended to improve the SSMIS in an indirect manner.

Differently, recent works propose increasing the supervision signals to mit-
igate the potential bias and improve the training process directly. These ap-
proaches can be broadly categorized into two main categories: the multi-student
co-training methods and the multi-teacher ensembling methods. As illustrated
in Figure 1b, two-student co-training methods [18,29,32] tackle the noisy super-
vision problem by introducing an additional branch to the learning framework.
The incorporation of an extra branch involves another student model, which can
mutually supervise each other. Such an approach encourages diverse reasoning
from different perspectives, thereby mitigating the impact of confirmation bias.
Existing studies along this line typically adopt the different model initialization
and learning rates to maintain the discrepancy between student models [5, 16].
Differently, our proposed AD-MT enlarges the discrepancy by using complemen-
tary sets of unlabeled data batches, distinct data augmentation strategies, and
randomized switchable periods while reserving the benefits of exponential mov-
ing averaging teacher models. Besides, these methods also come at the cost of
increased training costs, as they introduce additional training parameters.

On the other hand, some works adopt the multi-teacher ensembling frame-
work [15,22], as shown in Figure 1c. Along this line, the student model iteratively
updates multiple teacher models with different updating strategies, leveraging
their differing perspectives. By utilizing multi-teacher models, these methods
ensure supervision diversity without introducing additional training parameters.
However, it is worth noting that existing methods have not carefully considered
the updating strategy to enforce the teacher models to be sufficiently different.
For example, some works only utilize different initialization or updating at dif-
ferent epochs to encourage teacher differences. It is important to develop more
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Fig. 3: The diagram of our proposed AD-MT. Our method consists of two main
modules: the Random Periodic Alternate Updating Module (RPA) and the Conflict-
combating Module (CCM). Specifically, two teacher models T1 and T2 are updated in
turn periodically and randomly. At each iteration, only one certain teacher model Tm,
(m = 1, 2) will be updated, using complementary unlabeled data batches and differ-
ent strong data augmentation strategies Am accordingly. Furthermore, the switchable
period of two teachers is randomly generated by the RPA module, aiming to increase
the disagreement between the two teacher models. Meanwhile, the CCM module sep-
arates the consistent and conflicting predictions of two teacher models, and encourage
the model to learning from instead of dropping the conflicts. qsi , q

t1
i , qt2i represent the

generated pseudo-labels from the student and two teachers models, respectively.

effective and robust updating strategies that can maintain the diversity of the
teacher models while ensuring training stability. More importantly, it is also
crucial to address the issue of conflicting supervision when tackling the ensem-
bled predictions. Conflicting supervision naturally occurs when different sources
of supervision provide contradictory guidance to the student model, potentially
leading to training instability and suboptimal segmentation results. Despite the
significance, most of the existing methods tend to drop these conflicts but have
not explicitly tackled the issue of conflicting supervision.

3 Method

In this section, we provide an overview of our AD-MT, followed by a detailed de-
scription of its two main components: the Random Periodic Alternate Updating
Module (RPA) and the Conflict-Combating Module (CCM).

3.1 Overview

In the context of semi-supervised medical image segmentation (SSMIS), the
available data comprises both labeled samples X and unlabeled samples U , with
the number of labeled samples typically being much smaller than that of unla-
beled ones (i.e., |X| ≪ |U |). During the training process, given a batch of la-
beled samples Bx = {(xi, yi)}Bi=1 and a batch of unlabeled samples Bu = {ui}µBi=1,
SSMIS methods aim to obtain a good segmentation model by leveraging both
labeled and unlabeled data effectively. Different from widely-adopted co-training
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methods, our proposed method, as illustrated in Figure 3, utilizes a single stu-
dent model, parameterized by θs, that receives model back-propagating gradient.
Besides, two auxiliary teacher models, parameterized by θt1 and θt2 , are alterna-
tively updated by the exponential moving average (EMA) of the student model
weights. Similar to the plain teacher-student methods [26], the student model
can be directly trained on the labeled data via a standard supervised loss Lx,

Lx =
1

|Bx|

B∑
i=1

1

H ×W

H×W∑
j=1

ℓ(ŷi(j), yi(j)), (1)

where ŷi denotes the student model’s prediction on the i-th labeled data xi, i.e.,
ŷi=f(xi; θs), and j represents the j-th pixel on the image or the corresponding
segmentation mask with a resolution of H ×W . Following [2, 17], ℓ represents
the loss function, calculated by an average of the dice and cross-entropy loss.

Though Teacher1 (T1) and Teacher2 (T2) are updated in turn, both mod-
els are involved in generating pseudo-labels for unlabeled data at each iteration
simultaneously. Using a(·) denote the weak augmentations, which include ran-
dom cropping and flipping operations [31, 40], we can obtain pseudo-labels for
each unlabeled instance ui, i.e., qt1i = f(a(ui); θt1), q

t2
i = f(a(ui); θt2), and

qsi = f(a(ui); θs) from two teacher models as well as the student model, respec-
tively. Our proposed AD-MT can then exploit all this information and obtain
an ultimate pseudo-label qi,

qi = ϕ(qt1i , q
t2
i , q

s
i , τ), (2)

where ϕ(·) represents a function of our proposed Conflict-Combating Mod-
ule, and τ denotes a pre-defined high-confidence threshold. Subsequently, our
method employs a conflict-combating consistency loss, Lu, on unlabeled data,

Lu =
1

|Bu|

µB∑
i=1

1

H ×W

H×W∑
j=1

ℓ(pi(j), qi(j)), (3)

where pi=f(Am(ui); θs) is the student model’s prediction on strongly-augmented
unlabeled data Am(ui). Am∈{A1, A2},m=1, 2. represents two different strong
data augmentation strategies, corresponding to the alternate turn of T1 and T2,
respectively. The whole updating strategy is performed by our Random Pe-
riodic Alternate Updating Module. In summary, the total training loss is,

L = Lx + λtLu, (4)

where λt denotes an iteration-dependent function to adjust the importance of
consistency loss Lu. Apart from the overall straightforward structure, as shown
in Figure 3, the core of AD-MT lies in two aspects. First, two teachers are up-
dated periodically and randomly in an alternate fashion. During the training
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procedure, we utilize complementary sets of unlabeled data, different data aug-
mentation strategies, and randomized switching periods to ensure that the two
teacher models are updated in a distinct manner, complementing each other
throughout the process. Second, instead of discarding conflicting predictions of
the two teacher models, we design a Conflict-Combating strategy that encourages
the model to learn from the disagreements between the teachers. This strategy
proves highly beneficial in improving segmentation performance at the latter
stages of training. These two aspects correspond to our proposed two novel com-
ponents, the RPA and the CCM, which are detailed in the following two sections.

3.2 Random Periodic Alternate Updating Module

Maintaining two different teacher models can benefit the pseudo-labeling and
further reduce the confirmation bias in semi-supervised learning. However, to
maximize the benefits of multiple models, it is essential to ensure that they are
as diverse as possible. To this end, in AD-MT, we propose the Random Periodic
Alternate Updating Module, a novel approach to updating two teacher models
in a way that maximizes their diversity with little additional training efforts. In
specific, the RPA module involves the following strategies.

– Alternate Updating. At each iteration, only one of the two teacher models
is updated. Consequently, throughout a complete training epoch, unique
and complementary batches of unlabeled data are utilized to refine the two
teacher models. This strategy ensures that the updates to the teacher models
are distinct, allowing them to complement each other’s learning across the
training process. We denote the alternate updating period (in the unit of
iterations) of each teacher model by Tm, where m ∈ {1, 2}.

– Distinct augmentation strategies. To further increase the diversity be-
tween the two teacher models, we also employ distinct augmentation strate-
gies in addition to using different data batches. Specifically, we apply the
color-jitting [6] operation for the turn of T1 while the copy-paste [8] aug-
mentation for the turn of T2.

– Randomized switching periods. Instead of adopting a fixed switchable
period rigidly for each teacher model, we consider increasing the random-
ness of the switchable pattern. Given a pre-defined maximum value of the
period, denoted by Tmax, the alternating period for each teacher is randomly
generated when switching occurs, i.e.,

Tm ← random.randomint(0, Tmax), m ∈ {1, 2}. (5)

In this way, our RPA module cannot only increase the diversity between the
two teacher models but also lower the risks of data over-perturbation discussed
in [41, 43]. This is simply because these different strong augmentations are not
applied simultaneously in our method.
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3.3 Conflict-combating Module

Having two distinct teacher models derived from the RPA, our proposed Conflict-
Combating Module, abstracted as a function of ϕ(·), is carefully designed to ad-
dress the issue of conflicting predictions between the two teacher models. Instead
of discarding these conflicts directly, the CCM module encourages the model to
further learn from the disagreements with the help of the student model.

Specifically, the CCM module first separates the consistent and conflicting
predictions of the two teacher models. On the one hand, it applies the entropy-
based teacher ensemble to obtain an ensembled prediction, ψi, on the unlabeled
instance ui, which is directly used for the consistent supervision. Given the
prediction entropy (denoted by H(·)) of two teacher models,

Ht1 = H(qt1i ) = −
C∑
i=1

qt1i log2 q
t1
i , (6)

Ht2 = H(qt2i ) = −
C∑
i=1

qt2i log2 q
t2
i , (7)

we can obtain the entropy-based ensembled prediction,

ψi = ψ(qt1i , q
t2
i ) =

w1q
t1
i + w2q

t2
i

w1 + w2
, (8)

with w1 = e−Ht1 , w2 = e−Ht2 . On the other hand, to account for the increasing
improvement of the student model, we compare the entropy of the student’s
prediction with the entropy of the ensembled prediction. We then use the lower-
entropy one as the final supervision for the conflicting prediction. This strategy
ensures that the conflicting supervision benefits from the strengths of both the
teacher models and student model. In summary, the final prediction qi is,

qi(j)=

{
1(max(qsi (j))≥τ)qsi (j), qt1i ̸= qt2i &Hψi(j) > Hqsi (j)

1(max(ψi(j))≥τ)ψi(j), otherwise
(9)

where 1(·) only selects the high-confidence predictions for the unlabeled super-
vision. Additionally, we examine more ensembling strategies in the experiment
section. As the training process progresses, the student model learns from both
diverse teacher models efficiently and effectively. In the inference phase, the stu-
dent model is used as the final segmentation model, providing accurate and
reliable segmentation results on new medical images.

4 Experiments

4.1 Datasets and Evaluation Metrics

Following the previous works [2, 30, 31], we adopt the widely used benchmarks,
the Pancreas-NIH dataset [24], the Left Atrium (LA) dataset [35], and the



Alternate Diverse Teaching for SSMIS 9

Table 1: Performance comparison with the SOTA methods on the LA, with 5% and
10% labeled data. † denotes that BCP [2] requires an additional pre-training stage
before the semi-supervised training. The best is highlighted in Bold.

Method Left atrium (5% / 4 labeled data) Left atrium (10% / 8 labeled data)
Dice ↑ Jaccard ↑ 95HD ↓ ASD ↓ Dice ↑ Jaccard ↑ 95HD ↓ ASD ↓

VNet (SupOnly) 52.55 39.60 47.05 9.87 82.74 71.72 13.35 3.26
UA-MT [40] (MICCAI’19) 82.26 70.98 13.71 3.82 86.28 76.11 18.71 4.63
SASSNet [12] (MICCAI’20) 81.60 69.63 16.16 3.58 85.22 75.09 11.18 2.89

DTC [17] (AAAI’21) 81.25 69.33 14.90 3.99 87.51 78.17 8.23 2.36
URPC [19] (MedIA’22) 82.48 71.35 14.65 3.65 85.01 74.36 15.37 3.96

SS-Net [31] (MICCAI’22) 86.33 76.15 9.97 2.31 88.55 79.62 7.49 1.90
MC-Net+ [32] (MedIA’22) 83.59 72.36 14.07 2.70 88.96 80.25 7.93 1.86
PS-MT [15] (CVPR’22) 88.49 79.13 8.12 2.78 89.72 81.48 6.94 1.92
MCF [28] (CVPR’23) - - - - 88.71 80.41 6.32 1.90
BCP [2]† (CVPR’23) 88.02 78.72 7.90 2.15 89.62 81.31 6.81 1.76

AD-MT (Ours) 89.63 81.28 6.56 1.85 90.55 82.79 5.81 1.70

Table 2: Performance comparison with the SOTA methods on the ACDC, in the
semi-supervised setting of 5% and 10% labeled data.

Method ACDC (5% / 3 labeled data) ACDC (10% / 7 labeled data)
Dice ↑ Jaccard ↑ 95HD ↓ ASD ↓ Dice ↑ Jaccard ↑ 95HD ↓ ASD ↓

U-Net (SupOnly) 47.83 37.01 31.16 12.62 79.41 68.11 9.35 2.70
UA-MT [40] (MICCAI’19) 46.04 35.97 20.08 7.75 81.65 70.64 6.88 2.02
SASSNet [12] (MICCAI’20) 57.77 46.14 20.05 6.06 84.50 74.34 5.42 1.86

DTC [17] (AAAI’21) 56.90 45.67 23.36 7.39 84.29 73.92 12.81 4.01
CPS [5] (CVPR’21) 70.15 61.17 5.96 2.14 86.91 78.11 5.72 1.92

URPC [19] (MedIA’22) 55.87 44.64 13.60 3.74 83.10 72.41 4.84 1.53
SS-Net [31] (MICCAI’22) 65.82 55.38 6.67 2.28 86.78 77.67 6.07 1.40
MC-Net+ [32] (MedIA’22) 62.85 52.29 7.62 2.33 87.10 78.06 6.68 2.00
PS-MT [15] (CVPR’22) 86.94 77.90 4.65 2.18 88.91 80.79 4.96 1.83

BCP [2] (CVPR’23) 87.59 78.67 1.90 0.67 88.84 80.62 3.98 1.17
AD-MT (Ours) 88.75 80.41 1.48 0.50 89.46 81.47 1.51 0.44

Automated Cardiac Diagnosis Challeng (ACDC) dataset [3] to validate the
effectiveness of our proposed AD-MT. The Pancreas-NIH and LA are two 3D
datasets, consisting of 82 contrast-enhanced abdominal CT volumes and 100
3D gadolinium-enhanced magnetic resonance image scans, respectively. During
the training stages, the 3D images are randomly cropped into 112x112x80 and
96x96x96 for Pancrease and LA, respectively. The ACDC dataset is a 2D bench-
mark, which contains 100 cardiac MR imaging samples, which are resized into
256×256 pixels and normalized into [0, 1].

Consistent with previous studies [17, 19, 31], we adopt the Dice Score (%),
Jaccard Score (%), 95% Hausdorff Distance in voxel (95HD), and Average Sur-
face Distance in voxel (ASD) as our evaluation metrics to compare the segmen-
tation performance under the different semi-supervised partition protocols. A
higher Dice Score and Jaccard Score indicate better segmentation performance,
while a lower 95HD and ASD indicate better agreement between the predicted
segmentation and ground truth.
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Table 3: Performance comparison with SOTA methods on the Pancreas, in the semi-
supervised setting of 10% and 20% labeled data.

Method Pancreas (10% / 6 labeled data) Pancreas (20% / 12 labeled data)
Dice ↑ Jaccard ↑ 95HD ↓ ASD ↓ Dice ↑ Jaccard ↑ 95HD ↓ ASD ↓

VNet (SupOnly) 55.60 41.74 45.33 18.63 72.38 58.26 19.35 5.89
UA-MT [40] (MICCAI’19) 66.34 53.21 17.21 4.57 76.10 62.62 10.84 2.43
SASSNet [12] (MICCAI’20) 68.78 53.86 19.02 6.26 77.66 64.08 10.93 3.05

DTC [17] (AAAI’21) 69.21 54.06 17.21 5.95 78.27 64.75 8.36 2.25
ASE-Net [11] (TMI’22) 71.54 56.82 16.33 5.73 79.03 66.57 8.62 2.30

SS-Net [31] (MICCAI’22) 71.76 57.05 17.56 5.77 78.98 66.32 8.86 2.01
MC-Net+ [32] (MedIA’22) 70.00 55.66 16.03 3.87 79.37 66.83 8.52 1.72

PS-MT [15](CVPR’22) 76.94 62.37 13.12 3.66 80.74 68.15 7.41 2.06
MCF [28] (CVPR’23) - - - - 75.00 61.27 11.59 3.27
BCP [2] (CVPR’23) 73.83 59.24 12.71 3.72 82.91 70.97 6.43 2.25
AD-MT (Ours) 80.21 67.51 7.18 1.66 82.61 70.70 4.94 1.38

4.2 Implementation Details

Following other SSMIS studies [2,30,40], we adopt the U-Net [23] and V-Net [20]
as the backbones for the experiments on 2D and 3D datasets, respectively. For
the 2D ACDC dataset, we train the segmentation model with a batch size of
24 (12 labeled and 12 unlabeled instances) for 30,000 iterations. On the LA
and Pancreas datasets, we follow existing studies and adopt a batch size of 4
(2 labeled and 2 unlabeled instances) for training 15,000 iterations. We use an
SGD optimizer to train the student model with a polynomial learning-rate decay
where the initial learning rate, 0.01, is multiplied by (1− iter/max_iter)0.9. The
momentum and the weight decay are set as 0.9 and 0.0001, respectively. The
two teacher models are randomly initialized and updated with an exponential
parameter of 0.99. By default, we set the maximum loss weight λu = 2.0, and
the maximum period Tmax = 0.5 epoch for all runs.

4.3 Comparison with SOTAs

In this section, we compare our method with the most recent SSMIS methods,
including UA-MT [40], SASSNet [12], DTC [17], ASE-Net [11], SS-Net [31],
MC-Net+ [30], MCF [28], PS-MT [15] and BCP [2]. Note that BCP requires an
additional pre-training stage while other methods do not.

3D LA. As shown in Table 1, our proposed AD-MT approach achieves the
highest Dice Score and Jaccard Score on both the 5% and 10% labeled data
settings for the LA dataset. With only 4 labeled instances, our approach achieves
a Dice Score of 89.63%, outperforming the previous state-of-the-art method BCP
[2] by 1.61% in Dice Score and 2.56% in Jaccard Score, without introducing an
extra pre-training stage. Also note that our AD-MT outperforms MC-Net+ by
over 6% in terms of the Dice score with 4 labeled data available, despite the fact
that MC-Net+ introduces far more training parameters. Meanwhile, AD-MT also
obtains the lowest 95HD and ASD on both labeled data settings, indicating that
our approach produces better segmentation results that are closer to the ground
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Table 4: Ablation studies on different components of our proposed AD-MT, when
using 3 cases as labeled data on the ACDC. Three different classes of RV, Myo, LV
represent the right ventricle, myocardium, and left ventricle, respectively.

Components RV Myo LV Mean
T1 T2 RPA CCM Dice(%) 95HD Dice(%) 95HD Dice(%) 95HD Dice(%)↑ 95HD↓
✓ 85.30 2.18 84.44 1.53 90.76 4.25 86.83 2.65

✓ 84.59 3.08 83.51 1.86 90.56 2.33 86.22 2.43
✓ ✓ ✓ 85.80 1.98 85.63 1.29 92.20 2.83 87.88 2.03
✓ ✓ ✓ ✓ 86.63 1.92 86.78 1.17 92.86 1.36 88.75 1.48

truth than the other SOTA methods. These results demonstrate the effectiveness
of our proposed approach in improving the accuracy of SSMIS, even in scenarios
where labeled data is scarce.

2D ACDC. Table 2 shows the results of our AD-MT compared to the cur-
rent SOTA methods on the ACDC dataset. The ACDC dataset is a challenging
dataset for SSMIS due to fine-grained multiple classes and the variability in
heart anatomy and pathology, making it a good benchmark for evaluating the
effectiveness of our approach. Similar to the results on the LA, AD-MT achieves
the best performance on the ACDC dataset in both the 5% and 10% labeled
data settings. In the 5% labeled data setting, AD-MT achieves a Dice Score
of 88.75%, which is 1.16% higher than BCP’s Dice Score of 87.59%. A notable
advantage of our proposed AD-MT approach is that it does not require any ad-
ditional pre-training stage before the semi-supervised training, unlike the BCP
method [2]. This makes AD-MT a more efficient and practical approach. AD-MT
achieves a significant improvement in Dice Score compared to other end-to-end
methods without pre-training, with more than a 20% improvement observed in
the 5% labeled setting.

3D Pancreas. The results on the Pancreas-NIH dataset are reported in Ta-
ble 3. It can be seen from the table that our method demonstrates great recog-
nition performance when the number of labeled data is small, e.g ., our AD-MT
surpasses the baseline method and UA-MT by a large margin of more than 20%
and 10% in terms of the Dice score with 6 labeled data available, respectively.
In the 10% labeled setting, AD-MT achieves a Dice Score of 80.21%, which is
6.38% higher than the BCP’s Dice Score of 73.83%. In the 20% labeled setting,
AD-MT achieves a Dice Score of 82.61%, which is only slightly lower than the
BCP’s Dice Score of 82.91%. However, AD-MT achieves the lowest 95HD and
ASD, indicating that our approach produces more dedicated segmentation re-
sults. Similar to the observation on the LA and ACDC, our AD-MT produces
highly accurate segmentation on the Pancreas with limited labeled data, which
is a significant advantage in real-world scenarios where labeled data is scarce
and expensive to obtain.
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Table 5: Ablation studies on the threshold τ with 5% labeled data. It is set as 0.95
and 0.75 for the 2D and 3D datasets, respectively.

τ 0.7 0.75 0.8 0.85 0.9 0.95

ACDC 86.58 87.90 87.97 88.07 88.42 88.75
LA 89.59 89.63 89.35 88.89 88.63 86.94

4.4 Ablations Studies

Impact of different components. In Table 4, we investigate the effectiveness
of the main components of our proposed AD-MT on the ACDC dataset with
5% labeled data. The components studied include T1-only, T2-only, the RPA,
and the CCM. The evaluation metrics used are Dice Score and 95HD, and we
perform a category-wise examination for three classes: the right ventricle (RV),
the myocardium (Myo), and the left ventricle (LV). Recall that our AD-MT
method iteratively updates two teacher models, named T1 and T2, where T1
is updated by the student model applying color augmentations and T2 is up-
dated by the student model applying mix augmentations. It can be seen from
the table that the T1-only obtains slightly better performance than the T2-only,
indicating the superiority of the color or intensity based perturbation compared
to the copy-paste augmentation. The third row shows the results when both T1
and T2 are involved, along with our proposed RPA module for alternate diverse
updating. Although we only use the average prediction of two teacher models
at the current stage, we observe a significant improvement in Dice Score for all
three classes (RV, Myo, and LV), resulting in a mean improvement of more than
1%. It suggests that our RPA module can indeed generate diverse reasoning and
consequently improve the segmentation performance. Furthermore, as discussed
in Section 1, two teacher models will inevitably come across conflicting super-
vision, and it is critical to address the conflicts. As shown in the fourth row of
the table, the complete AD-MT with all components, obtains the most accurate
segmentation, with the lowest 95HD and the highest Dice Score. Overall, the
results demonstrate the importance of each component in our proposed AD-MT
approach. Particularly, the RPA and CCM modules are effective in encouraging
diverse reasoning and leveraging all involved models to improve the accuracy
of the segmentation. The results highlight the importance of leveraging diverse
information from multiple sources and effectively combining them to improve
segmentation accuracy.

Impact of the threshold τ . Table 5 shows the results of an ablation study
on the pre-defined high-confidence threshold (τ) for our AD-MT approach on
the ACDC and LA in terms of the Dice Score. For the ACDC, increasing the
threshold from 0.7 to 0.95 leads to a gradual improvement in Dice Score, with the
highest Dice Score of 88.75% achieved at a threshold of 0.95. Differently, for the
LA dataset, increasing the threshold beyond 0.75 leads to a drop in Dice Score.
The highest Dice Score of 89.63% is achieved at a threshold of 0.75. It suggests
that, on the 3D dataset, a higher threshold may filter out too many predictions,
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Fig. 4: Impact of different alternating periodic
updating strategies in the RPA with varying val-
ues of Tmax on the ACDC with 5% labeled data.
By default, we adopt the random switching peri-
ods and set Tmax as the half-epoch iterations.

Table 6: Compare different en-
sembling strategies on the ACDC
with 5% labeled data, whenever
conflicts occur. “Drop" denotes
dropping the conflicts completely.
“Avg." and “Ent." represent to use
the mean and entropy-based en-
sembling of two teachers.

Strategy Drop Avg. Ent. CCM

Dice (%) 86.69 87.88 88.11 88.75

leading to a loss of information and a decrease in segmentation accuracy. The
default thresholds are 0.95 and 0.75 for the 2D and 3D datasets, respectively.

Impact of the switching periods Tmax. Figure 4 shows our examinations
on different alternate updating periods in the RPA with two different strategies:
the fixed and random periods. We can easily observe that the random strate-
gies can consistently outperform the fixed ones. It is simply because the highly
randomness can further enlarge the diversity between the two teacher models,
resulting in better segmentation performance. In contrast, since both the student
and teacher models are trained from scratch, large Tmax in the fixed strategies,
may enforce ensembling predictions among models with a big performance gap,
which significantly reduces the ensembling effectiveness.

Impact of different Ensembling strategies. In Table 6, we investigate
different ensembling strategies to address the conflicts on the ACDC with 5%
labeled data. We can clearly see that directly dropping all the conflicts leads to
the lowest Dice Score of 86.69%, indicating the significance of learning from the
conflicts. Using the average and entropy-based ensembling strategies can clearly
improve the segmentation performance, which is still limited at only involving
the teacher models. As the training progresses, the student model can effectively
learn from both teachers and gradually become comparable to the teachers. Our
CCM exploits such information and obtains the highest Dice of 88.75%.

Visualization. Figure 5 illustrates example segmentation results on the LA
(top 2 rows)and ACDC (bottom 2 rows) in the semi-supervised setting of 5%
labeled data. We clearly see that our approach produces segmentation results
that are closer to the ground truth than the other SOTA methods. For example,
only SS-Net and our AD-MT can recognize the connected segmented region, as
shown in the second row. In contrast, SS-Net segments the wrong RV region
in the third row on the multi-class ACDC dataset, while our ACDC does not.
Additionally, we observe that it is generally more challenging to segment three
classes from a Sagittal plane (the fourth row) than from a Coronal plane (the
third row) on the ACDC. The better segmentation results further highlight the
importance of leveraging diverse information from multiple sources to improve
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Fig. 5: Qualitative results from the 3D LA (top 2 rows) and 2D ACDC (bottom 2
rows). a) the ground-truth, b) UA-MT, c) MC-Net, d) SS-Net, and e) AD-MT.

segmentation accuracy, as our proposed AD-MT approach does by combining
information from multiple modalities and teacher models. Overall, the results
in Figure 5 demonstrate the effectiveness of our proposed AD-MT approach in
improving the accuracy of SSMIS.

5 Conclusion

In this paper, we propose an alternate diverse teaching approach in a teacher-
student framework, which boosts SSMIS via two novel modules: the Random
Periodic Alternate Updating Module and the Conflict-Combating Module. With
the RPA scheduling, two teacher models are momentum-updated periodically
and randomly in an alternate manner to produce diverse supervision. The entropy-
based CCM effectively leverages all involved models to encourage the student
model to learn from the two teachers’ consistent and conflicting predictions.
Without introducing extra training parameters and constraints, AD-MT achieves
the new SOTA performance on popular 2D and 3D SSMIS benchmarks.
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