
Diffusion Models for Open-Vocabulary
Segmentation

Supplementary Material

Laurynas Karazijav, Iro Laina, Andrea Vedaldi, and Christian Rupprecht

Visual Geometry Group, Department of Engineering Science, University of Oxford
{laurynas,iro,vedaldi,chrisr}@robots.ox.ac.uk

In this supplementary material, we provide additional experimental results,
including further ablations and qualitative comparisons (Appendix A), consider
the limitations and broader impacts of our work (Appendix B), and conclude
with additional details concerning the implementation (Appendix C).

A Additional experiments

This section provides additional experimental results of OVDiff.

A.1 Additional Comparisons

Category filter. To ensure that the category pre-filtering does not give our
approach an unfair advantage, we augment two methods (TCL [3] and OVSeg-
mentor [26], which are the closest baselines with code and checkpoints available)
with our category pre-filtering. We evaluate on the Pascal VOC dataset (where
the category filter shows a significant impact; see Table 3) and report the results
in Tab. A.2. We observe that TCL improves by 0.6, while the performance of
OVSegmentor drops by 0.1. On the contrary, our method benefits substantially
from this component, but it still shows stronger performance without the filter
than baselines with.
Influence of Γ segmentation method. We also further investigate the use
of CutLER [23] to obtain segmentation masks. We also provide example results
of segmentation in Fig. C.4. In Tab. A.3, we devise a baseline where CutLER-
predicted masks are used to average the CLIP image encoder’s final spatial tokens
after projection. Averaged tokens are compared with CLIP text embeddings to
assign a class. While relying on pre-trained components (like ours), this avoids
support set generation. In the same table, we also consider whether the objectness
prior provided by CutLER could be beneficial to other methods as well. We
consider a version of TCL [3] and OVSegmentor [26] which we augment with
CutLER. That is, after methods assign class probabilities to each pixel/patch, a
majority voting for a class is performed in every region predicted by CutLER.
This combines CutLER’s understanding of objects and their boundaries, aspects
where prior methods struggle, with open-vocabulary segmentation. However, we
observe that this negatively impacts the performance of these methods, which
we attribute to only a limited performance of CutLER in complex scenes present

2 L. Karazija et al.

in the datasets. Finally, we also include a version of OVDiff that does not rely
on CutLER for mask extractions, instead using thresholded masks. We observe
that such a version of our method also has strong performance.

We additionally experiment with stronger segmenters to understand the
influence of FG/BG mask quality. We replace our FG/BG segmentation approach
with strong supervised models: with SAM, we achieve 67.1 on VOC, and with
Grounded SAM, 68.5. This slightly improves results from 66.3 of our configuration
with CutLER, but the performance gain is not large and thus not critical.

Table A.1: Influence
of different text-to-
image generators.

T2I VOC

SD 1.5 66.4
SD 2.0 67.7
SD 2.1 67.1

Hyper-SD 67.7

Influence of image generator. We experiment with
different SD versions in Tab. A.1 and observe improvement
with more advanced generators.
Class prompts. We additionally consider whether correc-
tions introduced to class prompts might have similarly
provided additional benefits to our approach (see Ap-
pendix C.3 for details). To that end, we also evaluate
TCL and OVSegmenter (methods that do not rely on ad-
ditional prompt curation) with our corrected prompts and
consider a version of our method without such corrections
in Tab. A.4. We observe only marginal to no impact on
the performance.
Prompt template Finally, we consider the prompt template employed when
sampling support image set: “A good picture of a ⟨ci⟩” for class prompt ci.
This template is generic and broadly applicable to virtually any natural language
specification of a target class. While prior work adopts prompt expansion by
considering a list of synonyms and subcategories, it is not entirely clear how such
a strategy could be systematically performed for any in-the-wild prompts, such as
a “chocolate glazed donut”. We experiment with a list of synonyms and subclasses,
as employed by [17], on VOC datasets measuring 66.4 mIoU, which is similar to
our single prompt performance 66.3± 0.2. Curating such lists automatically is
an interesting future scaling direction.

A.2 Additional ablations

Prototype combinations. In Tab. A.7, we consider the three different types
of prototypes described in Section 3 and test their performance individually
and in various combinations. We find that the “part” prototypes obtained by
K-means clustering show strong performance when considered individually on
VOC. Instance prototypes show strong individual performance on Context, as
well as in combination with the average category prototype. The combination of
all three types shows the strongest results across the two datasets, which is what
we adopt in our main set of experiments.

We also consider the treatment of prototypes under the stuff filter. We investi-
gate the impact of not excluding background prototypes for “stuff" classes. In this
setting, we measure 29.1 on Context, which is a slight reduction in performance.
We also investigate the benefit of categorisation into “things” and “stuff” used in
the stuff filter component. Instead, we filter all background prototypes using all

Title Suppressed Due to Excessive Length 3

Table A.2: Use of category filter component. OVDiff without category filter outperforms
prior work with cat. filter.

Model Category filter
✗ ✓

OVSegmentor 53.8 53.7
TCL 51.2 51.8
TCL (+PAMR) 55.0 56.0
OVDiff 56.2 66.4

Table A.3: Application of CutLER. Prior work does not benefit from using CutLER
during inference, while OVDiff shows strong results without it.

Model CutLER VOC Context Object

CLIP ✓ 33.0 11.6 11.1
OVSegmentor 53.8 20.4 25.1
OVSegmentor ✓ 38.7 14.4 16.8
TCL 51.2 24.3 30.4
TCL ✓ 43.1 20.5 22.7
OVDiff 62.8 28.6 34.9
OVDiff ✓ 66.3 ± 0.2 29.7 ± 0.3 34.6 ± 0.3

foreground prototypes. In this configuration, we measure 27.6 on Context. Both
configurations show a reduction from 29.4, measuring using the stuff filter with
categorisation in “stuff” and “things”, as used in our main experiments. Finally,
we experiment by removing part-level prototypes for “stuff” classes, which also
results in a performance drop to 28.0.
K - number of clusters. In Tab. A.5, we investigate the sensitivity of the
method to the choice of K for the number of “part” prototypes extracted using K-
means clustering. Although our setting K = 32 obtains slightly better results on
Context and VOC, other values result in comparable segmentation performance
suggesting that OVDiff is not sensitive to the choice of K and a range of values
is viable.
SD features. When using Stable Diffusion as a feature extractor, we consider
various combinations of layers/blocks in the UNet architecture. We follow the
nomenclature used in the Stable Diffusion implementation where consecutive
layers of Unet are organised into blocks. There are 3 down-sampling blocks with
2 cross-attention layers each, a mid-block with a single cross-attention, and 3
up-sampling blocks with 3 cross-attention layers each. We report our findings
in Tab. A.6. Including the first and last cross-attention layers in the feature
extraction process has a small positive impact on segmentation performance,
which we attribute to the high feature resolution. We also consider excluding
features from the middle block of the network due to small 8× 8 resolution but
observe a small negative impact on performance on the Context dataset. We
also investigate whether including the first (Up-1) and the second upsampling

4 L. Karazija et al.

Table A.4: Using corrected prompts. We consider if corrected class names benefit prior
work. We observe negligible to no effect.

Model Correction VOC Context Object

OVSegmentor 53.8 20.4 25.1
OVSegmentor ✓ 53.9 20.4 25.1
TCL 51.2 24.3 30.4
TCL ✓ 50.6 24.3 30.4
OVDiff 66.1 29.5 34.9
OVDiff ✓ 66.3 ± 0.2 29.7 ± 0.3 34.6 ± 0.3

Table A.5: Choice of K for number of centroids.

K VOC Context

8 63.8 29.2
16 64.0 29.3
32 64.4 29.4
64 64.3 28.0

Table A.6: Ablation of different SD feature configurations. Removing first and last
cross attention layers, mid, 1st and 2nd upsampling blocks (all layers in the block) has
a negative effect.

1st Mid Up-1 Up-2 Last
layer block block block layer Context

✓ ✓ ✓ ✓ ✓ 29.4
✓ ✓ ✓ ✓ 29.4

✓ ✓ ✓ ✓ 29.2
✓ ✓ ✓ ✓ 27.3
✓ ✓ ✓ ✓ 28.9
✓ ✓ ✓ ✓ 29.3

(Up-2) blocks are necessary. Without them, the performance drops the most out
of the configurations considered. Thus, we use a concatenation of features from
the middle, first and second upsampling blocks and the first and last layers in
our main experiments.

A.3 Qualitative results

We include additional qualitative results from the benchmark datasets in Fig. A.2.
Our method achieves high-quality segmentation across all examples without any
post-processing or refinement steps. In Fig. A.3, we show examples of support
images sampled for some things, and stuff categories. In Fig. C.5, we show
examples of support set images sampled for rare pikachu class.

Title Suppressed Due to Excessive Length 5

Table A.7: Ablation of various configurations for prototypes. We consider average P̄ ,
instance Pn, and part Pk prototypes individually and in various combinations on VOC
and Context datasets. Combination of all three types of prototypes shows strongest
results.

P̄ Pn Pk VOC Context

✓ ✓ ✓ 64.4 29.4
✓ ✓ 61.7 29.3
✓ ✓ 63.5 29.4

✓ ✓ 62.5 28.4
✓ 63.7 28.8

✓ 60.0 29.0
✓ 62.5 28.4

Fig. A.1: Qualitative comparison on in-the-wild images. OVDiff performs significantly
better than prior state-of-the-art, TCL, on wildlife images containing multiple instances,
studio photos with simple backgrounds, images containing multiple categories and an
image containing a rare instance of a class.

B Broader impact

Semantic segmentation is a component in a vast and diverse spectrum of applica-
tions in healthcare, image processing, computer graphics, surveillance and more.
As for any foundational technology, applications can be good or bad. OVDiff is
similarly widely applicable. It also makes it easier to use semantic segmentation
in new applications by leveraging existing and new pre-trained models. This is
a bonus for inclusivity, affordability, and, potentially, environmental impact (as
it requires no additional training, which is usually computationally intensive);
however, these features also mean that it is easier for bad actors to use the
technology.

Because OVDiff does not require further training, it is more versatile but
also inherits the weaknesses of the components it is built on. For example, it

6 L. Karazija et al.

might contain the biases (e.g., gender bias) of its components, in particular
Stable Diffusion [21], which is used for generating support images for any given
category/description. Thus, it should not be exposed without further filtering and
detection of, e.g., NSFW material in the sampled support set. Finally, OVDiff is
also bound by the licenses of its components.

B.1 Limitations

As OVDiff relies on pretrained components, it inherits some of their limitations.
OVDiff works with the limited resolution of feature extractors, due to which it
might occasionally miss tiny objects. Furthermore, OVDiff cannot segment what
the generator cannot generate. For example, current diffusion models struggle
with producing legible text, which can make it difficult to segment specific words.
Furthermore, applications in domains far from the generator’s training data (e.g .
medical imaging) are unlikely to work out of the box.

C OVDiff: Further details

In this section, we provide additional details concerning the implementation
of OVDiff. We begin with a brief overview of the attention mechanism and
diffusion models central to extracting features and sampling images. We review
different feature extractors used. We specify the hyperparameter setting for all
our experiments and provide an overview of the exchange with ChatGPT used
to categorise classes into “thing” and “stuff”.

C.1 Preliminaries

Attention. In this work, we make use of pre-trained ViT [4] networks as feature
extractors, which repeatedly apply multi-headed attention layers. In an attention
layer, input sequences X ∈ Rlx×d and Y ∈ Rly×d are linearly project to forms keys,
queries, and values: K = WkY, Q = WqX, V = WvX. In self-attention, X = Y .
Attention is calculated as A = softmax(1√

d
QK⊤), and softmax is applied along

the sequence dimension ly. The layer outputs an update Z = X +A ·V . ViTs use
multiple heads, replicating the above process in parallel with different projection
matrices Wk,Wq,Wv. In this work, we consider queries and keys of attention
layers as points where useful features that form meaningful inner products can
be extracted. As we detail later (Appendix C.2), we use the keys from attention
layers of ViT feature extractors (DINO/MAE/CLIP), concatenating multiple
heads if present.
Text-to-image diffusion models. Diffusion models are a class of generative
models that form samples starting with noise and gradually denoising it. We
focus on latent diffusion models [19] which operate in the latent space of an
image VAE [10] forming powerful conditional image generators. During training,
an image is encoded into VAE latent space, forming a latent vector z0. A
noise is injected forming a sample zτ ∼ N (zτ ;

√
1− ατz0, ατI) for timestep

Title Suppressed Due to Excessive Length 7

τ ∈ {1 . . . T}, where ατ are variance values that define a noise schedule such
that the resulting zT is approximately unit normal. A conditional UNet [20],
ϵθ(zt, t, c), is trained to predict the injected noise, minimising the mean squared
error Et (αt∥ϵθ(zt, t, c)− z0∥2) for some caption c and additional constants at.
The network forms new samples by reversing the noise-injecting chain. Starting
from ẑT ∼ N (ẑT ; 0, I), one iterates ẑt−1 = 1√

1−αt
(ẑt + αtϵθ(ẑt, t, c)) +

√
αtẑt

until ẑ0 is formed and decoded into image space using the VAE decoder. The
conditional UNet uses cross-attention layers between image patches and language
(CLIP) embeddings to condition on text c and achieve text-to-image generation.

C.2 Feature extractors

OVDiff is buildable on top of any pre-trained feature extractor. In our experiments,
we have considered several networks as feature extractors with various self-
supervised training regimes:

– DINO [2] is a self-supervised method that trains networks by exploring
alignment between multiple views using an exponential moving average
teacher network. We use the ViT-B/8 model pre-trained on ImageNet1 and
extract features from the keys of the last attention layer.

– MAE [7] is a self-supervised method that uses masked image inpainting
as a learning objective, where a portion of image patches are dropped, and
the network seeks to reconstruct the full input. We use the ViT-L/16 model
pre-trained on ImageNet at a resolution of 448 [9].2 The keys of the last layer
of the encoder network are used. No masking is performed.

– CLIP [16] is trained using image-text pairs on an internal dataset WIT-400M.
We use ViT-B/16 model3. We consider two locations to obtain dense features:
keys from a self-attention layer of the image encoder and tokens which are
the outputs of transformer layers. We find that keys of the second-to-last
layer give better performance.

– We also consider Stable Diffusion4 (v1.5) itself as a feature extractor. To
that end, we use the queries from the cross-attention layers in the UNet
denoiser, which correspond to the image modality. Its UNet is organised into
three downsampling blocks, a middle block, and three upsampling blocks. We
observe that the middle layers have the most semantic content, so we consider
the middle block, 1st and 2nd upsampling blocks and aggregate features from
all three cross-attention layers in each block. As the features are quite low in
resolution, we include the first downsampling cross-attention layer and the
last upsampling cross-attention layer as well. The feature maps are bilinearly
upsampled to resolution 64× 64 and concatenated. A noise appropriate for
τ = 200 timesteps is added to the input. For feature extraction, we run SD
in unconditional mode, supplying an empty string for text caption.

1 Model and code available at https://github.com/facebookresearch/dino.
2 Model and code from https://github.com/facebookresearch/long_seq_mae.
3 Model and code from https://github.com/openai/CLIP.
4 We use implementation from https://github.com/huggingface/diffusers.

https://github.com/facebookresearch/dino
https://github.com/facebookresearch/long_seq_mae
https://github.com/openai/CLIP
https://github.com/huggingface/diffusers

8 L. Karazija et al.

C.3 Datasets

We evaluate on validation splits of PASCAL VOC (VOC), Pascal Context (Con-
text) and COCO-Object (Object) datasets. PASCAL VOC [5,6] has 21 classes: 20
foreground plus a background class. For Pascal Context [15], we use the common
variant with 59 foreground classes and 1 background class. It contains both
“things” and “stuff” classes. The COCO-Object is a variant of COCO-Stuff [1]
with 80 “thing” classes and one class for the background. Textual class names
are used as natural language specifications of names. We renamed or specified
certain class names to fix errors (e.g . pottedplant → potted plant), resolve
ambiguity better (e.g . mouse → computer mouse) or change to more common
spelling/word (e.g . aeroplane → airplane), resulting in 14 fixes. We experiment
and measure the impact of this in Appendix A.1 for our and prior work.

C.4 Comparative baselines

We briefly review the prior work in used in our experiments, mainly in Table 1.
We consider baselines that do not rely on mask annotations and have code and
checkpoints available or detail their evaluation protocol that matches that used in
other prior works [3, 25, 26].Most prior work [3, 12, 14, 18, 25, 26] trains image and
text encoders on large image-text datasets with a contrastive loss. The methods
mainly differ in their architecture and use of grouping mechanisms to ground
image-level text on regions. ViL-Seg [12] uses online clustering, GroupViT [25]
and ViewCo [18] employ group tokens. OVSegmentor [26] uses slot-attention
and SegCLIP [14] a grouping mechanism with learnable centers. CLIPPy [17],
TCL [3], and MaskCLIP [27] predict classes for each image patch: [17] use max-
pooling aggregation, [3] self-masking, and [27] modify CLIP for dense predictions.
To assign a background label [3, 12,14,18,25] use thresholding while [17] uses
dataset-specific prompts. CLIP-DIY [24] leverages CLIP as a zero-shot classifier
and applies it on multiple scales to form a dense segmentation. ReCO [22] is
closer in spirit to our approach as it uses a support set for each prompt; this
set, however, is CLIP-retrieved from curated image collections, which may not
be applicable for any category in-the-wild. The conceptual difference between
OVDiff and ReCO is that OVDiff emphasises and preserves diverse prototypes
by construction: generation overcomes a limited database; sampled images are
segmented individually preserving unique visuals of each instance rather than
co-segmenting, which leverages commonality. We construct multiple prototypes
at multiple levels of granularity to similar effect, as opposed to averaging in
ReCO.

We also note that prior work builds on top of similar pre-trained components
such as CLIP in [3,14,22,27], OpenCLIP in [24], DINO + T5/RoBERTa in [17,26].
We additionally make use of StableDiffusion, which is trained on a larger dataset
(3B, compared to 400M of CLIP or 2B or OpenCLIP). OVDiff is, however,
fundamentally different to all prior work, as (a) it generates a support set of
synthetic images given a class description, and (b) it does not rely on additional
training data and further training for learning to segment.

Title Suppressed Due to Excessive Length 9

C.5 Hyperparameters

OVDiff has relatively few hyperparameters and we use the same set in all experi-
ments. Unless otherwise specified, N = 32 images are sampled using classifier-free
guidance scale [8] of 8.0 and 30 denoising steps. We employ DPM-Solver sched-
uler [13]. When sampling images for the support sets, we also use a negative
prompt “text, low quality, blurry, cartoon, meme, low resolution, bad, poor, faded".
If/when segmenter Γ fails to extract any components in a sampled image, a
fallback of adaptive thresholding of An is used, following [11]. During inference,
we set η = 10, which results in 1024 text prompts processed in parallel, a choice
made mainly due to computational constraints. We set the thresholds for the
“stuff” filter between background prototypes for “things” classes and the fore-
ground of “stuff” at 0.85 for all feature extractors. When sampling, a seed is set
for each category individually to aid reproducibility.
Computation cost. We focus on a construction of a method to show that
existing foundational diffusion models can be used for segmentation with great
efficacy without further training. OVDiff requires computing prototypes instead.
With our unoptimized implementation, we measure around 110± 10s to calculate
prototypes (sample images, extract features and aggregate) for a single category
or 50.2±2s without clustering using SD. Using CLIP, we measure 49.2±0.2s with
clustering and 47.7±0.2s without. We note that sampling time grows linearly: we
measure 55s for 16, 110s for 32, and 213s for 64 images per class. The prototype
storage requirements are 0.39MB using CLIP/DINO for each class.

With our unoptimized implementation, we measure around 110 ± 10s to
calculate prototypes using SD for a single class, or around 1.14 TFLOP/s-hours
of compute. While the focus of this study is not computational efficiency, we can
compare prototype sampling to the cost of additional training of other methods:
TCL requires 2688, GroupViT 10752, and OVSegmentor 624 TFLOP/s-hours.5
While training has an upfront compute cost and requires special infrastructure (e.g .
OVSegmentor uses 16×A100s), OVDiff’s prototype set can be grown progressively
as needed, while showing better performance.

We additionally measure the speed of inference at 0.6s per image, which is
slightly slower but comparable to 0.2s for TCL and 0.08s for OVSegmentor. We
performed inference measurements using SD on the same machine with a 2080Ti
GPU using 21 classes and the same resolution/sliding window settings for all
methods.

C.6 Interaction with ChatGPT

We interact with ChatGPT to categorise classes into “stuff” and “things” for the
stuff filter component. Due to input limits, the categories are processed in blocks.
Specifically, we input “In semantic segmentation, there are "stuff" or "thing"
classes. Please indicate whether the following class prompts should be considered

5 Estimated as training time × num. GPUs × theoretical peak TFLOP/s for GPU
type.

10 L. Karazija et al.

"stuff" or "things":”. We show the output in Tab. C.8. Note there are several errors
in the response, e.g . glass, blanket, and trade name are actually instances
of tableware, bedding and signage, respectively, so should more appropriately
be treated as “things”. Similarly, land and sand might be more appropriately
handled as “stuff”, same as snow and ground. Despite this, We find ChatGPT
contains sufficient knowledge when prompted with "in semantic segmentation".
We have estimated the accuracy of ChatGPT in thing/stuff classification using
the categories of COCO-Stuff, which are defined as 80 "things" and 91 "stuff"
categories. ChatGPT achieves an accuracy rate of 88.9% in this case. We also
measure the impact the potential errors have on our performance by providing
“oracle" answers on the Context dataset. We measure 29.6 mIoU, which is similar
to 29.7 ± 0.3 of using ChatGPT, showing that small errors do not drastically
affect the method, however, enable using “stuff" filter component, which improves
performance (see Table 3).

References

1. Caesar, H., Uijlings, J., Ferrari, V.: Coco-stuff: Thing and stuff classes in context.
In: Computer vision and pattern recognition (CVPR), 2018 IEEE conference on.
IEEE (2018)

2. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.:
Emerging properties in self-supervised vision transformers. In: Proceedings of the
IEEE/CVF international conference on computer vision. pp. 9650–9660 (2021)

3. Cha, J., Mun, J., Roh, B.: Learning to generate text-grounded mask for open-world
semantic segmentation from only image-text pairs. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 11165–11174 (2023)

4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16
words: Transformers for image recognition at scale. In: International Conference on
Learning Representations (2021)

5. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
pascal visual object classes (voc) challenge. International Journal of Computer
Vision 88(2), 303–338 (Jun 2010)

6. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PAS-
CAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html (2012)

7. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE international conference on computer vision. pp. 2961–2969 (2017)

8. Ho, J., Salimans, T.: Classifier-free diffusion guidance. In: NeurIPS Workshop on
Deep Generative Models and Downstream Applications (2021)

9. Hu, R., Debnath, S., Xie, S., Chen, X.: Exploring long-sequence masked autoen-
coders. arXiv preprint arXiv:2210.07224 (2022)

10. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: International
Conference on Learning Representations (2014)

11. Liao, P.S., Chen, T.S., Chung, P.C., et al.: A fast algorithm for multilevel thresh-
olding. J. Inf. Sci. Eng. 17(5), 713–727 (2001)

12. Liu, Q., Wen, Y., Han, J., Xu, C., Xu, H., Liang, X.: Open-world semantic seg-
mentation via contrasting and clustering vision-language embedding. In: Computer

Title Suppressed Due to Excessive Length 11

Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XX. pp. 275–292. Springer (2022)

13. Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: Dpm-solver++: Fast solver for
guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095
(2022)

14. Luo, H., Bao, J., Wu, Y., He, X., Li, T.: SegCLIP: Patch aggregation with learnable
centers for open-vocabulary semantic segmentation. In: International Conference
on Machine Learning. pp. 23033–23044. PMLR (2023)

15. Mottaghi, R., Chen, X., Liu, X., Cho, N.G., Lee, S.W., Fidler, S., Urtasun, R.,
Yuille, A.: The role of context for object detection and semantic segmentation in
the wild. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 891–898 (2014)

16. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International conference on machine learning. pp.
8748–8763 (2021)

17. Ranasinghe, K., McKinzie, B., Ravi, S., Yang, Y., Toshev, A., Shlens, J.: Perceptual
grouping in contrastive vision-language models. in 2023 ieee. In: CVF International
Conference on Computer Vision (ICCV). vol. 1, p. 3 (2023)

18. Ren, P., Li, C., Xu, H., Zhu, Y., Wang, G., Liu, J., Chang, X., Liang, X.: Viewco:
Discovering text-supervised segmentation masks via multi-view semantic consistency.
The Eleventh International Conference on Learning Representations (2023)

19. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 10684–10695 (2022)

20. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany,
October 5-9, 2015, Proceedings, Part III 18. pp. 234–241 (2015)

21. Schramowski, P., Brack, M., Deiseroth, B., Kersting, K.: Safe latent diffusion:
Mitigating inappropriate degeneration in diffusion models. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp.
22522–22531 (June 2023)

22. Shin, G., Xie, W., Albanie, S.: Reco: Retrieve and co-segment for zero-shot transfer.
In: Advances in Neural Information Processing Systems (2022)

23. Wang, X., Girdhar, R., Yu, S.X., Misra, I.: Cut and learn for unsupervised object
detection and instance segmentation. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. pp. 3124–3134 (2023)

24. Wysoczańska, M., Ramamonjisoa, M., Trzciński, T., Siméoni, O.: Clip-diy: Clip
dense inference yields open-vocabulary semantic segmentation for-free. In: Proceed-
ings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp.
1403–1413 (2024)

25. Xu, J., De Mello, S., Liu, S., Byeon, W., Breuel, T., Kautz, J., Wang, X.: Groupvit:
Semantic segmentation emerges from text supervision. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 18134–
18144 (2022)

26. Xu, J., Hou, J., Zhang, Y., Feng, R., Wang, Y., Qiao, Y., Xie, W.: Learning
open-vocabulary semantic segmentation models from natural language supervision.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. pp. 2935–2944 (2023)

12 L. Karazija et al.

27. Zhou, C., Loy, C.C., Dai, B.: Extract free dense labels from clip. In: Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XXVIII. pp. 696–712. Springer (2022)

Title Suppressed Due to Excessive Length 13

Fig. A.2: Additional qualitative results. Images from Pascal VOC (top), Pascal Context
(middle), and COCO Object (bottom).

14 L. Karazija et al.

(a) boat (b) person

(c) sky (d) water

(e) light (f) parking meter

(g) mountain (h) horse

Fig.A.3: Images sampled for a support set of some categories.

Title Suppressed Due to Excessive Length 15

Fig. C.4: FG/BG segmentation of classes
of water, snow and grass. The foreground
is in red, while the background is shown in
blue.

Fig.C.5: Example images from the sup-
port set of a rare pikachu class.

16 L. Karazija et al.

Table C.8: Response from interaction with ChatGPT. We used ChatGPT model
to automatically categorise classes in “stuff” or “things”.

airplane: thing window: thing awning: thing
bag: thing wood: stuff streetlight: thing
bed: thing windowpane: thing booth: thing
bedclothes: stuff earth: thing television receiver: thing
bench: thing painting: thing dirt track: thing
bicycle: thing shelf: thing apparel: thing
bird: thing house: thing pole: thing
boat: thing sea: thing land: thing
book: thing mirror: thing bannister: thing
bottle: thing rug: thing escalator: thing
building: thing field: thing ottoman: thing
bus: thing armchair: thing buffet: thing
cabinet: thing seat: thing poster: thing
car: thing desk: thing stage: thing
cat: thing wardrobe: thing van: thing
ceiling: stuff lamp: thing ship: thing
chair: thing bathtub: thing fountain: thing
cloth: stuff railing: thing conveyer belt: thing
computer: thing cushion: thing canopy: thing
cow: thing base: thing washer: thing
cup: thing box: thing plaything: thing
curtain: stuff column: thing swimming pool: thing
dog: thing signboard: thing stool: thing
door: thing chest of drawers:thing barrel: thing
fence: stuff counter: thing basket: thing
floor: stuff sand: thing waterfall: thing
flower: thing sink: thing tent: thing
food: thing skyscraper: thing minibike: thing
grass: stuff fireplace: thing cradle: thing
ground: stuff refrigerator: thing oven: thing
horse: thing grandstand: thing ball: thing
keyboard: thing path: thing step: stuff
light: thing stairs: thing tank: thing
motorbike: thing runway: thing trade name: stuff
mountain: stuff case: thing microwave: thing
mouse: thing pool table: thing pot: thing
person: thing pillow: thing animal: thing
plate: thing screen door: thing lake: stuff
platform: stuff stairway: thing dishwasher: thing
plant: thing river: thing screen: thing
road: stuff bridge: thing blanket: stuff
rock: stuff bookcase: thing sculpture: thing
sheep: thing blind: thing hood: thing
shelves: thing coffee table: thing sconce: thing
sidewalk: stuff toilet: thing vase: thing
sign: thing hill: thing traffic light: thing
sky: stuff countertop: thing tray: stuff
snow: stuff stove: thing ashcan: thing
sofa: thing palm: thing fan: thing
table: thing kitchen island: thing pier: thing
track: stuff swivel chair: thing crt screen: thing
train: thing bar: thing bulletin board: thing
tree: thing arcade machine: thing shower: thing
truck: thing hovel: thing radiator: thing
monitor: thing towel: thing glass: stuff
wall: stuff tower: thing clock: thing
water: stuff chandelier: thing flag: thing

	Diffusion Models for Open-Vocabulary SegmentationSupplementary Material

