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In this supplementary document, we first provide a background on functional

maps [66,76] (Section 1) and the deep shape matching block [16] (Section 2) used

in

our framework. Afterwards, we provide the implementation details of our

method in Section 3. Next, we conduct an ablative experiment to investigate the
influence of the choice of diffusion time (Section 4). Eventually, we show more
qualitative results of our method in Section 5.

1

Deep Functional Maps in a Nutshell

In this section, we provide a brief introduction to the standard pipeline of the
deep functional maps method |76]. We consider a pair of 3D shapes M and N
represented as triangle meshes with nyq and ny (w.l.o.g. nag < nar) vertices,
respectively. Here we summarise the main steps of its pipeline:

1.

Compute the Laplacian matrices Lyg € R™M>™M Ty, € R™*™V [68] and
the corresponding first k eigenfunctions ®,q € R™*k &, € R™** and
the diagonal eigenvalue matrix Ay € R¥** Ay € RF¥E | respectively.

. Compute pointwise features Eyq € R™M*? E,, € R™ >4 defined on each

shape via a learnable feature extractor Fy with weights 6.
Compute the functional map Crn € RF*F associated with the Laplacian
eigenfunctions by solving the optimisation problem

Cun = arg rncin Edata (C) + AEreg (C) . (1)

2
Here, Egata (C) = HC‘I’j\AE M — @}\/E NHF enforces descriptor preservation,
while the regularisation term E,.; imposes certain structural properties (e.g.
Laplacian commutativity Ereg (C) = [|CA s — AxC|% [66]).
During training, structural regularisation (e.g. orthogonality, bijectivity [76])
is imposed on the functional maps, i.e.

Lgtruct = )\biijij ~+ Aorth Lorth- (2)

. During inference, the point-wise map IIan is obtained based on the map

relationship Carpg = <I>jwl'[ MNP, e.g. either by nearest neighbour search
in the spectral domain or by other post-processing techniques [28,33,61,93].
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2 Deep Shape Matching Block

In this section, we provide a brief introduction about our deep shape matching
block in Fig. 2 based on the shape matching framework proposed in [16].

2.1 Pointwise Correspondences Based on Feature Matching

In theory, the pointwise map IIyn should be a permutation matrix, i.e.

{IL € {0, 1}"M*™ : T, = 1,,,,1}) TI<1] (3)

MM Tnpm ny S

where II(z, j) indicates whether the i-th vertex in shape M corresponds to the j-
th vertex in shape A. In our work the pointwise correspondences Il between
shapes M and N are obtained based on pairwise similarity of the learned features
E v, Ep. Following prior works [16,29], we use the softmax operator to produce
a soft correspondence matrix, i.e. Iy = Softmax (EMEK//T) , where 7 is the
temperature factor to determine the softness of the pointwise map. The softmax
operator is applied in each row to ensure that correspondences are non-negative
and ITapn 1y, = 1,,,. In this way, ITy(» can be interpreted as a soft assignment
of vertices Vs in shape N to vertices V 5, in shape M. Similarly, we can obtain
I aq with the roles of M and N swapped.

2.2 Spectral Regularisation on Pointwise Correspondences

The predicted pointwise soft correspondences are regularised in the spectral do-
main based on the relationship to the associated functional map. Specifically,
the predicted pointwise maps II i, ITa o are regularised by the coupling rela-
tionship between pointwise maps and functional maps [70], i.e.

2 2
Lcouplc = HCMN - (I)_]/L\/HNM(I)MHF + “CNM - (I)IVIHMNQNHF’ (4)

where Canr, Caraq are the functional maps computed by solving the optimisa-
tion problem in Eq. (1). To this end, our total loss is a linear combination of
our synchronous diffusion regularisation and spectral regularisation related to
functional maps, i.e.

Ltotal = Ldiff + )\coupleLcouple + )\structhtruct- (5>

3 Implementation Details

As we described in Sec. 2, our deep shape matching block is based on the frame-
work proposed in [16]. To this end, we use the official implementation of [16] to
build our deep shape matching block. In the context of our regularisation based
on synchronous diffusion, the dimension of the random distribution F, is 128
(i.e. h = 128). Regarding to the maximum diffusion time in Eq. (9), we heuris-
tically choice T = 1.0~2 for near-isometric, topological noise and partial shape
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datasets and 7' = 1.0~ for non-isometric shape datasets, respectively. Since for
non-isometric shape pairs, the longer diffusion time causes more inconsistent dif-
fusion processes on both shapes. For the total loss we set Acouple = 1, Astruct = 1
in Eq. (5) based on empirical experiments. In the context of input features, we
follow previous works [5, 13, 16] by using WKS [6] as input features except for
partial shape matching on SHREC’16 dataset, where vertex positions are used.
When we evaluate our method on SHREC’16 dataset, we pre-train the feature
extractor on complete shapes by using a combination of complete shape datasets
(DT4D-H [59], SMAL [102], FAUST |[11] and SCAPE [1]).

4 Influence of Diffusion Time

Here, we conduct an ablative experiment to investigate the influence of the choice
of the maximum diffusion time on the challenging TOPKIDS dataset and choose
the optimal value for our final results. See Table 1. While large values for T" are
likely to be affected by topological noise, a too small value is not able to provide
any benefit due to only small neighbourhood being covered.

Table 1: Qualitative results on TOPKIDS dataset with different maximum diffusion
time. A careful choice of the maximum diffusion time is important for our regularisation.

Diff. Time T 1.0 1.0t 1.072 (Ours) 5.073 1.073 1.07%
Geo. error (x100) 23.7 10.5 5.4 6.9 8.5 10.3

5 More Qualitative Results

In the next figures, we provide additional qualitative results of our method on
TOPKIDS, SHREC’19, SMAL and DTH4D-H corresponding to the quantitative
results reported in the main text.

Fig. 1: Qualitative results of our method on TOPKIDS. Our method obtains
accurate correspondences for shapes with topological noise.
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Fig. 2: Qualitative results of our method on SHREC’19. Our method obtains
accurate correspondences for human shapes with diverse poses and shapes.

Source

Fig. 3: Qualitative results of our method on SMAL. Our method obtains accu-
rate correspondences for shapes in different classes.
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Fig. 4: Qualitative results of our method on DT4D-H inter-class. Our method
obtains accurate correspondences for non-isometrically deformed shapes.
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