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Abstract. Text-to-image generation plays a pivotal role in computer
vision and natural language processing by translating textual descrip-
tions into visual representations. However, understanding complex re-
lations in detailed text prompts filled with rich relational content re-
mains a significant challenge. To address this, we introduce a novel task:
Logic-Rich Text-to-Image generation. Unlike conventional image gener-
ation tasks that rely on short and structurally simple natural language
inputs, our task focuses on intricate text inputs abundant in relational
information. To tackle these complexities, we collect the Textual-Visual
Logic dataset, designed to evaluate the performance of text-to-image
generation models across diverse and complex scenarios. Furthermore,
we propose a baseline model as a benchmark for this task. Our model
comprises three key components: a relation understanding module, a
multimodality fusion module, and a negative pair discriminator. These
components enhance the model’s ability to handle disturbances in infor-
mative tokens and prioritize relational elements during image generation.
https://github.com/IntelLabs/Textual-Visual-Logic-Challenge
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1 Introduction

Text-to-image generation, a crucial field in computer vision and natural lan-
guage processing, converts textual descriptions into visual representations. The
primary challenge here is reasoning through complex relations in detailed text
prompts filled with relational content. Effectively tackling this complexity is vi-
tal, mirroring human perception that depends on integrating attributes, entities,
and relations for precise visual interpretation.

Unfortunately, state-of-the-art systems struggle with relation-rich prompts
(Figure 1a), often due to inadequate structural understanding in models. Con-
tributing challenges arise from datasets such as Visual Genome [13] and MS-
COCO [15], where relation triplets, representing the relationship between subject-
object pairs, often appear identical or similar. This trend restricts the evalua-
tion of relation representation in generated images, given that 75.6% of Vi-
sual Genome’s triplets consist of single relations. For example, the relationship
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between “apple” and “plate” is frequently shown as “on". Additionally, existing
metrics inadequately capture prompt-intended structures. Richer datasets still
face evaluation complexities due to pixel-level ground truth ambiguity. In Fig-
ure 1b results 3, though invalid, would receive better scores in current metrics.
Metrics like FID [9], SSIM [28], and LPIPS [35] may diverge from comprehensive
structural evaluations.

[Text] Add a blue sphere at the center. Add a gray sphere in front of it on the 

left. Add another gray sphere behind it on the right and behind blue sphere on 

the right. Add a brown cylinder behind and on the right of the gray sphere 

which is in front of blue sphere on the left. Add a brown cube behind it on the 

right and behind blue sphere on the right.

Stable Diffusion Openjourney DALL-EGLIGEN

(a) Current works fail to generate structure-
related information from text prompts, par-
ticularly when logical reasoning is involved.

[Text] Add a yellow cylinder at the center . Add a purple cylinder in front of it on the 

right . Add a cyan cylinder behind it on the left and in front of the yellow cylinder on 

the left . Add a red sphere behind the purple cylinder on the right and on the right of 

yellow cylinder . Add a blue sphere behind the purple cylinder and behind the yellow 

cylinder on the right .

Ground Truth

Result 1 Result 2 Result 3

Correct Generation Incorrect Generation Incorrect Generation

FID(↓):       75.04

LPIPS(↓):  0.3679

SSIM(↑):   0.8631

FID(↓):       78.35

LPIPS(↓):  0.4023

SSIM(↑):   0.8493

FID(↓):       73.62

LPIPS(↓):  0.3116

SSIM(↑):   0.8938

(b) Limitations of existing evaluation metrics
in accurately assessing model performance.

Fig. 1: Structural nuances are crucial in
text-to-image generation; however, current
research often fails to capture complex text
relations, particularly in detailed and logic-
rich prompts. The lack of comprehensive
structural assessment may lead to evalua-
tions that differ from human judgments of
image quality and relevance.

In this paper, we introduce the
“Logic-Rich Text-to-Image Genera-
tion"(LRT2I) task, focusing on the
intricate relational challenges in text
prompts, a departure from conven-
tional simpler natural language im-
age generation tasks. We also iden-
tify six categories of relational struc-
tures that may present particular
challenges. To comprehensively eval-
uate performance across diverse chal-
lenges, we collected a new dataset
as a benchmark, with well-annotated
scene graphs, a set of images corre-
sponding to the text prompts, and a
diverse set of logic-rich text prompts
tailored to this task. Further, we pro-
pose a baseline model adept at ac-
curately representing complex textual
relations in images by integrating a
GAN framework with components de-
signed for discerning three key fac-
tors: informative tokens, deep rela-
tional reasoning, and feature align-
ment across modalities. These factors,
we believe, are crucial for enhancing
text-to-image generation.
In this work, our primary contributions are :

i. We identify a challenge that has not been fully addressed in discerning
structural information and introduce a novel task termed “logic-rich text-to-
image generation”, highlighting the significance of understanding and reasoning
in this domain.

ii. We benchmark this task by collecting the Textual-Visual Logic (TV-Logic)
dataset, the first to target logic-rich reasoning in this domain. Additionally,
we categorize reasoning in text-to-image generation into six main categories to
comprehensively evaluate model performance.

iii. We proposed a baseline model with three modules—Relation Understand-
ing, Multimodality Fusion, and Negative Pair Discriminator—that enhance text-
to-image reasoning and extend the discriminator’s role.
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2 Related Works

2.1 Text-to-Image Generation

Synthesizing images from text in computer vision and natural language pro-
cessing poses significant challenges. Techniques include Generative Adversarial
Networks (GANs) [1, 4, 30, 34] that generate images from text using adversarial
neural networks; Variational Autoencoders (VAEs) [12] that map text to latent
spaces for image creation; and Diffusion models [8, 19, 21, 22] that iteratively
refine text-based images. Despite advancements, semantic consistency, such as
accurate depiction of color, shape, and relations aligned with text prompts, re-
mains a challenge. Traditional evaluation metrics like the Inception Score [23]
and Fréchet Inception Distance [9] also may fall short in accurately reflecting
human judgment of image quality and relevance [17].

2.2 Structural Information in Computer Vision

In computer vision, especially in text-to-image synthesis, structural information
plays a crucial role in handling the complexity of object interrelations, which
can affect image generation quality. Researchers propose an intermediate "Scene
Layout" to detail object relations and improve outcomes [11, 36]. This meth-
ods, however, often need extra resources like a pre-existing graph or additional
supervision, leading to more human annotation work when such graphs aren’t
available [10]. In visual question answering, employing structural graph represen-
tations significantly aids in the interpretation of visual data, converting it into
structured formats for better analysis [14, 25, 29]. Similarly, in image caption-
ing, graph structures effectively encode object attributes and relations, whether
through implicit scene graph representations [7, 33] or explicit ones [18, 32], en-
hancing the overall quality of the generated captions.

3 Novel Task: Logic-Rich Text-to-Image Generation

3.1 Task Definition

(a) Conventional Text-to-Image Generation (b) Logic-Rich Text-to-Image Generation

Generated Image

[    ,   ,    ,    ]

Text Prompt

T2I
Logical-Rich

T2I

Generated ImageText Prompt

... · Inference

· Ambiguity

· Manipulation

· Numbering

· ... ...

logical Reasoning

Fig. 2: Comparison between conventional text-to-image generation and logic-rich text-
to-image generation.

We now formally introduce a new task, "Logic-Rich Text-to-Image Genera-
tion," which differs from conventional Text-to-Image (T2I) tasks by emphasizing
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semantic understanding limitations. Reasoning in text-to-image generation in-
volves inferring relations and entities. Our focus is on spatial relations and entity
inference, while "logic" denotes a structured and systematic reasoning process.

Average Std Dev Max Min

MS-COCO 10.61 2.43 179 8
SR2D 6.56 1.58 10 2
TV-Logic 89.17 38.32 192 13

Table 1: Statistics of the MS-COCO, VISOR, and TV-Logic datasets. It displays the
average, standard deviation, maximum, and minimum values of the prompt lengths.

In conventional tasks, the goal is to map text prompts to a 2D RGB image,
optimizing parameters to minimize loss between generated and ground truth
images. Our task diverges by focusing on the entities and relations within text,
particularly with longer, relation-rich inputs (Figure 2). This approach aligns
with human perception, emphasizing the attribute-entity-relation structure cru-
cial for image generation. While datasets like MS-COCO provide detailed anno-
tations for basic training, they lack emphasis on complex relational concepts and
reasoning operations central to our task (Table 1). Similarly, the SR2D dataset
focuses on spatial relations but overlooks logical operations and language diver-
sity. These gaps highlight the need for an approach that captures a wider range
of relational concepts and reasoning operations, aiming to generate images that
accurately reflect the complexity of textual prompts.

3.2 Novel Dataset

To better evaluate understanding and reasoning in the text-to-image generation
task, we have compiled a novel dataset comprising 15,213 samples. Each sample
includes a long, content-rich text prompt and its corresponding images (more
detailed information available in the Appendix). To assess the degree of reasoning
required, we have established six categories for the logical-rich text-to-image
generation (LRT2I) task (Figure 3):
[Detail] This category involves text prompts containing intricate scene details
and comprehensive relational information within a scene, designed to test if the
model can effectively visualize content-rich narratives and ensure the intricate
details align with the textual description.
[Inference] In this category, prompts challenge the model with entities shar-
ing identical attributes, like shape and color, requiring inferential reasoning to
discern the target entity among others, thus assessing the model’s ability to
distinguish similar entities through inference.
[Relational Ambiguity] This category’s prompts contain narrative ambigui-
ties with ambiguous relations that clarify towards the end, testing the model’s
ability to understand context, reduce ambiguity, and generate coherent images
that resolve relational ambiguities.
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Place a purple cube in the middle. Next, place a gray sphere 

on its right, directly in front. Then, position a cyan cylinder 

on the left behind it, and also to the left of the purple cube. 

Also, put a gray cylinder to the right behind it, and to the left 

behind the gray sphere, and to the right behind the purple 

cube. Finally, put a red cube to the left in front of it, and to 

the right in front of the cyan cylinder, and to the left in front 

of the gray sphere, and to the left in front of the purple cube.

purple 

cube

red 

cube

gray 

sphere

gray 

cylindercyan 

cylinder

[Detail]
Position a red cylinder at the center. Place a blue sphere 

to its left and slightly behind. Position a purple sphere to 

the right and slightly in front of it, also to the right and 

behind the central red cylinder. Position a red cylinder 

to the left and in front of it, to the right and in front of the 

previous red cylinder, and also to the right and in front 

of the blue sphere positioned behind the left red cylinder. 

Place a blue sphere to its left and behind, in front of the 

left purple sphere, in front of the other left blue sphere, 

and to the left and slightly behind the central red cylinder.

[Inference]

red 

cylinder

red 

cylinder

purple

sphere

blue 

sphere

blue 

sphere

[Relational Ambiguity]
Add a cyan sphere at the center. Add a blue sphere 

behind it on the left. Add a brown cylinder in front 

of it on the right and in front of cyan sphere on the 

right. Add a yellow cylinder in front of it on the right 

and in front of blue sphere on the right and in front 

of cyan sphere on the right . Add a red sphere 

between cyan sphere and blue sphere.

cyan

sphere

brown

cylinder
blue 

sphere

red

sphere

yellow 

cylinder

Place a cylinder of cyan color in the middle. Put a 

gray-colored sphere to its right but in front of it. 

Position a cylinder that is purple colored on the 

left side behind it and on the left side but in front of 

the cyan cylinder. Set a blue cylinder to the right 

side but behind it, on the right side and behind the 

gray sphere, on the right side and behind the cyan 

cylinder, and to the right side but in front of a gray 

cube. The gray cube is on the right side but behind 

the purple cylinder, on the left side but behind the 

gray sphere, and on the left side but behind the 

cyan cylinder.

cyan

sphere

blue

cylinder

purple 

cylinder

gray 

cube

gray 

sphere

[Existential Ambiguity]

gray

cube

brown

cube

red 

cylinder

brown

sphere

Add a brown cube at the center . Add a red cylinder in 

front of it on the left. Add a brown sphere behind it on 

the right and behind brown cube on the right. Remove 

the brown sphere in the image. Add a gray cube behind 

red cylinder on the right and behind brown cube on the 

right .

[Manipulation-2]
[Manipulation-1]

Add a green cube at the center. Add a purple cube in front 

of it on the right. Modify the purple cube into a brown cube. 

Add a gray cylinder behind it on the left and behind green 

cube on the left. Add a red sphere behind and on the right 

of gray cylinder, and behind and on the left of brown cube, 

and behind and on the right of green cube.

red

sphere

green

cube

gray 

cylinder

brown

cube

Insert two spheres of cyan color, two spheres of 

brown color, and one sphere of green color.

[Numbering]

brown

sphere

green

sphere

cyan

sphere

cyan

sphere

brown

sphere

[Manipulation-3]
Add a blue sphere at the center. Add a brown cube 

in front of it on the left.Add a green cylinder behind 

it on the right and behind the blue sphere on the 

right. Add a gray sphere behind it on the left and 

behind the brown cube on the right and behind the 

blue sphere on the left.Move the brown cube to a 

position in front of the gray sphere on the right, in 

front of the green cylinder on the left, and in front 

of the blue sphere on the right.

blue 

sphere

green 

cylinder
gray 

sphere

brown

cube

Fig. 3: Overview of TV-Logic Dataset Categories. This composite image illustrates the
diverse challenges in text-to-image generation, showing six categories for model evalu-
ation. These categories demonstrate the diverse challenges in text-to-image generation.
Within each category, the graph depicts scene information derived from text prompts.
Solid edges signify relations explicitly mentioned in the prompts, while dashed edges
indicate unmentioned relations. Orange lines represent case-related information.

[Existential Ambiguity] This category assesses the model’s capacity to iden-
tify and place initially undefined entities, navigating scenarios where entities’
locations or attributes are not explicitly defined until later in the narrative.
[Manipulation] Prompts in this category feature textual manipulations in three
subcategories: modifying the entity attributes, removing the entity, and moving
an entity from one location to another. The evaluation focuses on the model’s
understanding of these manipulations to accurately reflect the intended changes
in the generated images.
[Numerical Representation] This category addresses the challenge of visu-
ally representing numerical information from text prompts. It tests the model’s
precision in text-to-image generation, ensuring the quantity and attributes of en-
tities match the textual description and accurately implementing the numerical
details into the generated images.

Each category within the TV-Logic dataset is designed to challenge and
quantify a model’s capabilities across different dimensions of understanding and
reasoning. Presenting scenarios from highly detailed to broadly ambiguous, it
provides a comprehensive framework for evaluating text-to-image generation ad-
vancements. It offers textual challenges mirroring natural language complexity
and nuance, enabling thorough text-to-image model evaluation. Dataset gener-
ation and annotation details are in the Appendix.

Text Prompts The vocabulary of our dataset (Figure 4) is composed of 691
substantive words, having been refined to exclude common stopwords (for in-
stance, ’to’, ’of’, ’a’, ’the’) as well as punctuation marks, thereby ensuring an
emphasis on semantically significant terms. Table 2 delineates the statistical
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Fig. 4: Word cloud visualization representing the 100 most frequent terms within the
text prompts, where font magnitude correlates directly with term occurrence frequency.

Detail Inference Relational Ambiguity
Max Min Avg Std Total Max Min Avg Std Total Max Min Avg Std Total
149 52 104.79 9.51 2,586 192 48 130.32 14.95 2,251 142 52 90.46 16.44 2,600

Existential Ambiguity Manipulation Numerical Rep
Max Min Avg Std Total Max Min Avg Std Total Max Min Avg Std Total
154 76 108.28 9.63 2,586 145 64 92.71 14.48 2,600 27 13 13.87 0.92 2,590

TV-Logic
Max Min Avg Std Total
192 13 89.17 38.32 15,213

Table 2: Statistical Overview of Prompt Lengths in the TV-Logic Dataset.

attributes pertaining to the lengths of prompts within the TV-logic dataset, en-
compassing the minimum, maximum, average, and standard deviation for each
specified category. This statistical breakdown offers a crucial insight into the
dataset’s composition and prompt length variability, essential for subsequent
analyses.

Fig. 5: Statistical Overview of Shape-Attribute Composition. The colors of the bars
correspond to the entity colors, with different shades representing the training, valida-
tion, and test splits. The numbers on each bar indicate the count of each composition.
There is no significant imbalance between the training and test splits.

Images Figure 5 illustrates the distribution of each shape-attribute composi-
tion. Our research focuses on balanced data with logic-rich text prompts. Ad-
ditionally, for each text prompt and image pairing, we provide annotations for
a scene graph and a sequence of images. These annotations serve as valuable
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references for future research endeavors, particularly due to the time-sequence
operations present in the text prompts. Details are available in the Appendix.

Detail Inference Relational Ambiguity
Max Min Avg Std Max Min Avg Std Max Min Avg Std
14/30 4/6 4.66/16.74 1.31/3.75 13/35 4/6 5.92/19.85 1.58/3.97 10/30 4/5 4.22/13.03 0.72/4.90

Existential Ambiguity Manipulation Numerical Rep
Max Min Avg Std Max Min Avg Std Max Min Avg Std
13/30 4/6 5.12/17.09 1.62/3.56 10/21 4/4 4.05/13.27 0.37/3.37 3/0 0/0 0.01/0 0.10/0

TV-Logic
Max Min Avg Std
14/35 0/0 3.56/13.18 2.61/7.33

Table 3: Statistical Overview of Reasoning in Prompts. Two measures: cross-sentence
object reference counts before slash and relation mentions, underlined after slash.

Textual-Visual Logical Reasoning Table 3 presents statistical data on rea-
soning concepts key to understanding the dataset’s complexity. Two concepts
are highlighted: the first is the count of cross-sentence object references within
the text prompts, indicating the frequency with which an object is mentioned in
subsequent sentences. E.g., in Figure 2 [Detail], "it" in sentence 3 refers back
to the "cyan cylinder" from the second sentence, assessing the model’s under-
standing and reasoning. The second involves the enumeration of relations within
the prompts, e.g., "in front of" between "red cube" and "cyan cylinder" in Fig-
ure 2 [Detail], showcasing entity interactions. For both, we report maximum,
minimum, average, and standard deviations. This analysis is crucial for evalu-
ating the depth of reasoning required to comprehend and respond to prompts,
underlining its importance in text-based reasoning task complexity.

3.3 Evaluation Metrics

For task evaluation, to effectively assess the model performance in generating
images that comprehend the structural information in text input, specific eval-
uation metrics, rather than a pixel-level measurement, are required. Given the
ill-posed nature of the problem previously mentioned (Figure 1b), these metrics
should concentrate on aligning entity presences and their respective relations
between the ground-truth and generated images. Consequently, the objectives
of the task should also prioritize these aspects.

We adapted evaluation metrics from previous work [6], which emphasizes
relational information similar to our study, making its methodology applicable
for our evaluation. We adopted two main metrics:

(i) Object Presence Matches: Evaluates the model’s accuracy in identifying
and generating objects mentioned in text prompts, comparing the presence of
objects in both generated images and ground truth.

(ii) Object Position Relation Matches: Assesses spatial accuracy by compar-
ing object positions in generated images with the ground truth, indicating the
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model’s understanding of spatial dynamics from the text. However, in the Nu-
merical Representation category, this metric is omitted since relative relations
aren’t directly mentioned in text prompts, thus not included in overall results.

For (i), metrics include average precision (AP), average recall (AR), and
F1 score, derived from detection results of both image types and computed for
each scene. For (ii), the relational similarity (RSIM) is set to measure object
arrangement. RSIM is articulated as:

RSIM(EGgt
, EGgen

) = recall ×
|EGgt

∩ EGgen
|

|EGgt
|

(1)

Here, recall represents the ratio of detected objects in the generated image in
relation to those in the ground-truth. EGgt

and EGgen
denote the sets of rela-

tional edges for the ground-truth and generated images, respectively, concerning
vertices shared by both images. To address concerns about the object detector’s
performance as an evaluation metric, we also include reference metrics, i.e., AP,
AR, and F1 scores for the fully annotated image.

4 Our Baseline Model

We propose the Understanding and Reasoning Generative Adversarial Network
(UnR-GAN) as a baseline model, emphasizing key aspects of the T2I task. UnR-
GAN specializes in interpreting structural text information and aligning features
across uni-modal and multi-modal domains, as illustrated in Figure 6.

4.1 Relation Understanding Module

The relation understanding module extracts inherent structural relations from
inputs and embeds these enhanced relations into the Text Encoder (Etext).

First, text prompts (T) are processed by a BERT-based encoder, extracting
token (f = {fi}Ni=0) and sentence features (s) with context attention. The Rela-
tion Enhancing Model parses dependency information (E), guiding self-attention
to identify relation-related tokens (r = {rj}Dj=0). Sentence features (s) are then
transformed by an Multi-Layer Perceptron(MLP) and merged with a noise vec-
tor z ∼ N (0, I), forming sz. Etext further encodes these into relation-enhanced
text features (etxt), leveraging E and token indexes (id = {idj}Dj=0).

f̃ = MHA(f, Gguide = A[E,id]),

etxt = Concat(̃f, sz)
(2)

A[E,id], initialized from the dependency graph’s adjacency matrix E and marked
by relation-related token indices (id), is a learnable matrix. The multi-head at-
tention block (MHA) applies self-attention to token features with A[E,id] serving
as a soft attention mask, highlighting natural language relations and relation-
related tokens. These enhanced features are then combined with sz to create
text-enhanced features etxt for the subsequent module.
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ffuse

canvas

generated image

Negative Sample

Generator

canvas input text

Add a purple sphere at the center. 

Add a brown cylinder in front of it 

on the right. Add a red sphere in 

front of it on the left and in front 

of the purple sphere on the left. 

Add a brown cube behind the 

brown cylinder on the left and 

behind the purple sphere on the 

left. Add a blue cylinder in front 

of it on the right and in front of 

the purple sphere on the right.

Add a purple sphere at the center . Add a brown cylinder 

in front of it on the right . Add a red sphere in front of it 

on the left and in front of the purple sphere on the left . 

Add a brown cube behind the brown cylinder on the left 

and behind the purple sphere on the left . Add a blue 

cylinder in front of it on the right and in front of the 

purple sphere on the right .

Add a purple sphere at the center . Add a brown cylinder 

in front of it on the right . Add a red sphere in front of it 

on the left and in front of the purple sphere on the left . 

Add a brown cube behind the brown cylinder on the left 

and behind the purple sphere on the left . Add a blue 

cylinder in front of it on the right and in front of the 

purple sphere on the right .

Add a purple sphere at the center . Add a brown cylinder 

in front of it on the right . Add a red sphere in front of it 

on the left and in front of the purple sphere on the left . 

Add a brown cube behind the brown cylinder on the left 

and behind the purple sphere on the left . Add a blue 

cylinder in front of it on the right and in front of the 

purple sphere on the right .

Add a purple sphere at the center . Add a brown cylinder 

in front of it on the right . Add a red sphere in front of it 

on the left and in front of the purple sphere on the left . 

Add a brown cube behind the brown cylinder on the left 

and behind the purple sphere on the left . Add a blue 

cylinder in front of it on the right and in front of the 

purple sphere on the right .

Dataset

Multimodality Fusion

Multimodality

Alignment

Module

z ~ N(0, I)

Sentence

Features(s)

Token Features(f)

generated image

Negative Pair Discriminator

Generator

canvas

input text

Image

Encoder

Add a purple sphere at the center. 

Add a brown cylinder in front of it 

on the right. Add a red sphere in 

front of it on the left and in front 

of the purple sphere on the left. 

Add a brown cube behind the 

brown cylinder on the left and 

behind the purple sphere on the 

left. Add a blue cylinder in front 

of it on the right and in front of 

the purple sphere on the right.

Pixel-wisely

Local

Discrimination

Discriminator

Sentence Features(s)

Text-conditional

Global

Discrimination

Negative Info

Global

Discrimination

A
d
v
e
rs

a
ri
a
l 
L
o
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Relation Understanding

General

Global

Discrimination

etxt

fimg

xt
~

negative images
... ... 

Fig. 6: Overview of our approach. The model consists of a generator to generate images
from text and a discriminator for distinguishing samples. It operates in three stages:
first, the Relation Understanding Module extracts structural text data; next, the Mul-
timodality Fusion Module combines text and image features for improved alignment;
finally, the Negative Pair Discriminator identifies generated images from negatives.

4.2 Multimodality Fusion Module

The multimodality fusion module is designed to merge visual features and relation-
enhanced text features.
[Multimodality Self- and Cross-attention] This fusion is achieved by m
cross-modality towers and n semantic self-encoders (Figure 7), inspired by [31].
The visual features (fimg) are extracted from an image encoder, comprising a
residual convolutional network that downsamples the features. Subsequently,
fimg and relation-enhanced text features (etxt) are directed into corresponding
Linear Layers (gtxt and gimg).

Ztxt
0 = gtxt(etxt),

Zimg
0 = gimg(fimg)

(3)

The semantic feature (Ztxt
0 ) is then processed through n semantic self-encoder

(Encodersem) for further self-attention learning, before being integrated with
the visual stream in the cross-modality tower (CMT ).

Ztxt
l = Encoderseml−1 (Z

txt
l−1), l = 1, .., n,

Z̃
txt

0 = Ztxt
n ,

Z̃
txt

k ,Zimg
k = CMT k−1(Z̃

txt

k−1,Z
img
k−1), k = 1, ..,m

(4)
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Cross-Modality Tower

Visual Stream

Linear Projection

m x

Linear Projection

n x

Semantic Stream

Fig. 7: Structure of attention model. Image and text features are linearly projected,
with text features refined by n self-encoders. m cross-modality towers merge streams,
each including visual and semantic towers. Each stream’s tower has self- and cross-
multi-head attention, feedforward, and normalization layers.

The output from the last visual tower, termed visual-fused features (vfuse =

Z̃
img

m ), contains self-attention and cross-attention of the two modality features.
[Multimodality Fusion] We construct a model using the Text Image Residual
Gating-based network [27] to fuse visual (vfuse) and text-enhanced (etxt) fea-
tures, emphasizing text-modified image features over new feature space creation.
For improved alignment, it employs semantic-attended visual features (vfuse)
rather than solely extracted visual features.

The compose features (h) are calculated in Equation 5. The gating feature
design aims to retain the image feature when text prompts are less informative.

h = Wgatefgate + Wres(1− fgate)⊙ fres,
fgate = ConvNet2(ConvNet1([vfuse; sz]))⊙ fimg,

fres = Conv(ConvNet3([vfuse; sz]))
(5)

Wgate and Wres are weights for gating (fgate) and residual (fres) features. ⊙ de-
notes element-wise multiplication, and [·, ·] indicates concatenation. ConvNet in-
cludes a convolution layer, activation function (ReLU for ConvNet1 and ConvNet3,
σ for ConvNet2), and batch normalization, while Conv specifies a convolutional
layer alone. The features h enter an image generation decoder with upsampling
residual layers to produce the final image x̃t.

4.3 Negative Pair Discriminator

In conventional GANs, the discriminator separates real from generated data. We
extend this role by having the discriminator also identify specific data character-
istics. Training our discriminator has three objectives: 1) distinguish real from
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fake images, 2) discern paired from unpaired image-text sets to ensure relevance,
and 3) promote image variation when input content changes. Negative samples
are generated accordingly based on the discriminator type.
[U-Net Based Local Discriminator] It focuses on local data features to
discern real and fake data per pixel, segmenting images into real and fake regions,
akin to [24]. It is defined as:

dreal
uNet = Ddec(Denc(xt))

dfake
uNet = Ddec(Denc(x̃t))

(6)

where Denc and Ddec are U-Net encoder and decoder, respectively, and xt is the
ground truth real image.
[Text-conditioned Global Discriminator] It globally evaluates the text-
image relationship, enabling effective discrimination between paired and un-
paired sets. This generates a scalar indicating if the image relates to the text
input rather than an unpaired or randomly sampled negative text prompt:

dfaketxt−G = DG(Denc(x̃t)−Denc(xbg, s)) (7)

where DG is the text-conditioned global discriminator, taking as inputs the sen-
tence features s and the difference between the encoded canvas image (xbg) and
the generated image. We use xt to replace x̃t for drealtxt−G, and for dunpairtxt−G , x̃t is
replaced with xt, and s is replaced with s∗ ∼ D, where s∗ is randomly sampled
from dataset D.
[Information-sensitive Global Discriminator] It is designed to be sensitive
to the information content, this discriminator plays a critical role in detecting
variations resulting from disturbances in the original text inputs.

dinfo−G = similarity(x̃t, x̃s∗
t ) (8)

Here, we use normalized cosine similarity as loss to encourage the dissimilarity
of two generated images, while x̃s∗

t is the one generated from the prompt where
the informative tokens have been disturbed. We define these informative tokens
as attributes (e.g., adjectives) and relations (e.g., adpositions, verbs) based on
tokens in the sentences from the Part-of-Speech Tagset (POS tag) [26].

5 Experiments

5.1 Dataset

To address T2I generation challenges, especially complex subject-object rela-
tions, we introduced the TV-Logic dataset, featuring structurally complex im-
ages. This synthetic dataset comprises three shapes and eight colors, with prompts
detailing object positioning relative to existing entities. We’ve segmented it into
six categories for diverse reasoning task assessment.
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No. Name Focal
Info

Focal
Rel

2Modal
Ref FID↓ LIPIPS↓ SSIM↑ PSNR↑ AP↑ AR↑ F1↑ RSIM↑

1 DALL-E - - - 79.33 0.3963 0.8146 12.45 19.64 16.31 17.05 8.41
2 U-Vit - - - 55.19 0.2908 0.8932 21.46 28.01 26.61 26.98 20.94
3 GeNeVA-GAN - - - 49.06 0.3039 0.9199 22.09 16.61 13.63 14.39 7.47
4 LatteGAN - - - 48.81 0.1294 0.9275 24.85 66.65 69.29 67.10 63.03
5 Composable Diff - - - 53.93 0.3267 0.8756 18.84 45.45 25.55 30.75 14.29
6 GPT+Blender - - - 77.38 0.3656 0.8984 18.00 37.84 21.24 26.15 10.33

7 Ours ✗ ✓ ✓ 45.62 0.1243 0.9282 24.90 72.50 75.00 73.72 69.91
8 Ours ✓ ✗ ✓ 39.41 0.1284 0.9282 24.90 70.53 73.65 71.24 66.12
9 Ours ✓ ✓ ✗ 42.57 0.1254 0.9299 25.04 71.81 74.35 72.75 68.90
10 Ours ✓ ✓ ✓ 40.60 0.1250 0.9303 25.08 73.62 76.24 74.13 72.78

Table 4: Quantitative analysis and ablation study comparisons. Baseline and proposed
methods are benchmarked on the TV-Logic dataset using eight evaluation metrics:
average precision (AP), average recall (AR), F1 score, relational similarity (RSIM),
Fréchet Inception Distance (FID), Learned Perceptual Image Patch Similarity (LPIPS),
Structural Similarity Index Measure (SSIM), and Peak Signal-to-Noise Ratio (PSNR).

5.2 Quantitative Results

[Overall Results] In our study, we evaluate the TV-Logic dataset using metrics
such as AP, AR, F1, RSIM, and standard evaluations like FID, LIPIPS, SSIM,
and PSNR. Our approach is compared with six related works: DALL-E [21] for
diverse image generation; U-ViT [2], which combines ViT and U-Net with dif-
fusion models; GeNeVA-GAN [5] and LatteGAN [16] for image manipulation
task; “GPT+Blender”, utilizing ChatGPT4 [20] and Blender [3] to convert text
prompts into 3D scenes; and “GPT+Comp”, focusing on scene generation us-
ing diffusion models for image components, but they require a Large Language
Model to transform logic-rich text prompts into pairwise relations for execution.
Quantitative results, displayed in Table 4, highlight our model’s standout perfor-
mance in relation measurement compared to baselines known for object presence
scores. On the TV-Logic dataset, while our model exhibits strong object presence
scores, it still struggles to accurately measure relationships in complex prompts.
[Category-Specific Results] Table 5 displays the quantitative results on the
TV-Logic dataset, breaking down performance across different subcategories. In
cases that incorporate comprehensive relational details, our model demonstrates
improved results compared to other related works. These findings suggest that
emphasizing the three principal factors in this domain can lead to better gen-
eration of entity attributes and more accurate interpretation of relationships.
However, in scenarios containing multiple entities possessing the same attributes
within a scene, or in cases requiring the model to identify the target entity, a
decrease in performance is observed for all models. Furthermore, the task of
aligning numerical representations in natural language with their corresponding
visual outputs presents a significant challenge within the realm of multi-modality,
constituting a primary obstacle in this domain.
[Ablation Studies] Our experiments, shown in Table 4, evaluated our archi-
tecture’s variations to determine each component’s impact. In Exp.7 (Focal In-
formative), the Negative Pair Discriminator’s loss function was removed, affect-
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Methods Detail Inference Relational Ambiguity
AP AR F1 RSIM AP AR F1 RSIM AP AR F1 RSIM

DALL-E 23.74 15.22 18.08 7.92 16.41 18.23 16.67 9.80 20.41 16.71 17.68 8.81
U-ViT 20.59 17.38 18.66 9.32 14.11 14.97 14.30 8.49 16.41 16.32 16.10 8.65
GeNeVA-GAN 21.23 11.98 15.06 6.57 12.06 13.25 12.34 7.47 16.96 16.61 16.41 9.01
LatteGAN 78.43 74.32 76.06 68.62 61.37 76.18 66.90 64.07 59.87 58.99 58.47 51.77
Composable Diff 55.31 25.11 33.01 12.50 47.28 34.67 37.56 17.38 43.64 23.08 28.16 11.70
GPT+Blender 45.67 20.21 27.33 9.57 37.06 26.01 29.67 13.92 30.14 16.64 20.68 8.15
Ours 88.01 85.85 86.79 81.01 70.83 83.57 75.61 71.50 67.92 66.27 66.08 58.04

Methods Entity Ambiguity Manipulation Numerical Rep
AP AR F1 RSIM AP AR F1 RSIM AP AR F1 RSIM

DALL-E 23.24 14.73 17.56 7.42 18.45 15.67 16.40 8.16 15.47 17.41 15.89 -
U-ViT 19.06 16.23 17.36 9.03 65.48 61.65 62.94 47.95 10.97 11.79 11.17 -
GeNeVA-GAN 20.77 12.21 15.13 7.14 15.00 12.43 13.31 7.10 13.45 15.22 13.95 -
LatteGAN 77.48 73.86 75.41 67.89 71.74 69.82 70.54 64.40 54.58 68.64 59.78 -
Composable Diff 53.00 27.06 34.36 1289 49.36 34.30 38.47 17.56 25.99 11.79 15.43 -
GPT+Blender 42.59 19.30 25.90 9.88 36.31 20.22 25.14 10.42 34.17 27.60 29.72 -
Ours 87.87 85.36 86.45 80.57 78.49 75.95 76.93 71.70 57.33 70.70 62.12 -

Table 5: Quantitative analysis of the TV-Logic dataset across different subcategories.

ing focus on prompt sections. Exp.8 (Focal Relation) involved substituting the
learned attention layer with a uniform matrix, thus eliminating relation-guided
feature integration. Exp.9 (Cross Modality Reference) used the direct concate-
nation of multi-modality features, bypassing the Cross-Modality Tower, which
impacted cross-modality alignment and fusion. These modifications, not signif-
icantly altering the model’s scale, offered a basis for performance comparison,
demonstrating the crucial role of each component in our proposed architecture.

5.3 Qualitative Results

Figure 8 displays qualitative outcomes from the TV-Logic dataset across various
categories, showcasing ground truth images alongside our baseline outputs. The
performance of DALL-E and U-ViT is depicted in the third and fourth columns,
respectively. These transformer-based models often misinterpret complex rela-
tions and struggle with lengthy text inputs, resulting in inaccuracies in entity de-
piction. Results for U-ViT and LatteGAN are presented in subsequent columns.
They are designed for conditional image generation from textual prompts and
visual context, where initially perform well but their performance diminishes
with more complex sentences. GPT-Blender and GPT-Comp, employing a com-
positional strategy, utilize a large language model to convert text prompt to
3D objects and pairwise text prompts for Blender and Composable Diffusion
Models, respectively. While effective with basic relational inputs, Composable
Diffusion Models face challenges with complex relations and deeper reasoning,
relying on ChatGPT for accurate interpretation.

6 Limitation Discussion and Conclusion

Our research introduces the ’logic-rich text-to-image generation’ task, under-
scoring the significance of structural information in this field. We developed the
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[Detail] Place a brown sphere in the middle . Put a cyan 

sphere to the left , behind it . Position a gray sphere to 

the left of it and to the left of the brown sphere . Set a 

red sphere to the right of it , and to the right of both 

the cyan and brown sphere . Insert a yellow sphere in 

the right hand side , behind it , in front of the cyan 

sphere , behind the gray sphere , and also behind 

the brown sphere .

[Inference] Place one red orb at the central position . 

Put a green tube to its immediate front - right . Position a 

yellow tube behind it on the left side , which is also 

behind and to the right of the centrally located red orb . 

Introduce a red orb behind the green tube on the left 

and also behind and to the left of the central red orb . 

Position a final red orb in front of the yellow tube on the 

left , also ahead of the green tube on the left , and 

ahead and to the left of the central red orb .

Ground Truth U-ViTOurs GeNeVA-GANDALL-E LatteGAN GPT-CompGPT-Blender

[Relational Ambiguity] Add a red cylinder at the center .

Add a purple sphere in front of it on the right . Add a 

brown sphere behind it on the left and behind red cylinder 

on the left . Add a red sphere between brown sphere and 

red cylinder . Add a brown cylinder in front of it on the 

right and in front of brown sphere on the right and in 

front of purple sphere on the right and in front of red 

cylinder on the right .

[Existential Ambiguity] Place a gray cylinder in the 

middle . Position a red cylinder to its left in front . Behind 

it on the right , put a blue cube , and further behind the 

gray cylinder on the right , place a green cylinder . The 

green cylinder is placed to the left behind the red cylinder 

and to the left behind the gray cylinder . Lastly , arrange 

a purple sphere to the right in front of it and to the right 

in front of the blue cube , positioned to the right behind 

the red cylinder and to the right front of the gray cylinder .

[Manipulation-1] Add a blue sphere at the center . Add 

a cyan cylinder in front of it on the right . Add a blue 

cylinder behind it on the left and in front of the blue 

sphere on the left . Add a purple cube behind it on the 

right and behind the cyan cylinder on the right and 

behind the blue sphere on the right . Move the blue 

cylinder behind the purple cube on the left , behind the 

cyan cylinder on the left , and behind the blue sphere on 

the left .

[Manipulation-2] Add a purple cylinder at the center . 

Add a green cylinder in front of it on the right . Add a 

blue cylinder in front of it on the left and in front of 

purple cylinder on the left . Modify the green cylinder 

into a purple cube . Add a yellow sphere behind and on 

the left of blue cylinder , and behind and on the left of 

purple cube , and behind and on the left of purple 

cylinder .

[Manipulation-3] Add a blue sphere at the center . Add 

a cyan cube behind it on the right . Add a red cube in 

front of it on the left and in front of blue sphere on the 

left . Remove the blue sphere . Add a brown sphere 

behind and on the left of red cube , and in front of and 

on the left of cyan cube .

[Numerical Representation] Add a purple sphere , 

two green spheres , and two blue cylinders .  

Fig. 8: Qualitative comparisons on the TV-Logic dataset. The columns, from left to
right, display the ground truth image, our model’s results, results from other works,
and the corresponding input text prompts.

TV-Logic dataset to assess diverse model performances, marking it as the first
comprehensive reasoning dataset in this domain. Our proposed baseline model
includes a Negative Pair Discriminator, Relation Understanding Module, and
Multimodality Fusion Module, aimed at improving reasoning from text to im-
ages. Experiments on the TV-Logic dataset demonstrate our model’s effective-
ness, setting a new benchmark in the field.

The study of logic-rich text-to-image generation, still in its early stages, pri-
marily relies on synthetic and clip-art datasets for evaluation, particularly in
relation-focused tasks. However, advances in scene graph generation and com-
puter vision could overcome these challenges. Additionally, there is still room to
explore how to handle the ambiguity inherent in text prompts and how to appro-
priately evaluate the result. Given the field’s novelty and inherent complexity,
we expect a surge in research contributions in the near future. The failure cases
and limitations of the model will be presented in the Appendix.
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